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Somemethodological approaches based on generalized polynomial chaos for linear differential equations with random parameters
following various types of distribution laws are proposed. Mainly, an internal random coefficients method ‘IRCM’ is elaborated
for a large number of random parameters. A procedure to build a new polynomial chaos basis and a connection between the one-
dimensional andmultidimensional polynomials are developed.This allows handling easily randomparameters with various laws. A
compact matrix formulation is given and the requiredmatrices and scalar products are explicitly presented. For random excitations
with an arbitrary number of uncertain variables, the IRCM is couplet to the superposition method leading to successive random
differential equations with the same main random operator and right-hand sides depending only on one random parameter. This
methodological approach leads to equations with a reduced number of random variables and thus to a large reduction of CPU time
and memory required for the numerical solution. The conditional expectation method is also elaborated for reference solutions
as well as the Monte-Carlo procedure. The applicability and effectiveness of the developed methods are demonstrated by some
numerical examples.

1. Introduction

Stochastic and random differential equations constitute a
growing field of great scientific interest. There are mainly
three categories of random differential equations. The first
and the simplest class is one where only the initial conditions
are random.The second class is characterized by the presence
of randomnonhomogeneous or input terms and the third one
is the differential equations with random coefficients. To deal
with errors and uncertainties, random coefficients have been
increasingly used in the last few decades.

This paper focuses on the combined second and third
classes because this type of equations offers a natural and
rational approach for mathematical modeling of many physi-
cal phenomena.The last decades havewitnessed an enormous
effort in the fields of parameters uncertainty and random
or stochastic differential processes. This is due to the fact
that any physical system contains uncertainties and its real

phenomena may be modeled by stochastic differential equa-
tions with random or stochastic process coefficients. These
equations take into account the approximate knowledge of
the numerical values of the physical parameters on which
the system depends and have been a matter of intensive
investigation.

A number of techniques are available for uncertainty
sensitivity and propagation such as Monte-Carlo procedure
[1, 2], sensitivity analysis methods [3], and polynomial chaos
[4, 5] among others. Monte-Carlo (MC) method has been
the mainstream uncertainty quantification technique for
decades. It is the most used method and is valid for a wide
range of problems. However, it is very computationally ex-
pensive since it requires a large number of simulations using
the full model.

An alternative approach is based on the expansion of the
response in terms of a series of polynomials that are orthogo-
nal with respect to mean value operations. Polynomial chaos
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was first introduced by Wiener [6] where Hermite polyno-
mials were used to model stochastic processes with Gaussian
random variables. A number of other expansions have been
proposed in the literature for representing non-Gaussian
process [7, 8]. Recent review papers by Stefanou [9] and by
Schuëller and Pradlwarter [10] summarized the assessment
of the past and current status of the procedure for stochastic
structural analysis.

This polynomial representation provides a framework
suitable for computational simulation and then widespread
in mathematical and numerical analysis of many engineering
problems. Various problems have been solved based on this
approximation such as solution of stochastic differential
equations [11], linear structural dynamics [4, 5], and nonlin-
ear random vibration [12, 13]; soil-structure interaction [14],
structural reliability [15], and identification [16, 17]. More
recently, Trcala used polynomial chaos for nonlinear diffu-
sion problems ofmoisture transfer inwood [18].The accuracy
of the PC approximation has been evaluated by Field andGri-
goriu [19]. A convergence of the decomposition of the solu-
tion into the polynomials chaos is studied by Dvurecenskij
et al. [20] and the conditions associated with the distribution
function of the random vector appearing in the solution for a
convergence toward the solution are given by Ernst et al. [21].

The polynomial chaos has been used in many finite ele-
ments problems [4]. Accurate discrete modeling of complex
industrial structures leads to a large finite element model.
To reduce the CPU time, reducing the order of the models
is very useful. Component mode synthesis (CMS) is a well-
established method for efficiently constructing models to
analyze the dynamics of large and complex structures that
are often described by separate substructure (or components)
models. Sarsri et al. [22] have coupled the CMSmethods with
the projection chaos polynomials methods in the first and
second orders to compute the frequency transfer functions of
stochastic structures.This couplingmethodological approach
has been used by Sarsri and Azrar in time domain [23] as well
as a coupling with the perturbation method [24].

The polynomial chaos methods are well suited for the
random differential equations, RDE, with a very few number
of random variables defining their main coefficients. It is well
known that if the number of the considered random variables
increases, the needed number of unknowns to be determined
for solving the random systems increases very rapidly with
the degree of the polynomials. Thus, for accurate solution,
the CPU time andmemory required may be prohibitive.This
greatly limits these methods to random differential equations
with very few numbers of random parameters.

An alternative approach called internal random coeffi-
cients method (IRCM) is developed in this paper. A careful
presentation is given in the frame of higher-order random
differential equations. This method is based on generalized
polynomial chaos and the superposition principle. It can be
used to solve randomdifferential equations with a large num-
ber of random variables and an input right-hand side decom-
posed in an arbitrary number of random coefficients. The
considered random parameters may follow various distribu-
tion laws.

A procedure to build a new polynomial chaos basis and
a connection between the one-dimensional and multidimen-
sional polynomials is established. Different distribution laws
can be easily considered. Based on the superposition princi-
ple, the random differential equation with an input depend-
ing on several randomvariables is decomposed on a sequence
of RDE with the same main random operator and reduced
right-hand sides. A series of RDEs with reduced number of
random variables have thus to be solved based on the gen-
eralized polynomial chaos decomposition.The global system
is then solved by a drastic reduction of the CPU time and
memory space. For the sake of comparison, the conditional
expectation method is developed for the considered random
differential equations as well as theMonte-Carlomethod.The
applicability and effectiveness of the presented methodologi-
cal approach have been demonstrated by numerically solving
various examples.

2. Mathematical Formulation

In this work, various methodological approaches are elab-
orated to solve higher-order initial value problems with
linear and nonlinear random variables subjected to a random
input right-hand side. For this aim, the following stochastic
differential equation is considered:

L ⋅ 𝑈 (𝑡, 𝜔) = 𝐹 (𝑡) (1)

with deterministic initial conditions, where 𝑈 is the stochas-
tic process response and L is a linear random operator of
order𝑚 defined by

L = 𝑚∑
𝑖=0

𝐶𝑖 (𝜔1) 𝑑𝑖𝑑𝑡𝑖 . (2)

It is assumed that the random coefficients 𝐶𝑖 depend on
the random vector 𝜔1 which is defined in a probability space(Ω1,F1, 𝑃1). The input right-hand side, 𝐹, is assumed to be
dependent on the random vector 𝜔2 that is defined in the
probability space (Ω2,F2, 𝑃2). Explicit expression of 𝐹(𝑡) is
given later.

For numerical solution of (1), a new procedure based on
the general polynomial chaos, GPC, expansion procedure is
elaborated. Herein, the classical GPC procedure is reviewed
in a clear manner.

In the present work, the random variables, component
of the vector (𝜔1, 𝜔2), are assumed to be independent but
may have general distinct distributions 𝑓𝑗. If 𝑓𝑗 are classical
distributions, such as normal, uniform, gamma, and beta, the
associated known polynomial chaos can be used. Otherwise,
the procedure, developed in this paper, will be used to build
the needed polynomial basis. Explicit expressions of this
basis for general cases are given. In addition, the number of
random variables (𝑛 + 1) and the differential order 𝑚 are
arbitrary.

The concept of internal random coefficients is introduced
and combined with the superposition principle and general-
ized polynomial chaos expansion. For the sake of compari-
son, conditional expectation and Monte-Carlo methods are
also elaborated.
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2.1. General Polynomial Chaos Formulation

2.1.1. General Formulation. For general purpose, let us con-
sider random vectors 𝜔1 and 𝜔2, presented in the following
forms: 𝜔1 = (𝜉0, 𝜉1, . . . , 𝜉𝑝)𝜔2 = (𝜉𝑝+1, 𝜉𝑝+2, . . . , 𝜉𝑛) , (3)

where 𝜉𝑖 for 𝑖 = 0 to 𝑛 are random variables defined from the
probabilistic field (Ω𝑖,F𝑖, 𝑃𝑖) to R. The random vectors 𝜔1
and 𝜔2 are assumed to be independent and gathered in the
vector 𝜔: 𝜔 = (𝜔1, 𝜔2) . (4)

We assume that the random vector 𝜔 has a distribution
function with respect to the Lebesgue measure denoted by 𝑓.𝐿2𝑓(R𝑛+1) denotes the set of square-integrable functions with
respect to the weight measure 𝑓:

𝐿2𝑓 (R𝑛+1) = {𝐻 : ∫
R𝑛+1

𝐻2 (𝑥) 𝑓 (𝑥) 𝑑𝑥 < +∞} (5)

with the following associated inner product:

⟨𝐻, 𝐺⟩ = ∫
R𝑛+1

𝐻(𝑥)𝐺 (𝑥) 𝑓 (𝑥) 𝑑𝑥. (6)

Let us note that the distribution 𝑓 may be Gaussian or non-
Gaussian. In the present analysis, various types of distribution
functions may be considered.

