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In this paper, we consider a four-point coupled boundary value problem for system of the nonlinear semipositone fractional
differential equation 𝐷𝛼0+𝑢(𝑡) + 𝜆𝑓(𝑡, 𝑢(𝑡), V(𝑡)) = 0, 0 < 𝑡 < 1, 𝐷𝛼0+V(𝑡) + 𝜇𝑔(𝑡, 𝑢(𝑡), V(𝑡)) = 0, 0 < 𝑡 < 1, 𝑢(0) = V(0) =
0, 𝑎1𝐷𝛽0+𝑢(1) = 𝑏1𝐷𝛽0+V(𝜉), 𝑎2𝐷𝛽0+V(1) = 𝑏2𝐷𝛽0+𝑢(𝜂), 𝜂, 𝜉 ∈ (0, 1), where the coefficients 𝑎𝑖, 𝑏𝑖, 𝑖 = 1, 2 are real positive constants,
𝛼 ∈ (1, 2], 𝛽 ∈ (0, 1], 𝐷𝛼0+ ,𝐷𝛽0+ are the standard Riemann-Liouville derivatives. Values of the parameters 𝜆 and 𝜇 are determined for
which boundary value problem has positive solution by utilizing a fixed point theorem on cone.

1. Introduction

In recent years, fractional-order calculus has been one of the
most rapidly developing areas of mathematical analysis. In
fact, a natural phenomenon may depend not only on the
time instant but also on the previous time history, which can
be successfully modeled by fractional calculus. Fractional-
order differential equations are naturally related to systems
with memory, as fractional derivatives are usually nonlocal
operators. Thus, fractional differential equations (FDEs) play
an important role because of their applications in various
fields of science, such as mathematics, physics, chemistry,
optimal control theory, finance, biology, and engineering
[1–6]. In particular, a great interest has been shown by
many authors in the subject of fractional-order boundary
value problems (BVPs), and a variety of results for BVPs
equipped with different kinds of boundary conditions have
been obtained; for instance, see [7–18] and the references
cited therein.

We consider the four-point coupled system of nonlinear
fractional differential equations:

𝐷𝛼0+𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 0 < 𝑡 < 1,
𝐷𝛼0+V (𝑡) + 𝜇𝑔 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 0 < 𝑡 < 1, (1)

with the coupled boundary conditions

𝑢 (0) = V (0) = 0,
𝑎1𝐷𝛽0+𝑢 (1) = 𝑏1𝐷𝛽0+V (𝜉) ,
𝑎2𝐷𝛽0+V (1) = 𝑏2𝐷𝛽0+𝑢 (𝜂) ,

𝜂, 𝜉 ∈ (0, 1) ,
(2)

where 𝛼 ∈ (1, 2], 𝛽 ∈ (0, 1], 𝐷𝛼0+ and 𝐷𝛽
0+

are the
standard Riemann-Liouville derivatives, 𝑓, 𝑔 ∈ 𝐶([0, 1] ×[0, +∞)×[0, +∞), [0, +∞)) and 𝑎𝑖, 𝑏𝑖, 𝑖 = 1, 2 are real positive
constants.

Here we emphasize that our problem is new in the sense
of nonseparated coupled boundary conditions introduced
here. To the best of our knowledge, fractional-order coupled
system (1) has yet to be studied with the boundary conditions
(2). In consequence, our findings of the present work will be a
useful contribution to the existing literature on the topic.The
existence of positive solution results for the given problem
is new, though they are proved by applying the well-known
fixed point theorem.

We present intervals for parameters 𝜆, 𝜇, 𝑓, and 𝑔 such
that the above problem (1)-(2) has at least one positive
solution. By a positive solution (1)-(2), we mean a pair of
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functions (𝑢, V) ∈ 𝐶[0, 1] × 𝐶[0, 1] satisfying (1) and (2) with𝑢(𝑡) ≥ 0, V(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1] and 𝑢(𝑡) > 0, V(𝑡) > 0.
We use the following notations for our convenience:

𝐾𝑖 = ∫1
0
𝐺𝑖 (1, 𝑠) 𝑑𝑠 and

𝐿 𝑖 = ∫1
0
𝐻𝑖 (1, 𝑠) 𝑑s

for 𝑖 = 1, 2.
𝐴 𝑖 = ∫

𝑠∈𝐼
𝐺𝑖 (1, 𝑠) 𝑑𝑠 and

𝐵𝑖 = ∫
𝑠∈𝐼

𝐻𝑖 (1, 𝑠) 𝑑𝑠
for 𝑖 = 1, 2.

(3)

Before stating our results, we make precise assumptions
throughout the paper:

(H1) The functions 𝑓, 𝑔 ∈ 𝐶((0, 1) × [0,∞) × [0,∞),(−∞,∞)) and there exist functions𝑝1, 𝑝2 ∈ 𝐶([0, 1]×[0,∞)) such that 𝑓(𝑡, 𝑢, V) ≥ −𝑝1(𝑡) and 𝑔(𝑡, 𝑢, V) ≥−𝑝2(𝑡) for any 𝑡 ∈ [0, 1] and (𝑢, V) ∈ [0,∞).
(H2) 𝑎1, 𝑎2, 𝑏1, 𝑏2 are positive constants such that 𝑎1𝑎2 ≥𝑏1𝑏2/(𝜉1−𝛼+𝛽𝜂1−𝛼+𝛽).
(H3) 𝑓(𝑡, 0, 0) > 0, 𝑔(𝑡, 0, 0) > 0 for all 𝑡 ∈ [0, 1].
(H4) The functions 𝑓, 𝑔 ∈ 𝐶((0, 1) × [0,∞) × [0,∞),(−∞,∞)), 𝑓, 𝑔 may be singular at 𝑡 = 0 and/or𝑡 = 1, and there exist functions 𝑝1, 𝑝2 ∈ 𝐶((0, 1),[0,∞)), 𝛼1, 𝛼2 ∈ 𝐶((0, 1), (0,∞)), 𝛽1, 𝛽2 ∈ 𝐶([0, 1] ×[0,∞), [0,∞)) such that −𝑝1(𝑡) ≤ 𝑓(𝑡, 𝑢, V) ≤𝛼1(𝑡)𝛽1(𝑡, 𝑢, V), −𝑝2(𝑡) ≤ 𝑔(𝑡, 𝑢, V) ≤ 𝛼2(𝑡)𝛽2(𝑡, 𝑢, V)

for all 𝑡 ∈ (0, 1), 𝑢, V ∈ [0,∞), with 0 < ∫1
0
𝑝𝑖(𝑠)𝑑𝑠 <∞, 0 < ∫1

0
𝛼𝑖(𝑠)𝑑𝑠 < ∞, 𝑖 = 1, 2.