The general polynomial chaos associated with the ran-
dom vector 𝜔 is denoted by {𝜙𝑘; 𝑘 ∈ N}. These polynomials
coincide with the orthogonal polynomials associatedwith the
inner product defined in (6) and verify

⟨𝜙𝑘,𝜙𝑗⟩ = 𝛼𝑘𝛿𝑘𝑗, (7)

where 𝛼𝑘 are given by

𝛼𝑘 = ⟨𝜙𝑘,𝜙𝑘⟩ . (8)

The solution𝑈 of the main equation (1) is a time stochas-
tic process depending on the random vector𝜔 and decom-
posed in the polynomial chaos basis {𝜙𝑘; 𝑘 ∈ N}:

U (𝑡, 𝜔) = ∑
𝑘≥0

𝜙𝑘 (𝜔)𝑈𝑘 (𝑡) . (9)

For general purpose, the random coefficients 𝐶𝑖 are
assumed to depend linearly and nonlinearly on the random
variables 𝜉𝑙; 0 ≤ 𝑙 ≤ 𝑝 and written in the following general
form:

𝐶𝑖 (𝜔1) = 𝑞𝑖∑
𝑘=0

∑
|𝛼|=𝑘

𝑐𝑖𝛼 𝑝∏
𝑙=0

(𝜉𝑙)𝛼𝑙 , (10)

in which 𝛼 = (𝛼0, . . . , 𝛼𝑝), 𝛼𝑗 ∈ N and |𝛼| = ∑𝑝
𝑗=0 𝛼𝑗.

The right-hand side of (1), 𝐹(𝑡), is assumed to be a time-
dependent random function that depends linearly on 𝜔2 and
expressed by

𝐹 (𝑡, 𝜔2) = 𝑛∑
𝑗=𝑝+1

(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) 𝑔𝑗 (𝑡) , (11)

where 𝑔𝑗(𝑡) and 𝑎0𝑗, 𝑎1𝑗 are considered deterministic func-
tion and constants.

Note that a more general right-hand side excitation can
be decomposed in the form (11) using the Karhunen-Loéve
expansion [25].

Based on a reduced decomposition using the (𝑁+1) first
terms, the stochastic process 𝑈(𝑡, 𝜔) can be approximated by

U𝑁 (𝑡, 𝜔) ≅ 𝑁∑
𝑙=0

𝜙𝑙 (𝜔)𝑈𝑙 (𝑡) , (12)

where 𝜙𝑙(𝜔) is a multidimensional general polynomial chaos
depending on the random vector 𝜔 = (𝜉0, 𝜉1, . . . , 𝜉𝑛).

The insertion of these expressions in (1) leads to the
following𝑚th order random differential equation:

𝑚∑
𝑖=0

N∑
l=0

( 𝑞𝑖∑
𝑠=0

∑
|𝛼|=𝑠

𝑐𝑖𝛼 𝑝∏
𝑑=0

(𝜉𝑑)𝛼𝑑)𝜙𝑙 (𝜔) 𝑑𝑖𝑈𝑙 (𝑡)𝑑𝑡𝑖
= 𝑛∑
𝑗=𝑝+1

(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) 𝑔𝑗 (𝑡) . (13)

Projecting this equation with respect to 𝜙𝑘 for 𝑘 = 0
to 𝑁, the following deterministic differential system is then
obtained:

𝑚∑
𝑖=0

𝑁∑
𝑙=0

( 𝑞𝑖∑
𝑠=0

∑
|𝛼|=𝑠

𝑐𝑖𝛼⟨ 𝑝∏
𝑑=0

(𝜉𝑑)𝛼𝑑 𝜙𝑙,𝜙𝑘⟩) 𝑑𝑖𝑈𝑙 (𝑡)𝑑𝑡𝑖
= 𝑛∑
𝑗=𝑝+1

⟨(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) ,𝜙𝑘⟩𝑔𝑗 (𝑡) . (14)

Note that the first- and mainly the second-order differ-
ential equations of the above kind, 𝑚 = 1 or 2, have been
investigated by many authors when the number n of random
variables is too small. When the random variables 𝜉𝑗 are
Gaussian, Hermite-chaos polynomials in ]−∞, +∞[ are used
in [4].This standard approach is very often used in structural
dynamics. Various other works are elaborated when 𝜉𝑗 are
uniform, gamma, or beta and thus Legendre-chaos in [𝑎, 𝑏],
Laguerre-chaos in [0, +∞[, and Jacobi-chaos in [𝑎, 𝑏] are,
respectively, used [8].

The expansion on polynomial basis of the vector 𝜔 is
related to the polynomial basis associated wih each random
variable 𝜉𝑗 in the case of independent variables. This relation
is clarified and the correspondence is clearly established
herein. The procedure allowing clarifying the inner product
used in the differential system (14) is established and an
explicit simple procedure is given, in the next subsection.

Firstly, this procedure is established in the next para-
graphs for independent random variables, based on the
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relationships between the random variables 𝜉𝑗 and random
vector 𝜔. Secondly, new variables are introduced that are not
necessarily independent and the procedure is established for
general cases.

2.1.2. Condensed Formulation. In order to formulate the
considered problem in a condensed form, the following
mathematical developments will be used. As the variables(𝜉𝑖, 0 ≤ 𝑖 ≤ 𝑛) are assumed to be pairwise independent, the
joint distribution function 𝑓 is then given by

𝑓 (𝜔) = 𝑛∏
𝑘=0

𝑓𝑘 (𝜉𝑘) , (15)

where 𝑓𝑘, 𝑘 = 0 to 𝑛 are functions of marginal distributions
associated with each variable 𝜉𝑘.

The general polynomial chaos associated with each vari-
able 𝜉𝑘 is denoted by {𝜙𝑘𝑗, 𝑗 ≥ 0}.These polynomials coincide
with the orthogonal polynomials associated with the inner
product defined in 𝐿2𝑓𝑘(R)with respect to the weight function𝑓𝑘: 𝐿2𝑓𝑘 (R) = {ℎ : ∫

R

ℎ2 (𝑥) 𝑓𝑘 (𝑥) 𝑑𝑥 < +∞} (16)

with the associated inner product given by

⟨ℎ, 𝑔⟩𝑘 = ∫
R

ℎ (𝑥) 𝑔 (𝑥) 𝑓𝑘 (𝑥) 𝑑𝑥. (17)

The set of orthogonal polynomials satisfies the orthogonal
conditions: ⟨𝜙𝑘𝑖, 𝜙𝑘𝑗⟩𝑘 = 𝛼𝑘𝑖 𝛿𝑖𝑗, (18)

where 𝛼𝑘𝑖 = ⟨𝜙𝑘𝑖, 𝜙𝑘𝑖⟩𝑘 . (19)

In order to make a correspondence between the set of
polynomial chaos associated with each variable 𝜉𝑖 and that
associatedwith the randomvector𝜔, the following total order
is introduced on the set N𝑛+1 by∀ ((𝑖0, . . . , 𝑖𝑛) , (𝑗0, . . . , 𝑗𝑛)) ∈ N

𝑛+1 × N
𝑛+1,(𝑖0, . . . , 𝑖𝑛) = (𝑗0, . . . , 𝑗𝑛) ⇐⇒𝑖𝑘 = 𝑗𝑘, ∀𝑘 ∈ ⟦0, 𝑛⟧(𝑖0, . . . , 𝑖𝑛) < (𝑗0, . . . , 𝑗𝑛)

if
𝑛∑
𝑘=0

𝑖𝑘 < 𝑛∑
𝑘=0

𝑗𝑘
or if

𝑛∑
𝑘=0

𝑖𝑘 = 𝑛∑
𝑘=0

𝑗𝑘
∃𝑙 ∈ ⟦0, 𝑛⟧ ,(𝑖0, . . . , 𝑖𝑙−1) = (𝑗0, . . . , 𝑗𝑙−1) , 𝑖𝑙 > 𝑗𝑙.

(20)

This order allows considering a bijection 𝜓𝑛 from N𝑛+1 to
N, defined by 𝜓𝑛 : N𝑛+1 → N(𝑖0, . . . , 𝑖𝑛) → 𝜓𝑛 (𝑖0, . . . , 𝑖𝑛) = 𝑖. (21)

This bijection relates each element (𝑖0, . . . , 𝑖𝑛) in N𝑛+1 by
its order 𝑖 defined in (20). Let 𝐿 be a nonzero integer; the
integer𝑁 used in the decomposition (12) is taken as𝑁 = 𝜓𝑛 (0, 0, . . . , 0, 𝐿) . (22)

The choice of 𝑁 allows decomposing the solution in a set of
polynomial chaos associated with the vector 𝜔 of degree less
than or equal to𝐿. So, for all integers 𝑘 between 0 and𝑁, there
is a single (𝑘0, . . . , 𝑘𝑛) ∈ N𝑛+1 such that𝑘 = 𝜓𝑛 (𝑘0, . . . , 𝑘𝑛) , (23)

𝑛∑
𝑗=0

𝑘𝑗 ≤ 𝐿. (24)

This one-to-one correspondence allows writing the mul-
tidimensional polynomial chaos associated with the random
vector 𝜔 as a function of the one-dimensional polynomial
chaos corresponding to each variable 𝜉𝑖 by

𝜙𝑘 (𝜔) = 𝑛∏
𝑑=0

𝜙𝑑𝑘𝑑 , ∀𝑘 ∈ ⟦0,𝑁⟧ , (25)

where (𝑘0, . . . , 𝑘𝑛) is the multi-index associated with the
integer 𝑘, introduced by (23).