(H5) There exists 𝑡 ∈ 𝐼 = [1/4, 3/4] ⊂ (0, 1) such that

𝑓∞ = lim
𝑢+V󳨀→∞

min
𝑡∈𝐼

𝑓 (𝑡, 𝑢, V)𝑢 + V
= ∞

or 𝑔∞ = lim
𝑢+V󳨀→∞

min
𝑡∈𝐼

𝑔 (𝑡, 𝑢, V)𝑢 + V
= ∞.

(4)

The rest of the paper is organized as follows. In Section 2,
we construct the Green functions for the associated linear
fractional-order boundary value problems and estimate the

bounds for these Green functions. In Section 3, we establish
the existence of at least one positive solution of the boundary
value problem (1)-(2) by applying fixed point theorem.
Finally, as an application, we give an example to illustrate our
result.

2. Green Functions and Bounds

In this section, we construct the Green functions for the
associated linear fractional-order boundary value problems
and estimate the bounds for these Green functions, which are
needed to establish the main results.

Lemma 1. Let 𝛼 > 0.�en, the differential equation𝐷𝛼0+𝑢(𝑡) =0 has a solution
𝑢 (𝑡) = 𝑐1𝑡𝛼−1 + 𝑐2𝑡𝛼−2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝛼−𝑛 (5)

for some 𝑐𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the smallest integer
greater than or equal to 𝛼.
Lemma2. Let𝛼 > 0.�en, 𝐼𝛼0+𝐷𝛼0+𝑢(𝑡) = 𝑢(𝑡)+𝑐1𝑡𝛼−1+𝑐2𝑡𝛼−2+⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝛼−𝑛 for some 𝑐𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the
smallest integer greater than or equal to 𝛼.
Lemma 3. Let Δ = Γ(𝛼)N ̸= 0 and N = 𝑎1𝑎2 −𝑏1𝑏2𝜉𝛼−𝛽−1𝜂𝛼−𝛽−1. Let 𝑥, 𝑦 ∈ 𝐶[0, 1] be given functions. �en,
the boundary value problem,

𝐷𝛼0+𝑢 (𝑡) + 𝑥 (𝑡) = 0, 0 < 𝑡 < 1,
𝐷𝛼0+V (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = V (0) = 0,
𝑎1𝐷𝛽0+𝑢 (1) = 𝑏1𝐷𝛽0+V (𝜉) ,
𝑎2𝐷𝛽0+V (1) = 𝑏2𝐷𝛽0+𝑢 (𝜂) ,

𝜉, 𝜂 ∈ (0, 1) ,

(6)

has an integral representation

𝑢 (𝑡) = ∫1
0
𝐺1 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 + ∫1

0
𝐻1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

V (𝑡) = ∫1
0
𝐺2 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + ∫1

0
𝐻2 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠,

(7)

where

𝐺1 (𝑡, 𝑠) = 1Δ

{{{{{{{{{{{{{{{{{{{{{

𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 −N (𝑡 − 𝑠)𝛼−1 − 𝑏1𝑏2𝑡𝛼−1𝜉𝛼−𝛽−1 (𝜂 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜂,
𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 −N (𝑡 − 𝑠)𝛼−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≥ 𝜂,
𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 − 𝑏1𝑏2𝑡𝛼−1𝜉𝛼−𝛽−1 (𝜂 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝑠 ≤ 𝜂,
𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝑠 ≥ 𝜂,

(8)
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𝐺2 (𝑡, 𝑠) = 1Δ
{{{{{{{{{{{{{{{

𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 −N (𝑡 − 𝑠)𝛼−1 − 𝑏1𝑏2𝑡𝛼−1𝜂𝛼−𝛽−1 (𝜉 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜉,
𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 −N (𝑡 − 𝑠)𝛼−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≥ 𝜉,
𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 − 𝑏1𝑏2𝑡𝛼−1𝜂𝛼−𝛽−1 (𝜉 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝑠 ≤ 𝜉,
𝑎1𝑎2𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝑠 ≥ 𝜉,

(9)

𝐻1 (𝑡, 𝑠) = 1Δ
{{{
𝑎2𝑏1𝑡𝛼−1𝜉𝛼−𝛽−1 (1 − 𝑠)𝛼−𝛽−1 − 𝑎2𝑏1𝑡𝛼−1 (𝜉 − 𝑠)𝛼−𝛽−1 , 𝑠 ≤ 𝜉,
𝑎2𝑏1𝑡𝛼−1𝜉𝛼−𝛽−1 (1 − 𝑠)𝛼−𝛽−1 , 𝑠 ≥ 𝜉, (10)

𝐻2 (𝑡, 𝑠) = 1Δ
{{{
𝑎1𝑏2𝑡𝛼−1𝜂𝛼−𝛽−1 (1 − 𝑠)𝛼−𝛽−1 − 𝑎1𝑏2𝑡𝛼−1 (𝜂 − 𝑠)𝛼−𝛽−1 , 𝑠 ≤ 𝜂,
𝑎1𝑏2𝑡𝛼−1𝜂𝛼−𝛽−1 (1 − 𝑠)𝛼−𝛽−1 , 𝑠 ≥ 𝜂. (11)

Lemma 4. Assume that condition (𝐻2) is satisfied. �en, the
Green functions 𝐺1(𝑡, 𝑠) and 𝐻1(𝑡, 𝑠) defined, respectively, by
(8) and (10) are nonnegative, for all 𝑡, 𝑠 ∈ [0, 1].
Lemma 5. Assume that condition (𝐻2) is satisfied. �en, the
Green functions 𝐺2(𝑡, 𝑠) and 𝐻2(𝑡, 𝑠) defined, respectively, by
(9) and (11) are nonnegative, for all 𝑡, 𝑠 ∈ [0, 1].
Lemma 6. Assume that condition (𝐻2) is satified. �en, the
Green functions 𝐺1(𝑡, 𝑠) and 𝐻1(𝑡, 𝑠) defined, respectively, by
(8) and (10) have the following properties:
(𝐶1) 𝐺1(𝑡, 𝑠) ≤ 𝐺1(1, 𝑠), 𝐻1(𝑡, 𝑠) ≤ 𝐻1(1, 𝑠) for all (𝑡, 𝑠) ∈[0, 1] × [0, 1],
(𝐶2) 𝐺1(𝑡, 𝑠) ≥ (1/4)𝛼−1𝐺1(1, 𝑠), 𝐻1(𝑡, 𝑠) ≥ (1/4)𝛼−1𝐻1(1,𝑠), for all (𝑡, 𝑠) ∈ 𝐼 × (0, 1), where 𝐼 = [1/4, 3/4].

Lemma 7. Assume that condition (𝐻2) is satified. �en, the
Green functions 𝐺2(𝑡, 𝑠) and 𝐻2(𝑡, 𝑠) defined, respectively, by
(9) and (11) have the following properties:
(𝐶3) 𝐺2(𝑡, 𝑠) ≤ 𝐺2(1, 𝑠) and 𝐻2(𝑡, 𝑠) ≤ 𝐻2(1, 𝑠) for all(𝑡, 𝑠) ∈ [0, 1] × [0, 1],
(𝐶4) 𝐺2(𝑡, 𝑠) ≥ (1/4)𝛼−1𝐺2(1, 𝑠) and 𝐻2(𝑡, 𝑠) ≥ (1/4)𝛼−1𝐻2(1, 𝑠), for all (𝑡, 𝑠) ∈ 𝐼 × (0, 1), where 𝐼 =[1/4, 3/4].
In the proof of our main results, we shall use the

nonlinear alternative of Leray-Schauder type and the Guo-
Krasnosel’skii fixed point theorem presented below [19, 20].

Theorem 8. Let 𝑋 be a Banach space with Ω ⊂ 𝑋 closed and
convex. Assume 𝑈 is a relatively open subset of Ω with 0 ∈ 𝑈,
and let 𝑆 : 𝑈 󳨀→ Ω be a completely continuous operator
(continuous and compact). �en, either

(i) 𝑆 has a fixed point in 𝑈, or
(ii) there exist 𝑢 ∈ 𝜕𝑈 and V ∈ (0, 1) such that 𝑢 = V𝑆𝑢.

Theorem 9 (𝐾𝑟𝑎𝑠𝑛𝑜𝑠𝑒𝑙󸀠𝑠𝑘𝑖𝑖). Let B be a Banach space, and
let P ⊂ B be a cone in B. Assume that Ω1 and Ω2 are two
bounded open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let𝑇 : P ∩ (Ω2 \ Ω1) 󳨀→ P be a completely continuous operator
such that either

(i) ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ P ∩ 𝜕Ω1, and ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ P ∩𝜕Ω2, or
(ii) ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ P ∩ 𝜕Ω1, and ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ P ∩𝜕Ω2.

�en, 𝑇 has a fixed point inP ∩ (Ω2 \ Ω1).
3. Main Results

In this section, we investigate the existence of positive
solutions for our problem (1)-(2).

We consider the system of nonlinear fractional differen-
tial equations

𝐷𝛼0+𝑥 (𝑡) + 𝜆 (𝑓 (𝑡, [𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ , [𝑦 (𝑡) − 𝑞2 (𝑡)]⋆)
+ 𝑝1 (𝑡)) = 0, 0 < 𝑡 < 1,

𝐷𝛼0+𝑦 (𝑡) + 𝜇 (𝑔 (𝑡, [𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ , [𝑦 (𝑡) − 𝑞2 (𝑡)]⋆)
+ 𝑝2 (𝑡)) = 0, 0 < 𝑡 < 1,

(12)

with the boundary conditions

𝑥 (0) = 𝑦 (0) = 0,
𝑎1𝐷𝛽0+𝑥 (1) = 𝑏1𝐷𝛽0+𝑦 (𝜉) ,
𝑎2𝐷𝛽0+𝑦 (1) = 𝑏2𝐷𝛽0+𝑥 (𝜂) ,

𝜂, 𝜉 ∈ (0, 1) ,
(13)

where a modified function [𝑧(𝑡)]⋆ for any 𝑧 ∈ 𝐶[0, 1] by
[𝑧 (𝑡)]⋆ = 𝑧 (𝑡) , if 𝑧 (𝑡) ≥ 0, and
[𝑧 (𝑡)]⋆ = 0, if 𝑧 (𝑡) = 0. (14)

Here (𝑞1, 𝑞2) with
𝑞1 (𝑡) = 𝜆∫1

0
𝐺1 (𝑡, 𝑠) 𝑝1 (𝑠) 𝑑𝑠

+ 𝜇∫1
0
𝐻1 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] ,
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𝑞2 (𝑡) = 𝜇∫1
0
𝐺2 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑑𝑠

+ 𝜆∫1
0
𝐻2 (𝑡, 𝑠) 𝑝1 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

(15)

is solution of the system of fractional differential equations

𝐷𝛼0+𝑞1 (𝑡) + 𝜆𝑝1 (𝑡) = 0, 0 < 𝑡 < 1,
𝐷𝛼0+𝑞2 (𝑡) + 𝜇𝑝2 (𝑡) = 0, 0 < 𝑡 < 1, (16)

with the boundary conditions

𝑞1 (0) = 𝑞2 (0) = 0,
𝑎1𝐷𝛽0+𝑞1 (1) = 𝑏1𝐷𝛽0+𝑞2 (𝜉) ,
𝑎2𝐷𝛽0+𝑞2 (1) = 𝑏2𝐷𝛽0+𝑞1 (𝜂) ,

𝜂, 𝜉 ∈ (0, 1) .
(17)

Under the assumptions (𝐻1) and (𝐻2) or (𝐻2) and (𝐻4), we
have 𝑞1(𝑡) ≥ 0, 𝑞2(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1].

We shall prove that there exists a solution (𝑥, 𝑦) for the
boundary value problem (12)-(13) with 𝑥(𝑡) ≥ 𝑞1(𝑡) and𝑦(𝑡) ≥ 𝑞2(𝑡) on [0, 1], 𝑥(𝑡) > 𝑞1(𝑡), 𝑦(𝑡) > 𝑞2(𝑡) on (0, 1). In
this case, (𝑢, V) with 𝑢(𝑡) = 𝑥(𝑡) − 𝑞1(𝑡) and V(𝑡) = 𝑦(𝑡) −𝑞2(𝑡), 𝑡 ∈ [0, 1] represents a positive solution of boundary
value problem (1)-(2).