For all integers 𝑖 and ℎ between 0 and 𝑛 the square matrix𝛽𝑖ℎ of order 𝐿 + 1 is defined by𝛽𝑖ℎ (𝑙 + 1, 𝑘 + 1) = ⟨𝜉ℎ𝑖 𝜙𝑖𝑙, 𝜙𝑖𝑘⟩𝑖 ∀ (𝑙, 𝑘) ∈ ⟦0, 𝐿⟧2 . (26)

Let ℘𝐿𝑖 = R𝐿[𝜉𝑖], the set of polynomials of degree less
than or equal to 𝐿. Then, the set of the classical polynomial
chaos𝐵𝐿𝑖𝐶𝑃 = {𝜙𝑖𝑘, 𝑘 ∈ ⟦0, 𝐿⟧} is an orthogonal basis of℘𝐿𝑖 for
the inner product defined by (17). Let 𝐵𝐿𝑖𝑐 = {1, 𝜉𝑖, . . . , 𝜉𝐿𝑖 } be
the canonical basis of ℘𝐿𝑖 and 𝑃𝑖𝐿 be the passage matrix from
the canonical basis 𝐵𝐿𝑖𝐶 to the chaos basis 𝐵𝐿𝑖𝐶𝑃. This matrix
can be obtained in a standard way, using the Gram-Schmidt
procedure or a recursive method.

Let the vectors 𝑉𝑖𝐿𝐶 = {1, . . . , 𝜉𝐿𝑖 }𝑇 ,𝑉𝑖𝐿𝐶𝑃 = {𝜙𝑖0, . . . , 𝜙𝑖𝐿}𝑇 . (27)

Then, one has 𝑉𝑖𝐿𝐶𝑃 = (𝑃𝑖𝐿)𝑇𝑉𝑖𝐿𝐶 . (28)

For ℎ ∈ N and 𝑖 between 0 and 𝑛, themoment𝑚𝑖ℎ of orderℎ of the random variable 𝜉𝑖 is defined by

𝑚𝑖ℎ = 𝐸 (𝜉ℎ𝑖 ) = ∫+∞
−∞

𝑥ℎ𝑓𝑖 (𝑥) 𝑑𝑥. (29)

The square matrices of order (𝐿 + 1), 𝐵ℎ𝑖𝐿, are defined by𝐵ℎ𝑖𝐿 (𝑙 + 1, 𝑘 + 1) = 𝑚𝑖(ℎ+𝑘+𝑙) ∀ (𝑙, 𝑘) ∈ ⟦0, 𝐿⟧2 . (30)
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This gives explicitly matrix 𝛽𝑖ℎ by
𝛽𝑖ℎ = 𝑃𝑖𝐿𝑇𝐵ℎ𝑖𝐿𝑃𝑖𝐿. (31)

Let 𝑘 and 𝑙 be two integers between 0 and𝑁. From (23) we
have, respectively, unique elements (𝑘0, . . . , 𝑘𝑛) and (𝑙0, . . . , 𝑙𝑛)
in N𝑛+1 such that 𝑘 = 𝜓𝑛(𝑘0, . . . , 𝑘𝑛) and 𝑙 = 𝜓𝑛(𝑙0, . . . , 𝑙𝑛).
Rewriting 𝜙𝑘 using expression (26), the following expression
is explicitly obtained:

⟨ 𝑝∏
𝑑=0

(𝜉𝑑)𝛼𝑑 𝜙𝑙,𝜙𝑘⟩ = 𝑝∏
𝑑=0

(𝛽𝑑𝛼𝑑 (𝑙𝑑 + 1, 𝑘𝑑 + 1))
⋅ 𝑛∏
𝑑=𝑝+1

(𝛽𝑑0 (𝑙𝑑 + 1, 𝑘𝑑 + 1)) . (32)

The expression in the right-hand side of (14) is thus given
by

⟨(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) ,𝜙𝑘⟩= (𝑎0𝑗𝛽𝑗0 (1, 𝑘𝑗 + 1) + 𝑎1𝑗𝛽𝑗1 (1, 𝑘𝑗 + 1))
⋅ 𝑛∏
𝑑=0
𝑑 ̸=𝑗

(𝛽𝑑0 (1, 𝑘𝑑 + 1)) . (33)

For independent random variables, a relationship be-
tween the multidimensional and associated one-dimensional
generalized polynomials is established. This leads to explicit
and closed forms of the used scalar product and needed
terms to be numerically computed. Using these relationships
resulted in the following deterministic differential system:

𝑚∑
𝑖=0

𝑁∑
𝑙=0

𝑞𝑖∑
𝑠=0

∑
|𝛼|=𝑠

𝑐𝑖𝛼( 𝑝∏
𝑑=0

(𝛽𝑑𝛼𝑑 (𝑙𝑑 + 1, 𝑘𝑑 + 1)) 𝑛∏
𝑑=𝑝+1

(𝛽𝑑0 (𝑙𝑑 + 1, 𝑘𝑑 + 1))) 𝑑𝑖𝑈𝑙 (𝑡)𝑑𝑡𝑖
= 𝑛∑
𝑗=𝑝+1

(𝑎0𝑗𝛽𝑗0 (1, 𝑘𝑗 + 1) + 𝑎1𝑗𝛽𝑗1 (1, 𝑘𝑗 + 1)) 𝑛∏
𝑑=0
𝑑 ̸=𝑗

(𝛽𝑑0 (1, 𝑘𝑑 + 1)) 𝑔𝑗 (𝑡) . (34)

For a compact formulation and using notation (26), the
square matrices 𝑇𝑖 of order (𝑁 + 1) and the time-dependent

vector𝐷 of dimension (𝑁 + 1) are introduced for all integers𝑘, 𝑙 ∈ [0,𝑁] by
𝑇𝑖 (𝑙 + 1, 𝑘 + 1) = 𝑞𝑖∑

𝑠=0

∑
|𝛼|=𝑠

𝑐𝑖𝛼( 𝑝∏
𝑑=0

(𝛽𝑑𝛼𝑑 (𝑙𝑑 + 1, 𝑘𝑑 + 1)) 𝑛∏
𝑑=𝑝+1

(𝛽𝑑0 (𝑙𝑑 + 1, 𝑘𝑑 + 1))) , (35)

𝐷𝑘+1 (𝑡) = 𝑛∑
𝑗=𝑝+1

(𝑎0𝑗𝛽𝑗0 (1, 𝑘𝑗 + 1) + 𝑎1𝑗𝛽𝑗1 (1, 𝑘𝑗 + 1)) 𝑛∏
𝑑=0
𝑑 ̸=𝑗

(𝛽𝑑0 (1, 𝑘𝑑 + 1)) 𝑔𝑗 (𝑡) . (36)

Using these notations, differential system (34) is rewritten
in the following closed form system:

𝑚∑
𝑖=0

𝑁∑
𝑙=0

𝑇𝑖 (𝑙 + 1, 𝑘 + 1) 𝑑𝑖𝑈𝑙 (𝑡)𝑑𝑡𝑖 = 𝐷𝑘+1 (𝑡) ;
𝑘 = 0, . . . , 𝑁. (37)

Using the presented methodological approach, the trun-
cated solution (12) can be numerically obtained. Its mean and
variance are given by

𝑚𝑁 (𝑡) = 𝑈0 (𝑡) ,
𝑉𝑁 (𝑡) = 𝑁∑

𝑘=1

𝛼𝑘𝑈2
𝑘 (𝑡) . (38)

Equation (14) is usually given for Hermite polynomials
when random variables are Gaussian.This kind of projection
is classically done and many authors follow this procedure.

In this paper, the random variables 𝜉𝑖 may follow various
types of laws. The presented generalized formalism allows
one to handle multilaws by using the canonical basis and the
orthogonalization principle with respect to a scalar product
associated with the distribution function of the random
vector. Explicit and closed forms of the used scalar products
and needed terms to be numerically computed are given.

It should to be noted that the major problem of this
classical decomposition into polynomials chaos expansion
is that the number of unknowns to estimate increases very
rapidly when the degree of the polynomial chaos and the
number of random parameters increase. More clearly, for n
random variables, the number of unknown coefficients in the
polynomial chaos of orders less than or equal to 𝐿 is ( 𝑛+𝐿𝐿 ).
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Table 1 presents the numbers of the needed unknown terms
for various 𝐿 and 𝑛.This very fast growth of dimensionality is
the main limitation of this classical approach.