By using Lemma 3, a solution of the system

𝑥 (𝑡) = 𝜆∫1
0
𝐺1 (𝑡, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝1 (𝑠)) 𝑑𝑠 + 𝜇∫1

0
𝐻1 (𝑡, 𝑠)

⋅ (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝2 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

𝑦 (𝑡) = 𝜇∫1
0
𝐺2 (𝑡, 𝑠)

⋅ (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝2 (𝑠)) 𝑑𝑠 + 𝜆∫1

0
𝐻2 (𝑡, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝1 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

(18)

is a solution for problem (12)-(13).
We consider the Banach space 𝑋 = 𝐶[0, 1] with

supremum norm ‖ ⋅ ‖ and the Banach space 𝑌 = 𝑋 × 𝑋 with
the norm ‖(𝑢, V)‖ = ‖𝑢‖ + ‖V‖.We define the cone 𝑃 ⊂ 𝑌

𝑃 = {(𝑥, 𝑦) ∈ 𝑌 : 𝑥 (𝑡) ≥ 0, 𝑦 (𝑡) ≥ 0 ∀𝑡
∈ [0, 1] and min

𝑡∈𝐼
{𝑥 (𝑡) + 𝑦 (𝑡)}

≥ (14)
𝛼−1 󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩} ,

(19)

where 𝐼 = [1/4, 3/4].
For 𝜆, 𝜇 > 0, we define the operators 𝑄1, 𝑄2 : 𝑌 󳨀→𝑋 and 𝑄 : 𝑌 󳨀→ 𝑌 defined by 𝑄(𝑥, 𝑦) = (𝑄1(𝑥, 𝑦),𝑄2(𝑥, 𝑦)), (𝑥, 𝑦) ∈ 𝑌 with

𝑄1 (𝑥, 𝑦) = 𝜆∫1
0
𝐺1 (𝑡, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝1 (𝑠)) 𝑑𝑠 + 𝜇∫1

0
𝐻1 (𝑡, 𝑠)

⋅ (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝2 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

𝑄2 (𝑥, 𝑦) = 𝜇∫1
0
𝐺2 (𝑡, 𝑠)

⋅ (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝2 (𝑠)) 𝑑𝑠 + 𝜆∫1

0
𝐻2 (𝑡, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝1 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(20)

It is clear that if (𝑥, 𝑦) is a fixed point of operator𝑄, then (𝑥, 𝑦)
is a solution of problem (12)-(13).

Lemma 10. If (𝐻1) and (𝐻2) or (𝐻2) and (𝐻4) hold, then
operator 𝑄 : 𝑃 󳨀→ 𝑃 is a completely continuous operator.

Proof. The operators 𝑄1 and 𝑄2 are well defined. To prove
this, let (𝑥, 𝑦) ∈ 𝑃 be fixed with ‖(𝑥, 𝑦)‖ = 𝐿̃.Then we have

[𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ ≤ 𝑥 (𝑠) ≤ ‖𝑥‖ ≤ 󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩 = 𝐿̃,
∀𝑠 ∈ [0, 1] ,

[𝑦 (𝑠) − 𝑞2 (𝑠)]⋆ ≤ 𝑦 (𝑠) ≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩 = 𝐿̃,
∀𝑠 ∈ [0, 1] .

(21)

If (𝐻1) and (𝐻2) hold, then we deduce easily that𝑄1(𝑥, 𝑦)(𝑡) < ∞ and 𝑄2(𝑥, 𝑦)(𝑡) < ∞ for all 𝑡 ∈ [0, 1]. If(𝐻2) and (𝐻4) hold, we deduce, for all 𝑡 ∈ [0, 1]:
𝑄1 (𝑥, 𝑦) ≤ 𝜆∫1

0
𝐺1 (1, 𝑠) [𝛼1 (𝑠)

⋅ 𝛽1 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆ , (𝑦 (𝑠) − 𝑞2 (𝑠))⋆
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+ 𝑝1 (𝑠)] 𝑑𝑠 + 𝜇∫1
0
𝐻1 (1, 𝑠) [𝛼2 (𝑠)

⋅ 𝛽2 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆ , (𝑦 (𝑠) − 𝑞2 (𝑠))⋆)
+ 𝑝2 (𝑠)] 𝑑𝑠, ≤ 𝑀(𝜆∫1

0
𝐺1 (1, 𝑠)

⋅ (𝛼1 (𝑠) + 𝑝1 (𝑠)) 𝑑𝑠 + 𝜇∫1
0
𝐻1 (1, 𝑠)

⋅ (𝛼2 (𝑠) + 𝑝2 (𝑠)) 𝑑𝑠) < ∞,
𝑄2 (𝑥, 𝑦) ≤ 𝜇∫1

0
𝐺2 (1, 𝑠) [𝛼2 (𝑠)

⋅ 𝛽2 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆ , (𝑦 (𝑠) − 𝑞2 (𝑠))⋆
+ 𝑝2 (𝑠)] 𝑑𝑠 + 𝜆∫1

0
𝐻2 (1, 𝑠) [𝛼1 (𝑠)

⋅ 𝛽1 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆ , (𝑦 (𝑠) − 𝑞2 (𝑠))⋆)
+ 𝑝1 (𝑠)] 𝑑𝑠, ≤ 𝑀(𝜇∫1

0
𝐺2 (1, 𝑠)

⋅ (𝛼2 (𝑠) + 𝑝2 (𝑠)) 𝑑𝑠 + 𝜆∫1
0
𝐻2 (1, 𝑠)

⋅ (𝛼1 (𝑠) + 𝑝1 (𝑠)) 𝑑𝑠) < ∞,
(22)

where 𝑀 = max{max𝑡∈[0,1],𝑢,V∈[0,𝐿̃]𝛽1(𝑡, 𝑢, V),
max𝑡∈[0,1],𝑢,V∈[0,𝐿̃]𝛽2(𝑡, 𝑢, V), 1}.

Thus, 𝑄 : 𝑃 󳨀→ 𝑌 is well defined.
Next, we show that 𝑇 : 𝑃 󳨀→ 𝑃. For any fixed (𝑥, 𝑦) ∈ 𝑃,

by Lemmas 6 and 7, we have

min
𝑡∈𝐼

𝑄1 (𝑥, 𝑦) (𝑡) = min
𝑡∈𝐼

[𝜆∫1
0
𝐺1 (𝑡, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆) + 𝑝1 (𝑠)) 𝑑𝑠
+ 𝜇∫1
0
𝐻1 (𝑡, 𝑠)

⋅ (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆) + 𝑝2 (𝑠)) 𝑑𝑠]
≥ (14)

𝛼−1 [𝜆∫1
0
𝐺1 (1, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆) + 𝑝1 (𝑠)) 𝑑𝑠
+ 𝜇∫1
0
𝐻1 (1, 𝑠) (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)

+ 𝑝2 (𝑠)) 𝑑𝑠] ≥ (14)
𝛼−1 󵄩󵄩󵄩󵄩𝑄1 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 .

(23)

Similarly, min𝑡∈𝐼𝑄2(𝑥, 𝑦)(𝑡) ≥ (1/4)𝛼−1‖𝑄2(𝑥, 𝑦)‖.Therefore,

min
𝑡∈𝐼

{𝑄1 (𝑥, 𝑦) (𝑡) + 𝑄2 (𝑥, 𝑦) (𝑡)}

≥ (14)
𝛼−1 󵄩󵄩󵄩󵄩𝑄1 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 + (14)

𝛼−1 󵄩󵄩󵄩󵄩𝑄2 (𝑥, 𝑦)󵄩󵄩󵄩󵄩
= (14)

𝛼−1 󵄩󵄩󵄩󵄩(𝑄1 (𝑥, 𝑦) , 𝑄2 (𝑥, 𝑦))󵄩󵄩󵄩󵄩
= (14)

𝛼−1 󵄩󵄩󵄩󵄩𝑄 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 .
(24)

Hence,𝑄(𝑥, 𝑦) ∈ 𝑃.This implies that𝑄(𝑃) ⊂ 𝑃.According to
the Ascoli-Arzela theorem, we can easily get that𝑄 : 𝑃 󳨀→ 𝑃
is completely continuous.

Theorem 11. Assume that (𝐻1) − (𝐻3) hold. �en, there exist
constants 𝜆0 > 0 and 𝜇0 > 0 such that, for any 𝜆 ∈ (0, 𝜆0] and𝜇 ∈ (0, 𝜇0], the boundary value problem (1)-(2) has at least one
positive solution.

Proof. Let 𝛿 ∈ (0, 1) be fixed. From (𝐻1) and (𝐻3), there exist𝑅0 ∈ (0, 1] such that

𝑓 (𝑡, 𝑢, V) ≥ 𝛿𝑓 (𝑡, 0, 0) ,
𝑔 (𝑡, 𝑢, V) ≥ 𝛿𝑔 (𝑡, 0, 0) ,

∀𝑡 ∈ [0, 1] , 𝑢, V ∈ [0, 𝑅0] .
(25)

We define

𝑓 (𝑅0) = max
𝑡∈[0,1],𝑢,V∈[0,𝑅0]

{𝑓 (𝑡, 𝑢, V) + 𝑝1 (𝑡)}
≥ max
𝑡∈[0,1]

{𝛿𝑓 (𝑡, 0, 0) + 𝑝1 (𝑡)} > 0,
𝑔 (𝑅0) = max

𝑡∈[0,1],𝑢,V∈[0,𝑅0]
{𝑔 (𝑡, 𝑢, V) + 𝑝2 (𝑡)}

≥ max
𝑡∈[0,1]

{𝛿𝑔 (𝑡, 0, 0) + 𝑝2 (𝑡)} > 0,
𝜆0 = max{ 𝑅08𝐾1𝑓 (𝑅0) ,

𝑅08𝐿2𝑓 (𝑅0)} ,

𝜇0 = max{ 𝑅08𝐿1𝑔 (𝑅0) ,
𝑅08𝐾2𝑔 (𝑅0)} .

(26)

Wewill show that, for any𝜆 ∈ (0, 𝜆0] and𝜇 ∈ (0, 𝜇0], problem
(12)-(13) has at least one positive solution.

So, let 𝜆 ∈ (0, 𝜆0] and 𝜇 ∈ (0, 𝜇0] be arbitrary but fixed
for the moment. We define the set 𝑈 = {(𝑥, 𝑦) ∈ 𝑃, ‖(𝑥, 𝑦)‖ <𝑅0}.We suppose that there exist (𝑥, 𝑦) ∈ 𝜕𝑈(‖(𝑥, 𝑦)‖ = 𝑅0 or‖𝑥‖ + ‖𝑦‖ = 𝑅0) and 𝜃 ∈ (0, 1) such that (𝑥, 𝑦) = 𝜃𝑄(𝑥, 𝑦) or𝑥 = 𝜃𝑄1(𝑥, 𝑦), 𝑦 = 𝜃𝑄2(𝑥, 𝑦).

We deduce that

[𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ = 𝑥 (𝑡) − 𝑞1 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝑅0,
if 𝑥 (𝑡) − 𝑞1 (𝑡) ≥ 0,

[𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ = 0,
for 𝑥 (𝑡) − 𝑞1 (𝑡) < 0, ∀𝑡 ∈ [0, 1] ,
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[𝑦 (𝑡) − 𝑞2 (𝑡)]⋆ = 𝑦 (𝑡) − 𝑞2 (𝑡) ≤ 𝑦 (𝑡) ≤ 𝑅0,
if 𝑦 (𝑡) − 𝑞2 (𝑡) ≥ 0,

[𝑦 (𝑡) − 𝑞2 (𝑡)]⋆ = 0,
for 𝑦 (𝑡) − 𝑞2 (𝑡) < 0, ∀𝑡 ∈ [0, 1] .

(27)

Then by Lemma 3, for all 𝑡 ∈ [0, 1], we obtain
𝑥 (𝑡) = 𝜃𝑄1 (𝑥, 𝑦) (𝑡) < 𝑄1 (𝑥, 𝑦) (𝑡)

≤ 𝜆∫1
0
𝐺1 (1, 𝑠) 𝑓 (𝑅0) 𝑑𝑠

+ 𝜇∫1
0
𝐻1 (1, 𝑠) 𝑔 (𝑅0) 𝑑𝑠

≤ 𝜆0𝐾1𝑓 (𝑅0) + 𝜇0𝐿1𝑔 (𝑅0) ≤ 𝑅08 + 𝑅08 = 𝑅04 ,
𝑦 (𝑡) = 𝜃𝑄2 (𝑥, 𝑦) (𝑡) < 𝑄2 (𝑥, 𝑦) (𝑡)

≤ 𝜇∫1
0
𝐺2 (1, 𝑠) 𝑔 (𝑅0) 𝑑𝑠

+ 𝜆∫1
0
𝐻2 (1, 𝑠) 𝑓 (𝑅0) 𝑑𝑠

≤ 𝜇0𝐾2𝑔 (𝑅0) + 𝜆0𝐿2𝑓 (𝑅0) ≤ 𝑅08 + 𝑅08 = 𝑅04 .