To overcome this drawback, a concept of internal ran-
dom coefficients is introduced herein. This allows reducing
drastically the number of random variables, especially if the
initially considered number of random variables is large.

2.2. Internal Random Coefficients Method (IRCM). Let us
recall that 𝑚 is the derivative order of the random operator
L and 𝑝 is the number of the random variables definingL.

If 𝑝 ≤ 𝑚, then better use the methodological approach
presented in the previous sections.

If 𝑚 < 𝑝, then the coefficients 𝐶𝑖 will be considered as
the new random variables and called here internal random
coefficients. In fact, the following procedure will be of big
interest when the number𝑝 of randomvariables 𝜉𝑗 is too large
with respect to the differential order𝑚. A large reduction will
result based on the procedures developed herein.

Let us consider the worst case: 𝑚 < 𝑝. The coefficients(𝐶𝑖)0≤𝑖≤𝑚 and the random vector 𝜔2 can be gathered in a new
random vector: 𝑌1 = (𝐶0, 𝐶1, . . . , 𝐶𝑚, 𝜔2) , (39)

which depends on the initial random vector 𝜔 = (𝜔1, 𝜔2). It
has to be noted that the coefficients𝐶𝑖 are not independent of
each other but independent of 𝜔2.

In this section, it is assumed that the distribution function𝑓 of the randomvector𝜔 is a continuous function inR𝑛+1 and
has a compact support denoted by𝐾1.

This hypothesis ensures the quadratic convergence of the
series formed by polynomials chaos to the solution [20, 21].
Further, we assume that there exists a diffeomorphism ℎ from𝐾1 to 𝐾2 = ℎ(𝐾1), defined byℎ : 𝐾1 → 𝐾2𝜔 → ℎ (𝜔) . (40)

Such that, for all 𝑖 between 0 and𝑚, one hasℎ𝑖 (𝜔) = 𝐶𝑖 (41)

and, for all 𝑖 between 𝑝 + 1 and 𝑛, one hasℎ𝑖 (𝜔) = 𝜉𝑖. (42)

The other components of ℎ, from 𝑚 + 1 to 𝑝, are chosen
from the components of 𝜔1 to complete the construction ofℎ.

Let us put𝑌 = ℎ(𝜔).The random vector𝑌, so defined, has
a distribution function with respect to the Lebesguemeasure,
denoted by 𝑔. This function is given over the distribution
function associated with the random vector 𝜔 by

𝑔 (𝑦) = 𝑓 (ℎ−1 (𝑦)) 𝐽ℎ−1(𝑦) , (43)

where |𝐽ℎ−1(𝑦)| is the determinant of the Jacobean matrix ofℎ−1(𝑦).

Let 𝑔1 be the distribution function related to the consid-
ered Lebesgue measure of the random vector 𝑌1 given by

𝑔1 (𝑦1) = ∫
R𝑝−𝑚

𝑔 (𝑦) 𝑑𝑦𝑚+1 ⋅ ⋅ ⋅ 𝑑𝑦𝑝, (44)

where 𝑦1 = (𝑦0, . . . , 𝑦𝑚, 𝑦𝑝+1, . . . , 𝑦𝑛) is an observation of the
random vector 𝑌1.

For normalized parameters, the following reduced vari-
ables are introduced:

𝑋1
𝑖 = 𝐶𝑖 − 𝐸 (𝐶𝑖)𝜎𝑖 For 0 ≤ 𝑖 ≤ 𝑚, (45)

where 𝜎𝑖 = 𝜎(𝐶𝑖) and𝑋1 = (𝑋11, 𝜔2) ; 𝑋11 = (𝑋1
0, . . . , 𝑋1

𝑚) . (46)

Then, for, all integers 𝑖 between 0 and𝑚, one has𝐶𝑖 = 𝐸 (𝐶𝑖) + 𝜎𝑖𝑋1
𝑖 . (47)

Using these new expressions, the main random equation
(1) is reduced to the following simplified random differential
equation:

𝑚∑
𝑖=0

(𝐸 (𝐶𝑖) + 𝜎𝑖𝑋1
𝑖 ) 𝑑𝑖𝑈(𝑡, 𝑋1)𝑑𝑡𝑖

= 𝑛∑
𝑗=𝑝+1

(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) 𝑔𝑗 (𝑡) . (48)

It has to be noted here that the number of random vari-
ables is reduced and the resulting random differential equa-
tion is thus easier to handle.

Recall that the coefficients and the randomvariables, used
in the right-hand side of (48), are independent of each other
as well as of𝑋1

𝑖 . This is due to the fact that the random vector𝑋11 depends only on the random vector 𝜔1. 𝑋11 and 𝜔2 are
then independent.

Let 𝑔11 and 𝑔12 be, respectively, the distribution functions
of the random vectors 𝑋11 and 𝜔2 with respect to the asso-
ciated Lebesgue measures. Taking into account the indepen-
dence of random variables (𝜉𝑖)𝑝+1≤𝑖≤𝑛 one has

𝑔12 (𝑥𝑝+1, . . . , 𝑥𝑛) = 𝑛∏
𝑘=𝑝+1

𝑓𝑘 (𝑥𝑘) . (49)

Thedecomposition of the solution𝑈(𝑡,𝑋1) of the random
equation (48), according to themultidimensional polynomial
chaos basis, is given by

𝑈(𝑡, 𝑋1) = ∑
𝑘≥0

Ψ
1
𝑘 (𝑋1) 𝑢𝑘 (𝑡) . (50)

Using 𝑀th first terms of the series (50), the process𝑈(𝑡, 𝑋1) can be approximated by

𝑈𝑀 (𝑡, 𝑋1) ≅ 𝑀∑
𝑘=0

Ψ
1
𝑘 (𝑋1) 𝑢𝑘 (𝑡) . (51)
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Table 1: Number of needed unknown terms in the polynomial chaos.

𝑛 𝐿
5 10 20 30

5 252 3,003 53,130 32,4632
10 3,003 184,756 30,045,015 847,660,528
20 53,130 30,045,015 137,846,528,820 47,129,212,243,960
30 324,632 847,660,528 47,129,212,243,960 11,826,458,156,4861,424

Inserting these expressions in (48), the following random
differential equation resulted:

𝑀∑
𝑘=0

𝑚∑
𝑖=0

(𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 )Ψ1𝑘 (𝑋1) 𝑑𝑖𝑢𝑘 (𝑡)𝑑𝑡𝑖

= 𝑛∑
𝑗=𝑝+1

(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) 𝑔𝑗 (𝑡) . (52)

Projecting this equation with respect to Ψ1𝑙 for 𝑙 = 0, 𝑀
leads to

𝑀∑
𝑘=0

𝑚∑
𝑖=0

⟨(𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 )Ψ1𝑘,Ψ1𝑙 ⟩ 𝑑𝑖𝑢𝑘 (𝑡)𝑑𝑡𝑖

= 𝑛∑
𝑗=𝑝+1

⟨(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) ,Ψ1𝑙 ⟩𝑔𝑗 (𝑡) .
(53)

Let {Ψ11𝑗 , 𝑗 ∈ N} be polynomial chaos associated with the
random vector𝑋11.

Using bijection (21), there exist two elements in
N𝑛−𝑝+𝑚+1(𝑘0, . . . , 𝑘𝑛+𝑚−𝑝) and (𝑙0, . . . , 𝑙𝑛+𝑚−𝑝), such that (𝑘0,. . . , 𝑘𝑛+𝑚−𝑝) = 𝜓−1𝑛+𝑚−𝑝(𝑘), (𝑙0, . . . , 𝑙𝑛+𝑚−𝑝) = 𝜓−1𝑛+𝑚−𝑝(𝑙) for all
integers 𝑘, 𝑙 and

𝑘1 = 𝜓𝑚 (𝑘0, . . . , 𝑘𝑚) ,
𝑙1 = 𝜓𝑚 (𝑙0, . . . , 𝑙𝑚) . (54)

The multidimensional polynomial chaos Ψ1𝑘 associated
with the random vector 𝑋1 can be expressed by the poly-
nomial chaos associated with the random vector 𝑋11 and
the polynomial chaos associated with the random variables(𝜉𝑗, 𝑝 + 1 ≤ 𝑗 ≤ 𝑛) using the notations (23) and (54) by

Ψ
1
𝑘 (𝑋1) = Ψ11𝑘1 (𝑋11) 𝑛∏

𝑞=𝑝+1

𝜙𝑞𝑘𝑞+𝑚−𝑝 (𝜉𝑞) . (55)

Inserting this relationship into (53), the following random
differential equation resulted:

𝑀∑
𝑘=0

𝑚∑
𝑖=0

⟨(𝐸 (𝐶𝑖) +𝜎1𝑖𝑋1
𝑖 )Ψ11𝑘1 (𝑋11) 𝑛∏

𝑞=𝑝+1

𝜙𝑞𝑘𝑞+𝑚−𝑝 (𝜉𝑞) ,
Ψ

11
𝑙1 (𝑋11) 𝑛∏

𝑞=𝑝+1

𝜙𝑞𝑙𝑞+𝑚−𝑝 (𝜉𝑞)⟩ 𝑑𝑖𝑢𝑘 (𝑡)𝑑𝑡𝑖
= 𝑛∑
𝑗=𝑝+1

⟨(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) ,Ψ11𝑙1 (𝑋11) 𝑛∏
𝑞=𝑝+1

𝜙𝑞𝑙𝑞+𝑚−𝑝
⋅ (𝜉𝑏)⟩𝑔𝑗 (𝑡) .

(56)

Based on the independence of the random vector𝑋11 and
the random variables (𝜉𝑗, 𝑝 + 1 ≤ 𝑗 ≤ 𝑛), the inner products
in (56) are rearranged as

⟨(𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 )

⋅Ψ11𝑘1 𝑛∏
𝑞=𝑝+1

𝜙𝑞𝑘𝑞+𝑚−𝑝 (𝜉𝑞) ,Ψ11𝑙1 𝑛∏
𝑞=𝑝+1

𝜙𝑞𝑙𝑞+𝑚−𝑝 (𝜉𝑞)⟩
= (𝑚1

𝑖 ⟨Ψ11𝑘1 ,Ψ11𝑙1 ⟩11 + 𝜎1𝑖 ⟨𝑋1
𝑖Ψ

11
𝑘1 ,Ψ11𝑙1 ⟩11)

⋅ 𝑛∏
𝑞=𝑝+1

(𝛼𝑞
𝑘𝑞+𝑚−𝑝

𝛿𝑘𝑞+𝑚−𝑝𝑙𝑞+𝑚−𝑝)
⟨(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) ,Ψ11𝑙1 𝑛∏

𝑞=𝑝+1

𝜙𝑞𝑙𝑞+𝑚−𝑝 (𝜉𝑞)⟩
= 𝛿0𝑙1( 𝑛∏

𝑞=𝑝+1
𝑞 ̸=𝑗

𝛿0𝑙𝑞+𝑚−𝑝)(𝑎0𝑗𝛿0𝑙𝑗+𝑚−𝑝
+ 𝑎1𝑗𝛿𝑗+1+𝑚−𝑝𝑙𝑗+𝑚−𝑝) ,

(57)

where 𝛿𝑝𝑞 is the Kronecker symbol.
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Let 𝐵𝑐 be the canonical basis ofR[𝑋0, . . . , 𝑋𝑚]. This basis
can be ordered in the following form:

𝐵𝑐 = { 𝑚∏
𝑘=0

(𝑋𝑘)(𝛼𝑘−𝛼𝑘+1) : where 𝛼0 = 𝑞, 0 ≤ 𝛼𝑘+1
≤ 𝛼𝑘, 𝛼𝑚+1 = 0; 𝑞 ∈ N} . (58)

The orthogonalization of the basis 𝐵𝑐 gives the polyno-
mial chaos {Ψ11𝑘 , 𝑘 ∈ N} associated with the random vec-
tor 𝑋11. This orthogonalization is performed using a clas-
sical method such as the Gram-Schmidt procedure in
R[𝑋0, . . . , 𝑋𝑚] and the following inner product:

⟨𝐻,𝐾⟩11 = ∫
R𝑚+1

𝐻(𝑥)𝐾 (𝑥) 𝑔11 (𝑥) 𝑑𝑥
∀ (𝐻,𝐾) ∈ (R [𝑋11])2 . (59)

Let 𝐵1 be the tensor defined for all 𝛼 ∈ N𝑚+1, 𝛼 = (𝛼0, . . . ,𝛼𝑚) by
𝐵1 (𝛼) = 𝐸( 𝑚∏

𝑘=0

(𝑋𝑘)𝛼𝑘)
= ∫

R𝑚+1

𝑚∏
𝑘=0

(𝑥𝑘)𝛼𝑘 𝑔11 (𝑥) 𝑑𝑥. (60)

This integral can be computed using the distribution
function of the vector 𝜔1 and the diffeomorphism ℎ by

𝐵1 (𝛼) = ∫
R𝑝+1

𝑚∏
𝑘=0

(ℎ𝑘 (𝜔1) − 𝑚𝑘𝜎𝑘 )𝛼𝑘𝑓1 (𝜔1) 𝑑𝜔1. (61)

The integer𝑀, considered in decomposition (51), is cho-
sen such that the considered polynomials have the degree less
than or equal to 𝐿 and expressed by

𝑀 = 𝜓(𝑛+𝑚−𝑝) (0, 0, . . . , 0, 𝐿) ∀𝐿 ∈ N. (62)

Let 𝐵𝑐𝐿 be the canonical basis of R𝐿[𝑋0, . . . , 𝑋𝑚], then
𝐵𝑐𝐿 = { 𝑚∏

𝑘=0

(𝑋𝑘)(𝛼𝑘−𝛼𝑘+1) : where 𝛼0 = 𝑞, 0 ≤ 𝛼𝑘+1
≤ 𝛼𝑘, 𝛼𝑚+1 = 0; 𝑞 ∈ N, 𝑞 ≤ 𝐿} . (63)

Let us denote byP1 the passagematrix from the canonical
basis 𝐵𝑐𝐿 to the polynomial chaos basis associated with the

vector𝑋1 of degree less than or equal to𝐿. Using the following
notations,

𝑁𝐿 = 𝜓𝑚 (0, 0, . . . , 0, 𝐿) ,
𝑄𝑙 = 𝑚∏

𝑖=0

(𝑋𝑖)𝑙𝑖
where (𝑙0, . . . , 𝑙𝑚) = 𝜓−1𝑚 (𝑙) for 0 ≤ 𝑙 ≤ 𝑁𝐿,

V11𝑐 = [𝑄0, . . . , 𝑄𝑁𝐿]𝑇 ,
V11𝐶𝑃 = [Ψ110 , . . . ,Ψ11𝑁𝐿]𝑇 ,

(64)

one gets

V11𝐶𝑃 = (P1)T V11𝑐 . (65)

The matrices Υ, Τ𝑖 and 𝐷, defined for all integers 𝑘 and 𝑙
between 0 and𝑁𝐿, are introduced for 0 ≤ 𝑖 ≤ 𝑚, by

Υ (𝑘 + 1, 𝑙 + 1) = ⟨Ψ11𝑘 ,Ψ11𝑙 ⟩11 = 𝛼11𝑘 𝛿𝑘𝑙 (66)

Τ
i (𝑘 + 1, 𝑙 + 1) = ⟨𝑋1

𝑖Ψ
11
𝑘 ,Ψ11𝑙 ⟩11 (67)

𝐷 (𝑘 + 1, 𝑙 + 1) = 𝐵1 (𝜓−1𝑚 (𝑘) + 𝜓−1𝑚 (𝑙))
for 0 ≤ 𝑘 ≤ 𝑁𝐿 , 0 ≤ 𝑙 ≤ 𝑁𝐿. (68)

Let (𝑒𝑖)0≤𝑖≤𝑚, (𝑚 + 1) elements in N𝑚+1 such that

𝑒0 = (1, 0, . . . , 0) ;𝑒1 = (0, 1, . . . , 0) ;...𝑒𝑚 = (0, 0, . . . , 1) .
(69)

ThematricesD𝑖 of order (𝑁𝐿+1) for 0 ≤ 𝑖 ≤ 𝑚 are defined
by

D𝑖 (𝑘 + 1, 𝑙 + 1) = 𝐵1 (𝜓−1𝑚 (𝑘) + 𝜓−1𝑚 (𝑙) + 𝑒𝑖)
for 0 ≤ 𝑘 ≤ 𝑁𝐿, 0 ≤ 𝑙 ≤ 𝑁𝐿. (70)

This allows defining the matrices Υ and Τi by

Υ = P1D (P1)T,
Τ
i = P1D𝑖 (P1)T . (71)
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The randomdifferential system (52) is thus reduced to the
following deterministic one:

𝑀∑
𝑘=0

𝑚∑
𝑖=0

(𝐸 (𝐶𝑖)Υ (𝑘1 + 1, 𝑙1 + 1)
+ 𝜎1𝑖 Τi (𝑘1 + 1, 𝑙1 + 1))
⋅ 𝑛∏
𝑞=𝑝+1

(𝛼𝑞
𝑘𝑞+𝑚−𝑝

𝛿𝑘𝑞+𝑚−𝑝𝑙𝑞+𝑚−𝑝) 𝑑𝑖𝑢𝑘 (𝑡)𝑑𝑡𝑖
= 𝑛∑
𝑗=𝑝+1

𝛿0𝑙1( 𝑛∏
𝑞=𝑝+1
𝑞 ̸=𝑗

𝛿0𝑙𝑞+𝑚−𝑝)(𝑎0𝑗𝛿0𝑙𝑗+𝑚−𝑝
+ 𝑎1𝑗𝛿𝑗+1+𝑚−𝑝𝑙𝑗+𝑚−𝑝) 𝑔𝑗 (𝑡) ,

(72)

where 𝑘1 and 𝑙1 are integers related to 𝑘 and 𝑙 and introduced
in (54).