(28)

Hence, ‖𝑥‖ ≤ 𝑅0/4 and ‖𝑦‖ ≤ 𝑅0/4. Then, 𝑅0 = ‖(𝑥, 𝑦)‖ =‖𝑥‖ + ‖𝑦‖ ≤ 𝑅0/4 + 𝑅0/4 = 𝑅0/2, which is contradiction.
Therefore, by Theorem 8 (with Ω = 𝑃), we deduce that 𝑄

has a fixed point (𝑥0, 𝑦0) ∈ 𝑈∩𝑃.That is, (𝑥0, 𝑦0) = 𝑄(𝑥0, 𝑦0)
or𝑥0 = 𝑄1(𝑥0, 𝑦0), 𝑦0 = 𝑄2(𝑥0, 𝑦0), and ‖𝑥0‖+‖𝑦0‖ ≤ 𝑅0 with𝑥0 ≥ (1/4)𝛼−1‖𝑥0‖ and 𝑦0(𝑡) ≥ (1/4)𝛼−1‖𝑦0‖ for all 𝑡 ∈ [0, 1].
Moreover, by (25), we conclude

𝑥0 (𝑡) = 𝑄1 (𝑥0, 𝑦0) (𝑡)
≥ 𝜆∫1
0
𝐺1 (𝑡, 𝑠) (𝛿𝑓 (𝑡, 0, 0) + 𝑝1 (𝑠)) 𝑑𝑠

+ 𝜇∫1
0
𝐻1 (𝑡, 𝑠) (𝛿𝑔 (𝑡, 0, 0) + 𝑝2 (𝑠)) 𝑑𝑠

≥ 𝜆∫1
0
𝐺1 (𝑡, 𝑠) 𝑝1 (𝑠) 𝑑𝑠

+ 𝜇∫1
0
𝐻1 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑑𝑠 = 𝑞1 (𝑡) ,

∀𝑡 ∈ [0, 1] ,
𝑥0 (𝑡) > 𝜆∫1

0
𝐺1 (𝑡, 𝑠) 𝑝1 (𝑠) 𝑑𝑠

+ 𝜇∫1
0
𝐻1 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑑𝑠 = 𝑞1 (𝑡) ,

∀𝑡 ∈ (0, 1) ,

𝑦0 (𝑡) = 𝑄2 (𝑥0, 𝑦0) (𝑡)
≥ 𝜇∫1
0
𝐻2 (𝑡, 𝑠) (𝛿𝑔 (𝑡, 0, 0) + 𝑝2 (𝑠)) 𝑑𝑠

+ 𝜆∫1
0
𝐺2 (𝑡, 𝑠) (𝛿𝑓 (𝑡, 0, 0) + 𝑝1 (𝑠)) 𝑑𝑠

≥ 𝜇∫1
0
𝐻2 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑑𝑠

+ 𝜆∫1
0
𝐺2 (𝑡, 𝑠) 𝑝1 (𝑠) 𝑑𝑠 = 𝑞2 (𝑡) ,

∀𝑡 ∈ [0, 1] ,
𝑦0 (𝑡) > 𝜇∫1

0
𝐻2 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑑𝑠

+ 𝜆∫1
0
𝐺2 (𝑡, 𝑠) 𝑝1 (𝑠) 𝑑𝑠 = 𝑞2 (𝑡) ,

∀𝑡 ∈ (0, 1) .
(29)

Therefore, 𝑥0(𝑡) ≥ 𝑞1(𝑡), 𝑦0(𝑡) ≥ 𝑞2(𝑡) for all 𝑡 ∈ [0, 1], and𝑥0(𝑡) > 𝑞1(𝑡), 𝑦0(𝑡) > 𝑞2(𝑡) for all 𝑡 ∈ (0, 1). Let 𝑢0(𝑡) = 𝑥0(𝑡)−𝑞1(𝑡) and V0(𝑡) = 𝑦0(𝑡) − 𝑞2(𝑡) for all 𝑡 ∈ [0, 1].Then, 𝑢0(𝑡) ≥0, V0(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1], 𝑢0(𝑡) > 0, V0(𝑡) > 0 for all 𝑡 ∈(0, 1).Therefore, (𝑢0, V0) is a positive solution of (1)-(2).

Theorem 12. Assume that (𝐻1), (𝐻4), and (𝐻5) hold. �en,
there exist 𝜆⋆ > 0 and 𝜇⋆ > 0 such that, for any 𝜆 ∈ (0, 𝜆⋆] and𝜇 ∈ (0, 𝜇⋆], the boundary value problem (1)-(2) has at least one
positive solution.

Proof. We choose a positive number
𝑅1
> max{1, 2 ∫1

0
(𝐺1 (1, 𝑠) 𝑝1 (𝑠) + 𝐺2 (1, 𝑠) 𝑝2 (𝑠)) 𝑑𝑠} (30)

and we define the set Ω1 = {(𝑥, 𝑦) ∈ 𝑃, ‖(𝑥, 𝑦)‖ < 𝑅1}.
We introduce

𝜆⋆ = min{1,
𝑅14𝑀1 (∫

1

0
𝐺1 (1, 𝑠) (𝛼1 (𝑠) + 𝑝1 (𝑠)) 𝑑𝑠)

−1 ,
𝑅14𝑀1 (∫

1

0
𝐻2 (1, 𝑠) (𝛼1 (𝑠) + 𝑝1 (𝑠)) 𝑑𝑠)

−1} ,

𝜇⋆ = min{1,
𝑅14𝑀2 (∫

1

0
𝐻1 (1, 𝑠) (𝛼2 (𝑠) + 𝑝2 (𝑠)) 𝑑𝑠)

−1 ,
𝑅14𝑀2 (∫

1

0
𝐺2 (1, 𝑠) (𝛼2 (𝑠) + 𝑝2 (𝑠)) 𝑑𝑠)

−1} ,

(31)
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with

𝑀1 = max{ max
𝑡∈[0,1],𝑢,V≥0,𝑢+V≤𝑅1

𝛽1 (𝑡, 𝑢, V) , 1} ,
𝑀2 = max{ max

𝑡∈[0,1],𝑢,V≥0,𝑢+V≤𝑅1
𝛽2 (𝑡, 𝑢, V) , 1} .

(32)

Let 𝜆 ∈ (0, 𝜆⋆] and 𝜇 ∈ (0, 𝜇⋆].Then, for any (𝑥, 𝑦) ∈ 𝑃∩𝜕Ω1
and 𝑠 ∈ [0, 1], we have

[𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ ≤ 𝑥 (𝑠) ≤ ‖𝑥‖ ≤ 𝑅1,
[𝑦 (𝑠) − 𝑞2 (𝑠)]⋆ ≤ 𝑦 (𝑠) ≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 ≤ 𝑅1. (33)

Then, for any (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω1, we obtain
󵄩󵄩󵄩󵄩𝑄1 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝜆∫1

0
𝐺1 (1, 𝑠) [𝛼1 (𝑠)

⋅ 𝛽1 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆ , (𝑦 (𝑠) − 𝑞2 (𝑠))⋆
+ 𝑝1 (𝑠)] 𝑑𝑠 + 𝜇∫1

0
𝐻1 (1, 𝑠) [𝛼2 (𝑠)

⋅ 𝛽2 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆ , (𝑦 (𝑠) − 𝑞2 (𝑠))⋆)
+ 𝑝2 (𝑠)] 𝑑𝑠, ≤ 𝜆⋆𝑀1 ∫1

0
𝐺1 (1, 𝑠) (𝛼1 (𝑠)

+ 𝑝1 (𝑠)) 𝑑𝑠 + 𝜇⋆𝑀2 ∫1
0
𝐻1 (1, 𝑠) (𝛼2 (𝑠)

+ 𝑝2 (𝑠)) 𝑑𝑠 ≤ 𝑅14 + 𝑅14 = 𝑅12 = 󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩2 ,
󵄩󵄩󵄩󵄩𝑄2 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝜇∫1

0
𝐺2 (1, 𝑠) [𝛼2 (𝑠)

⋅ 𝛽2 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆ , (𝑦 (𝑠) − 𝑞2 (𝑠))⋆
+ 𝑝2 (𝑠)] 𝑑𝑠 + 𝜇∫1

0
𝐻2 (1, 𝑠) [𝛼1 (𝑠)

⋅ 𝛽1 (𝑠, (𝑥 (𝑠) − 𝑞1 (𝑠))⋆, (𝑦 (𝑠) − 𝑞2 (𝑠))⋆)
+ 𝑝1 (𝑠)] 𝑑𝑠, ≤ 𝜇⋆𝑀2 ∫1

0
𝐺2 (1, 𝑠) (𝛼2 (𝑠)

+ 𝑝2 (𝑠)) 𝑑𝑠 + 𝜆⋆𝑀1 ∫1
0
𝐻2 (1, 𝑠) (𝛼1 (𝑠)

+ 𝑝1 (𝑠)) 𝑑𝑠 ≤ 𝑅14 + 𝑅14 = 𝑅12 = 󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩2 .

(34)

Therefore,

󵄩󵄩󵄩󵄩𝑄 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑄1 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑄2 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩 ,
∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω1. (35)

On the other hand, we choose a constant 𝐿 > 0 such that

𝜆 (14)
2(𝛼−1) 𝐴1𝐿 ≥ 4,

𝜇 (14)
2(𝛼−1) 𝐴2𝐿 ≥ 4.

(36)

From (𝐻5), we deduce that there exists a constant 𝑀0 > 0
such that

𝑓 (𝑡, 𝑢, V) ≥ 𝐿 (𝑢 + V)
or 𝑔 (𝑡, 𝑢, V) ≥ 𝐿 (𝑢 + V) ,

∀𝑡 ∈ 𝐼, 𝑢, V ≥ 0, 𝑢 + V ≥ 𝑀0.
(37)

Now we define

𝑅2 = max{2𝑅1, 4𝛼𝑀0,
4 ∫1
0
(𝐺1 (1, 𝑠) 𝑝1 (𝑠) + 𝐻1 (1, 𝑠) 𝑝2 (𝑠)) 𝑑𝑠} > 0,

(38)

and let Ω2 = {(𝑥, 𝑦) ∈ 𝑃, ‖(𝑥, 𝑦)‖ < 𝑅2}.
We suppose that 𝑓∞ = ∞, that is, 𝑓(𝑡, 𝑢, V) ≥ 𝐿(𝑢 + V)

for all 𝑡 ∈ 𝐼 and 𝑢, V ≥ 0, 𝑢 + V ≥ 𝑀0.Then, for any (𝑥, 𝑦) ∈𝑃∩ 𝜕Ω2, we have ‖(𝑥, 𝑦)‖ = 𝑅2 or ‖𝑥‖ + ‖𝑦‖ = 𝑅2.We deduce
that ‖𝑥‖ ≥ 𝑅2/2 or ‖𝑦‖ ≥ 𝑅2/2.

We suppose that ‖𝑥‖ ≥ 𝑅2/2. Then, for any (𝑥, 𝑦) ∈ 𝑃 ∩𝜕Ω2, we obtain
𝑥 (𝑡) − 𝑞1 (𝑡) = 𝑥 (𝑡) − 𝜆∫1

0
𝐺1 (𝑡, 𝑠) 𝑝1 (𝑠) 𝑑𝑠

− 𝜇∫1
0
𝐻1 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑑𝑠 ≥ 𝑥 (𝑡) − (14)

𝛼−1

⋅ (∫1
0
𝐺1 (1, 𝑠) 𝑝1 (𝑠) 𝑑𝑠 + ∫1

0
𝐻1 (1, 𝑠) 𝑝2 (𝑠) 𝑑𝑠)

≥ 𝑥 (𝑡) − 𝑥 (𝑡)‖𝑥‖
⋅ ∫1
0
(𝐺1 (1, 𝑠) 𝑝1 (𝑠) + 𝐻1 (1, 𝑠) 𝑝2 (𝑠)) 𝑑𝑠 = 𝑥 (𝑡)

⋅ [1
− 1‖𝑥‖ ∫

1

0
(𝐺1 (1, 𝑠) 𝑝1 (𝑠) + 𝐻1 (1, 𝑠) 𝑝2 (𝑠)) 𝑑𝑠]

≥ [1

− 2𝑅2 ∫
1

0
(𝐺1 (1, 𝑠) 𝑝1 (𝑠) + 𝐻1 (1, 𝑠) 𝑝2 (𝑠)) 𝑑𝑠]

≥ 12𝑥 (𝑡) ≥ 0.

(39)
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Therefore, we conclude

[𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ = 𝑥 (𝑡) − 𝑞1 (𝑡) ≥ 12𝑥 (𝑡)
≥ 12 (14)

𝛼−1 ‖𝑥‖ ≥ 14 (14)
𝛼−1 𝑅2

= (14)
𝛼 𝑅2 ≥ 𝑀0, ∀𝑡 ∈ 𝐼.

(40)

Hence,

[𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ + [𝑦 (𝑡) − 𝑞2 (𝑡)]⋆ ≥ [𝑥 (𝑡) − 𝑞1 (𝑡)]⋆
= 𝑥 (𝑡) − 𝑞1 (𝑡) ≥ 𝑀0, ∀𝑡 ∈ 𝐼. (41)

Then, for any (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2 and 𝑡 ∈ 𝐼, by (37) and (41), we
deduce

𝑓 (𝑡, [𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ , [𝑦 (𝑡) − 𝑞2 (𝑡)]⋆)
≥ 𝐿 ([𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ + [𝑦 (𝑡) − 𝑞2 (𝑡)]⋆)
≥ 𝐿 [𝑥 (𝑡) − 𝑞1 (𝑡)]⋆ ≥ 𝐿2𝑥 (𝑡) , ∀𝑡 ∈ 𝐼.