Finally, the last differential system is rewritten in the fol-
lowing condensed matrix form:

𝑀∑
𝑘=0

𝑚∑
𝑖=0

𝐻𝑖 (𝑘1 + 1, 𝑙1 + 1) 𝑑𝑖𝑢𝑘 (𝑡)𝑑𝑡𝑖 = 𝐸𝑙 (𝑡) , (73)

where𝐻𝑖 (𝑘1 + 1, 𝑙1 + 1) = (𝐸 (𝐶𝑖)Υ (𝑘1 + 1, 𝑙1 + 1)
+ 𝜎1𝑖 Τi (𝑘1 + 1, 𝑙1 + 1)) 𝑛∏

𝑞=𝑝+1

(𝛼𝑞
𝑘𝑞+𝑚−𝑝

𝛿𝑘𝑞+𝑚−𝑝𝑙𝑞+𝑚−𝑝) . (74)

𝐸𝑙 (𝑡) = 𝑛∑
𝑗=𝑝+1

𝛿0𝑙1( 𝑛∏
𝑞=𝑝+1
𝑞 ̸=𝑗

𝛿0𝑙𝑞+𝑚−𝑝)
⋅ (𝑎0𝑗𝛿0𝑙𝑗+𝑚−𝑝 + 𝑎1𝑗𝛿𝑗+1+𝑚−𝑝𝑙𝑗+𝑚−𝑝) 𝑔𝑗 (𝑡)

(75)

Based on the presented mathematical procedures, the
truncated solution (51) can be numerically obtained.

An equivalent form of (73) has been introduced in (37)
based on original random variables.These two equations give
the approximate solution of U. The coefficients of these two
equations are given, respectively, by the inner products in (57)
for (73) and (32)-(33) for (37).

It should be noted, on one hand, that these coefficients
are hard to be determined for (37) but easier for (73). On the
other hand, the number of the random variables used in (73)
is largely reduced. This reduces the number of unknowns
used to determine the solution U and greatly simplifies the
required numerical computation.

Note that when uncertainties come from random param-
eters of the system parameters, they can be efficiently handled
by the previous mathematical procedures. When the right-
hand side excitation depends on many random variables,
the previous internal coefficients procedure can be largely
improved by the so-called superposition method.

2.3. Superposition Method. Thanks to the linear behavior of
the considered system, the superposition principle can be
applied to the standard random differential equation (13) and
to the resulting equation from the internal random coeffi-
cients procedure (52). In both cases, the considered random
right-hand side function 𝐹(𝑡) depends linearly on (𝑛 − 𝑝)
random variables 𝜉𝑗. The superposition method consists of
solving (𝑛 − 𝑝) differential equations with elementary right-
hand sides given by

L ⋅ 𝑈 (𝑡, 𝜔) = (𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) 𝑔𝑗 (𝑡)
for 𝑗 = 𝑝 + 1, . . . , 𝑛, (76)

whereLmaybe the left-hand side differential operator of (13)
or (52). In fact, this superposition is adding only one random
variable 𝜉𝑗 to the system and the resulting random vectors are(𝜔1, 𝜉𝑗) for (13) and (𝑋11, 𝜉𝑗) for (52) for each 𝑗.

As the internal random coefficient procedure leads to
a reduced number of random variables, the superposition
principle is applied to (52). Our focus is then on the resulting
random differential equation:

𝑚∑
𝑖=0

(𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 ) 𝑑𝑖𝑈(𝑡,𝑋1)𝑑𝑡𝑖

= 𝑛∑
𝑗=𝑝+1

(𝑎0𝑗 + 𝑎1𝑗𝜉𝑗) 𝑔𝑗 (𝑡) , (77)

with the deterministic initials conditions given by

𝑑𝑖𝑈 (𝑡)𝑑𝑡𝑖 𝑡=0 = 𝑢𝑖0 for 0 ≤ 𝑖 ≤ 𝑚 − 1. (78)

The polynomial chaos associated with the random vector𝜔2 is considered and denoted by {𝜙2𝑘; 𝑘 ∈ N}. The solution𝑈 is in this case a process that depends on 𝑡, on the random
vector𝑋11, and on the random vector𝜔2.The solution is then
written in the following form:

𝑈(𝑡, 𝑋1) = 𝑈 (𝑡, 𝑋11, 𝜔2) . (79)

Since random vectors 𝑋11 and 𝜔2 are independent, the
factorization by the polynomial chaos associated with the
random vector 𝜔2 is used in the decomposition (50). The
solution can be rewritten as follows:

𝑈(𝑡, 𝑋11, 𝜔2) = ∑
𝑘≥0

𝑈𝑘 (𝑡, 𝑋11)𝜙2𝑘 (𝜔2) . (80)

The insertion of this decomposition in the differential
equation (77) and the projection of the equation and of the
initial conditions over each polynomial chaos 𝜙2𝑙 for 𝑙 ≥ 0
lead to the following simplified system of random differential
equations:
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For 𝑘 = 0,
𝑚∑
𝑖=0

(𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 ) 𝑑𝑖𝑈0 (𝑡, 𝑋11)𝑑𝑡𝑖 = 𝑛∑

𝑗=𝑝+1

𝑎0𝑗𝑔𝑗 (𝑡)
𝑑𝑖𝑈0 (𝑡, 𝑋11)𝑑𝑡𝑖

𝑡=0 = 𝑢𝑖0
for 0 ≤ 𝑖 ≤ 𝑚 − 1.

(81a)

For 1 ≤ 𝑘 ≤ 𝑛 − 𝑝,
𝑚∑
𝑖=0

(𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 ) 𝑑𝑖𝑈0 (𝑡, 𝑋11)𝑑𝑡𝑖 = 𝑎1𝑝+𝑘𝑔𝑝+𝑘 (𝑡)
𝑑𝑖𝑈𝑘 (𝑡, 𝑋11)𝑑𝑡𝑖

𝑡=0 = 0
for 0 ≤ 𝑖 ≤ 𝑚 − 1.

(81b)

For 𝑘 ≥ 𝑛 − 𝑝 + 1,
𝑚∑
𝑖=0

(𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 ) 𝑑𝑖𝑈𝑘 (𝑡, 𝑋11)𝑑𝑡𝑖 = 0
𝑑𝑖𝑈𝑘 (𝑡, 𝑋11)𝑑𝑡𝑖

𝑡=0 = 0
for 0 ≤ 𝑖 ≤ 𝑚 − 1.

(81c)

It has to be noted that the case 𝑘 ≥ 𝑛 − 𝑝 + 1 leads to null
initial conditions and null right-hand side. In this case, the
solution is then null.

The solution given in (80) is then reduced to

𝑈(𝑡, 𝑋11, 𝜔2) = 𝑛−𝑝∑
𝑘=0

𝜙
2
𝑘 (𝜔2) 𝑈𝑘 (𝑡, 𝑋11) . (82)

For 0 ≤ 𝑘 ≤ 𝑛 − 𝑝 and considering the decomposition
of the solution𝑈𝑘(𝑡, 𝑋11) according to the polynomials chaos
associated with the random vector𝑋11, one gets

𝑈𝑘 (𝑡, 𝑋11) = 𝑁𝐿∑
𝑑=0

𝑢𝑘𝑑 (𝑡)Ψ11𝑑 (𝑋11) . (83)

Based on this decomposition, the differential equations
(81a)–(81c) are then reduced to the following:

For 𝑘 = 0,
𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

Ψ
11
𝑑 (𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1

𝑖 ) 𝑑𝑖𝑢0𝑑 (𝑡)𝑑𝑡𝑖
= 𝑛∑
𝑗=𝑝+1

𝑎0𝑗𝑔𝑗 (𝑡)
𝑑𝑖𝑢0𝑑 (𝑡, 𝑋11)𝑑𝑡𝑖

𝑡=0 = 𝑢𝑖0𝑑 for 0 ≤ 𝑖 ≤ 𝑚 − 1.
(84a)

For 1 ≤ 𝑘 ≤ 𝑛 − 𝑝,
𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

Ψ
11
𝑑 (𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1

𝑖 ) 𝑑𝑖𝑢𝑘𝑑 (𝑡)𝑑𝑡𝑖= 𝑎1𝑝+𝑘𝑔𝑝+𝑘 (𝑡)𝑑𝑖𝑢𝑘𝑑 (𝑡, 𝑋11)𝑑𝑡𝑖
𝑡=0 = 0 for 0 ≤ 𝑖 ≤ 𝑚 − 1.