(42)

It follows that, for any (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2, 𝑡 ∈ 𝐼, we obtain
𝑄1 (𝑥, 𝑦) (𝑡) ≥ 𝜆∫1

0
𝐺1 (𝑡, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝1 (𝑠)) 𝑑𝑠 ≥ 𝜆∫

𝑠∈𝐼
𝐺1 (𝑡, 𝑠)

⋅ (𝑓 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝1 (𝑠)) 𝑑𝑠 ≥ (14)

𝛼−1 𝜆∫
𝑠∈𝐼

𝐺1 (1, 𝑠)
⋅ 𝐿 ([𝑥 (𝑠) − 𝑞1 (𝑠)]⋆) 𝑑𝑠 ≥ 𝜆 (14)

𝛼−1

⋅ 𝐴1 (14)
𝛼−1 𝐿4𝑅2 = 𝜆𝐿4 (14)

2(𝛼−1) 𝐴1𝑅2 ≥ 𝑅2.

(43)

Then, ‖𝑄1(𝑥, 𝑦)‖ ≥ ‖(𝑥, 𝑦)‖ and
󵄩󵄩󵄩󵄩𝑄 (𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≥ 󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2. (44)

If ‖𝑦‖ ≥ 𝑅2/2, then by a similar approach, we obtain again
relation (44).

We suppose that 𝑔∞ = ∞, that is, 𝑔(𝑡, 𝑢, V) ≥ 𝐿(𝑢+V), for
all 𝑡 ∈ 𝐼 and 𝑢, V ≥ 0, 𝑢 + V ≥ 𝑀0.Then, for any (𝑥, 𝑦) ∈ 𝑃 ∩𝜕Ω2, we have ‖(𝑥, 𝑦)‖ = 𝑅2.Hence, ‖𝑥‖ ≥ 𝑅2/2 or ‖𝑦‖ ≥ 𝑅2/2.

If ‖𝑥‖ ≥ 𝑅2/2, then for any (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2 we deduce in
a similar manner as above that 𝑥(𝑡) − 𝑞1(𝑡) ≥ (1/2)𝑥(𝑡) for all𝑡 ∈ [0, 1] and

𝑄1 (𝑥, 𝑦) (𝑡) ≥ 𝜇∫1
0
𝐺2 (𝑡, 𝑠)

⋅ (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝2 (𝑠)) 𝑑𝑠 ≥ 𝜇∫

𝑠∈𝐼
𝐺2 (𝑡, 𝑠)

⋅ (𝑔 (𝑠, [𝑥 (𝑠) − 𝑞1 (𝑠)]⋆ , [𝑦 (𝑠) − 𝑞2 (𝑠)]⋆)
+ 𝑝2 (𝑠)) 𝑑𝑠 ≥ (14)

𝛼−1 𝜇∫
𝑠∈𝐼

𝐺2 (1, 𝑠)
⋅ 𝐿 ([𝑥 (𝑠) − 𝑞1 (𝑠)]⋆) 𝑑𝑠 ≥ 𝜇 (14)

𝛼−1

⋅ 𝐴2 (14)
𝛼−1 𝐿4𝑅2𝑑𝑠 = 𝜇𝐿4 (14)

2(𝛼−1) 𝐴2𝑅2 ≥ 𝑅2,
∀𝑡 ∈ 𝐼.

(45)

Hence, we obtain relation (44). If ‖𝑦‖ ≥ 𝑅2/2, then in
a similar way as above, we deduce again relation (44).
Therefore, byTheorem 9, relation (35), and (44), we conclude
that 𝑄 has a fixed point (𝑥, 𝑦) ∈ 𝑃 ∩ (Ω2 \ Ω1).
4. Example

In this section, we give an example to illustrating our result.
Let

𝛼 = 32 ,
𝛽 = 14 ,
𝜂 = 23 ,
𝜉 = 13 ,
𝑎1 = 𝑎2 = 1,
𝑏1 = 𝑏2 = 1.

(46)

Consider the system of fractional differential equations,

𝐷3/2
0+
𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝐷3/2
0+

V (𝑡) + 𝜇𝑔 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = V (0) = 0,

𝐷1/4
0+
𝑢 (1) = 𝐷1/4

0+
V (13) ,

𝐷1/4
0+

V (1) = 𝐷1/4
0+
𝑢 (23) ,

(47)

where 𝑓(𝑡, 𝑢, V) = (𝑢 + V)3 + cos 𝑢, 𝑔(𝑡, 𝑢, V) = (𝑢 + V)1/3 +
cos V. We have 𝑝1(𝑡) = 𝑝2(𝑡) = 1 for all 𝑡 ∈ [0, 1], and
then assumption (𝐻1) is satisfied. Besides, assumption (𝐻3)
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is also satisfied, because 𝑓(𝑡, 0, 0) = 1 and 𝑔(𝑡, 0, 0) = 1
for all 𝑡 ∈ [0, 1]. Let 𝛿 = 1/3 < 1 and 𝑅0 = 1. Then𝑓(𝑡, 𝑢, V) ≥ 𝛿𝑓(𝑡, 0, 0) = 1/3, 𝑔(𝑡, 𝑢, V) ≥ 𝛿𝑔(𝑡, 0, 0) =1/3, ∀𝑡 ∈ [0, 1], 𝑢, V ∈ [0, 1]. In addition,

𝑓 (𝑅0) = 𝑓 (1) = max
𝑡∈[0,1],𝑢,V∈[0,1]

{𝑓 (𝑡, 𝑢, V) + 𝑝1 (𝑡)}
≈ 9.999848,

𝑔 (𝑅0) = 𝑔 (1) = max
𝑡∈[0,1],𝑢,V∈[0,1]

{𝑔 (𝑡, 𝑢, V) + 𝑝2 (𝑡)}
≈ 3.259769.

(48)

We also obtain Δ = (0.8865)(0.3133) ≈ 0.2778 > 0, 𝑀1 =992, 𝑀2 = 1280, 𝐾1 = 0.1488, 𝐾2 = 0.01598, 𝐿1 = 0.0536,𝐿2 = 0.1268, and then 𝜆0 = max{𝑅0/8𝐾1𝑓(𝑅0), 𝑅0/8𝐾2𝑓(𝑅0)} ≈ 0.782239674, 𝜇0 = max{𝑅0/8𝐿1𝑔(𝑅0), 𝑅0/8𝐿2𝑔(𝑅0)} ≈ 0.7154155. We can apply Theorem 11. So we
conclude that there exist 𝜆0, 𝜇0 > 0 such that, for every𝜆 ∈ (0, 𝜆0] and 𝜇 ∈ (0, 𝜇0], the boundary value problem (47)
has at least one positive solution.

5. Conclusions

This paper studies the existence of positive solution of a
four-point coupled system of nonlinear fractional differential
equations. We give sufficient conditions on 𝜆, 𝜇, 𝑓, and 𝑔
such that the system has at least one positive solution. The
existence of positive solution is discussed by using Guo-
Krasnosel’skii fixed point theorem. Also, an example which
illustrates the obtained result is presented.
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