(84b)

Projecting this expression over each polynomial chaos
Ψ11𝑞 for 𝑞 = 0 to𝑁𝐿, one gets

𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

⟨Ψ11𝑑 (𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 ) ,Ψ11𝑞 ⟩ 𝑑𝑖𝑢0𝑑 (𝑡)𝑑𝑡𝑖

= 𝛿0𝑞( 𝑛∑
𝑗=𝑝+1

𝑎0𝑗𝑔𝑗 (𝑡)) (85)

and, for 1 ≤ 𝑘 ≤ 𝑛 − 𝑝,
𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

⟨Ψ11𝑑 (𝐸 (𝐶𝑖) + 𝜎1𝑖 𝑋1
𝑖 ) ,Ψ11𝑞 ⟩ 𝑑𝑖𝑢𝑘𝑑 (𝑡)𝑑𝑡𝑖= 𝛿𝑘𝑞𝑎1𝑝+𝑘𝑔𝑝+𝑘 (𝑡) (86)

Using the matrices Υ and Τ𝑖 introduced in (71), the last
equations become the following.

For 𝑞 = 0 to𝑁𝐿,
𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

(𝐸 (𝐶𝑖)Υ (𝑑1 + 1, 𝑞1 + 1)
+ 𝜎1𝑖 Τi (𝑑1 + 1, 𝑞1 + 1)) 𝑑𝑖𝑢0𝑑 (𝑡)𝑑𝑡𝑖
= 𝛿0𝑞( 𝑛∑

𝑗=𝑝+1

𝑎0𝑗𝑔𝑗 (𝑡))
(87)

and, for 1 ≤ 𝑘 ≤ 𝑛 − 𝑝,
𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

(𝐸 (𝐶𝑖)Υ (𝑑1 + 1, 𝑞1 + 1)
+ 𝜎1𝑖 Τi (𝑑1 + 1, 𝑞1 + 1)) 𝑑𝑖𝑢𝑘𝑑 (𝑡)𝑑𝑡𝑖= 𝛿𝑘𝑞𝑎1𝑝+𝑘𝑔𝑝+𝑘 (𝑡) ,

(88)

where the integers 𝑑1 and 𝑞1 are related to 𝑑 and 𝑞 by nota-
tions (54).

These deterministic systems are then rewritten in the fol-
lowing compact matrix form.
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For 𝑞 = 0 to𝑁𝐿,
𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

Fi (𝑑1 + 1, 𝑞1 + 1) 𝑑𝑖𝑢0𝑑 (𝑡)𝑑𝑡𝑖
= 𝛿0𝑞( 𝑛∑

𝑗=𝑝+1

𝑎0𝑗𝑔𝑗 (𝑡))
𝑑𝑖𝑢0𝑑 (𝑡, 𝑋11)𝑑𝑡𝑖

𝑡=0 = 𝑢𝑖0𝑑 for 0 ≤ 𝑖 ≤ 𝑚 − 1
(89)

and, for 1 ≤ 𝑘 ≤ 𝑛 − 𝑝,
𝑚∑
𝑖=0

𝑁𝐿∑
𝑑=0

Fi (𝑑1 + 1, 𝑞1 + 1) 𝑑𝑖𝑢𝑘𝑑 (𝑡)𝑑𝑡𝑖 = 𝑎1𝑝+𝑘𝑔𝑝+𝑘 (𝑡) 𝛿𝑘𝑞
𝑑𝑖𝑢𝑘𝑑 (𝑡, 𝑋11)𝑑𝑡𝑖

𝑡=0 = 0
for 0 ≤ 𝑖 ≤ 𝑚 − 1,

(90)

where

Fi = 𝐸 (𝐶𝑖)Υ + 𝜎1𝑖 Τi. (91)

The final truncated solution is then given by

𝑈 (𝑡) = 𝑛−𝑝∑
𝑘=0

𝜙
2
𝑘 (𝜔2) 𝑁𝐿∑

𝑑=0

𝑢𝑘𝑑 (𝑡)Ψ11𝑑 (𝑋11) . (92a)

Its mean and variance are given:𝑚𝑁 (𝑡) = 𝑢00 (𝑡) ,
𝑉𝑁 (𝑡) = 𝑛−𝑝∑

𝑘=1

𝑁∑
𝑑=0

𝛼
11
d 𝑢2𝑘𝑑 (𝑡) + 𝑁∑

𝑑=1

𝛼
11
d 𝑢20𝑑 (𝑡) . (92b)

This solution is the main approximate solution of the
random initial value problem (1) elaborated herein. Following
(89) and (90), one has to solve NL(𝑛 − 𝑝 + 1) simple initial
values differential systems. These systems can be solved by
standard methods such as the Runge-Kutta method.

The main advantages of this methodological approach are
as follows:

(i) The deterministic differential systems have the same
left-hand side that is built only once and in a compact
matrix form.

(ii) Simple right-hand sides are obtained for an arbitrary
number of random variables defining the excitation.

(iii) A large reduction of the number of unknowns based
on polynomial chaos can result.

(iv) The CPU time and memory needed can be largely
reduced.

(v) The numerical solution can be done in parallel man-
ner and particularly for a large number of uncertain
parameters.

2.4. Conditional Expectation Method. For the sake of com-
parison, a methodological approach based on the conditional
expectation method is also elaborated here to solve (1).
Remember that the solution 𝑈 of (1) is a stochastic process
that depends on the random vectors 𝜔1 and 𝜔2 and time 𝑡.
Let 𝜔0 = (𝜔10, 𝜔20) be an observation of the random vector𝜔 = (𝜔1, 𝜔2). The conditional expectation of 𝑈 such that𝜔 = 𝜔0, noted by 𝐸(𝑈 | 𝜔 = 𝜔0), is the solution of the
deterministic equation:

L0𝑢 (𝑡, 𝜔0) = 𝐹 (𝑡, 𝜔20) , (93)

whereL0 is a deterministic operator defined by

L0 = 𝑚∑
𝑖=0

𝐶𝑖 (𝜔10) 𝑑𝑖𝑑𝑡𝑖 . (94)

Like in the first section, the random vector 𝜔 is assumed
to have a density function relative to the Lebesgue measure
denoted by 𝑓. The moments of order 𝑝 (𝑝 ∈ N∗) of the
solution of (1) are then given by the Bayes formulas:

𝑚𝑝 (𝑡) = ∫
R𝑛+1

(𝐸 (𝑈 | 𝜔 = 𝜔0))𝑝 𝑓 (𝜔0) 𝑑𝜔0. (95)

The numerical computation of the integral (95) needs the
solution of (93) for any observation vector 𝜔0. The analytical
solution can be obtained in general cases. Assume that 𝜔0 ∈Ω, whereΩ is a bounded domain in R𝑛+1.

The integral can be approximated by the Gauss-Legendre
quadrature method. Let the sets {𝜔0𝑖, 1 ≤ 𝑖 ≤ 𝑞} and {𝑝𝑖, 1 ≤𝑖 ≤ 𝑞} be Gauss points and associated Gauss weights. The
moments𝑚𝑝(𝑡) can be approximated by

𝑚𝑝 (𝑡) ≅ 𝑞∑
𝑖=1

𝑝𝑖 (𝐸 (𝑈 | 𝜔 = 𝜔0𝑖))𝑝 𝑓 (𝜔0𝑖) . (96)

The main advantage of this method is that it allows
obtaining a general solution that is considered here as a
reference solution as well as the obtained one based on the
Monte-Carlo method. But, the inconvenience of these two
methods is that a very large CPU time is needed for accurate
numerical solutions.

3. Applications

For the sake of clarity, the developed methodological
approaches are explicitly presented for the most standard
initial value problem. Let us consider the following second-
order differential equation modeling the dynamical forced
behavior of Euler-Bernoulli beams with the following uncer-
tain parameters: thickness ℎ, mass density 𝜌, and Young
modulus 𝐸: 𝐶2�̈� (𝑡) + 𝐶1�̇� (𝑡) + 𝐶0𝑈 (𝑡) = 𝐹 (𝑡) ,𝑈 (0) = 𝑈𝑂,�̇� (0) = �̇�0

(97)
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where

𝐶2 = 𝜌ℎ𝐶1 = 𝛼𝐶2 + 𝛽𝐶0𝐶0 = 𝑐0𝐸ℎ + 𝑐1𝐸ℎ3 (98a)

𝐹 (𝑡) = 𝑛∑
𝑖=3

(𝑎0𝑖 + 𝑎1𝑖𝜉𝑖) sin (𝜃𝑖𝑡) , (98b)

in which 𝑐0, 𝑐1, 𝛼, 𝛽, 𝑎0𝑖, 𝑎1𝑖, 𝜃𝑖, 𝑈0, and �̇�0 are deterministic
constants.The considered physical randomvariables 𝜌, ℎ, and𝐸 are written in the following forms:

𝜌 = 𝜌0 + 𝜉0𝜌1ℎ = ℎ0 + 𝜉1ℎ1𝐸 = 𝐸0 + 𝜉2𝐸1, (98c)

where (𝜉𝑖, 0 ≤ 𝑖 ≤ 𝑛) are random variables with zero
means and one variance, two by two independent, and
possessing distribution functions relative to the Lebesgue
measure, respectively, denoted by 𝑓𝑖, 0 ≤ 𝑖 ≤ 𝑛.

It has to be noted that the internal random coefficients𝐶0,𝐶1, and𝐶2 dependnonlinearly on the randomvariables 𝜉0, 𝜉1,
and 𝜉2 and 𝑛 is an arbitrary integer. For a clear presentation,
the three methodological approaches, elaborated here, are
developed for the solution of (97).

3.1. Generalized Polynomial Chaos Method. The random vec-
tor 𝜔1, 𝜔1 = (𝜉0, 𝜉1, 𝜉2), the order of linear random operator
L is 𝑚 = 2, and the internal coefficients in this case are𝐶0(𝜔1), 𝐶1(𝜔1), 𝐶2(𝜔1). Note that these coefficients depend
nonlinearly on 𝜉0, 𝜉1, and 𝜉2 and the order of nonlinearity is 2
for 𝐶2 and 4 for 𝐶0 and 𝐶1. Based on the notations of the first
section, these coefficients can be expanded as follows:

𝐶0 (𝜔1) = 𝑐0000 + 𝑐0010𝜉1 + 𝑐0001𝜉2 + 𝑐0020𝜉21 + 𝑐0011𝜉1𝜉2+ 𝑐0030𝜉31 + 𝑐0021𝜉21𝜉2 + 𝑐0031𝜉31𝜉2𝐶1 (𝜔1) = 𝑐1000 + 𝑐1100𝜉0 + 𝑐1010𝜉1 + 𝑐1001𝜉2 + 𝑐1110𝜉0𝜉1+ 𝑐1020𝜉21 + 𝑐1011𝜉1𝜉2 + 𝑐1030𝜉31 + 𝑐1021𝜉21𝜉2+ 𝑐1031𝜉31𝜉2,𝐶2 (𝜔1) = 𝑐2000 + 𝑐2100𝜉0 + 𝑐2010𝜉1 + 𝑐2110𝜉0𝜉1,
(99)

where these coefficients are given by

𝑐0000 = 𝑐0𝐸0ℎ0 + 𝑐1𝐸0ℎ30,𝑐0010 = 𝑐0𝐸0ℎ1 + 3𝑐1𝐸0ℎ20ℎ1,𝑐0001 = 𝑐0𝐸1ℎ0 + 𝑐1𝐸1ℎ30,

𝑐0020 = 3𝑐1𝐸0ℎ0ℎ21,𝑐0011 = 𝑐0𝐸1ℎ1 + 3𝑐1𝐸1ℎ20ℎ1,𝑐0003 = 𝑐1𝐸0ℎ31,𝑐0021 = 3𝑐1𝐸1ℎ0ℎ21,𝑐0031 = 𝑐1𝐸1ℎ31;𝑐2000 = 𝜌0ℎ0,𝑐2100 = 𝜌1ℎ0,𝑐2010 = 𝜌0ℎ1,𝑐2110 = 𝜌1ℎ1;𝑐1000 = (𝛼𝑐2000 + 𝛽𝑐0000) ,𝑐1100 = 𝛼𝑐2100,𝑐1010 = (𝛼𝑐2010 + 𝛽𝑐0010) ,𝑐1001 = 𝛽𝑐0001,𝑐1110 = 𝛼𝑐2110,𝑐1020 = 𝛽𝑐0020,𝑐1011 = 𝛽𝑐0011,𝑐1003 = 𝛽𝑐0003,𝑐1021 = 𝛽𝑐0021,𝑐1031 = 𝛽𝑐0031.
(100)

Let 𝑘 and 𝑙 = 0 to 𝑁, and, using the notation (23), one
gets (𝑘0, . . . , 𝑘𝑛) = 𝜓−1𝑛 (𝑘) and (𝑙0, . . . , 𝑙𝑛) = 𝜓−1𝑛 (𝑙), where(𝑘0, . . . , 𝑘𝑛) and (𝑙0, . . . , 𝑙𝑛) are in N𝑛+1.

Thematrices 𝑇𝑖 for 𝑖 = 0 to 2, introduced in (35), are then
given by the following.

For 𝑘, 𝑙 = 0 : 𝑁,

𝑇0 (𝑙 + 1, 𝑘 + 1) = 𝑐0000 𝑛∏
𝑑=0

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐0010𝛽11 (𝑙1+1, 𝑘1 + 1) 𝑛∏

𝑑=0
𝑑 ̸=1

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐0001𝛽21 (𝑙2+1, 𝑘2 + 1) 𝑛∏

𝑑=0
𝑑 ̸=2

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐0020𝛽12 (𝑙1+1, 𝑘1 + 1) 𝑛∏

𝑑=0
𝑑 ̸=1

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
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+ 𝑐0011𝛽11 (𝑙1+1, 𝑘1 + 1) 𝛽21 (𝑙2+1, 𝑘2 + 1)
⋅ 𝑛∏
𝑑=0
𝑑 ̸=1,2

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐0030𝛽13 (𝑙1+1, 𝑘1 + 1) 𝑛∏

𝑑=0
𝑑 ̸=1

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐0021𝛽12 (𝑙1+1, 𝑘1 + 1) 𝛽21 (𝑙2+1, 𝑘2 + 1)
⋅ 𝑛∏
𝑑=0
𝑑 ̸=1,2

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐0031𝛽13 (𝑙1+1, 𝑘1 + 1) 𝛽21 (𝑙2+1, 𝑘2 + 1)
⋅ 𝑛∏
𝑑=0
𝑑 ̸=1,2

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
𝑇2 (𝑙 + 1, 𝑘 + 1) = 𝑐2000 𝑛∏

𝑑=0

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐2100𝛽01 (𝑙1+1, 𝑘1 + 1) 𝑛∏

𝑑=1

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐2010𝛽11 (𝑙1+1, 𝑘1 + 1) 𝑛∏

𝑑=0
𝑑 ̸=1

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
+ 𝑐2110𝛽01 (𝑙1+1, 𝑘1 + 1) 𝛽11 (𝑙1+1, 𝑘1 + 1)
⋅ 𝑛∏
𝑑=2

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1)) ,
𝑇1 = 𝛼𝑇0 + 𝛽𝑇2.

(101)

The variable vector 𝐷 of dimension (𝑁 + 1), introduced
in (36), is given by the following.

For 𝑘 = 0 to𝑁,𝐷𝑘+1 (𝑡)
= 𝑛∑
𝑗=3

(𝑎0𝑗𝛽𝑗0 (1, 𝑘𝑗 + 1) + 𝑎1𝑗𝛽𝑗1 (1, 𝑘𝑗 + 1))
⋅ 𝑛∏
𝑑=0
𝑑 ̸=𝑗

(𝛽𝑑0 (1, 𝑘𝑑 + 1)) sin (𝜃𝑗𝑡) .
(102)

The passage from the index for 0 ≤ 𝑙 ≤ 𝑁 to the multi-
indices (𝑙0, 𝑙1, . . . , 𝑙𝑛), used for the determination the matrices𝑇0, 𝑇1, and 𝑇2 needs the bijection 𝜓𝑛. This bijection is given
with Algorithm 1.

The determination of 𝑇0, 𝑇1, and 𝑇2, in this case, needs
the computation of the inner products ⟨𝜉𝑝𝑖 𝜙𝑘, 𝜙𝑙⟩ for 𝑝 ≤ 3,
by (32).

Read L and n
L non null integer𝑡 = 0.
For 𝑙0 = 0 : 𝐿; 𝑙1 = 0 : 𝑙0; 𝑙2 = 0 : 𝑙1; . . . ; 𝑙𝑛 = 0 : 𝑙𝑛−1.𝜓𝑛(𝑙0 − 𝑙1, 𝑙1 − 𝑙2, . . . , 𝑙𝑛−1 − 𝑙𝑛, 𝑙𝑛) = 𝑡 + 1;𝑡 = 𝑡 + 1;
end.

Algorithm 1

If the randomcoefficients 𝜉𝑖 are not identically distributed
then ⟨𝜉𝑝𝑖 𝜙𝑘, 𝜙𝑙⟩ have to be computed for each 𝑖 = 0 to 𝑛.
Otherwise, these scalar products have to be computed only
once. This difficulty as well as the number of unknowns can
be largely reduced by using the internal random coefficients
method.

3.2. Internal Random Coefficients Method. Based on this
method, the internal coefficients of (97) are rewritten in the
following form:

𝐶0 (𝜔1) = 𝐸 (𝐶0) + 𝜎10𝑋1
0𝐶2 (𝜔1) = 𝐸 (𝐶0) + 𝜎12𝑋1
2𝐶1 (𝜔1) = 𝛼𝐶0 (𝜔1) + 𝛽𝐶2 (𝜔1) .

(103)

The random vector 𝑋11, introduced by this method, is
then given by

𝑋11 = (𝑋1
0, 𝑋1

2) . (104)

The number of random variables used here is (𝑛 − 1)
variables, two variables for the coefficients 𝐶𝑗, and (𝑛 − 3)
variables for the right-hand side.

For 𝑘, 𝑙 = 0, . . . , 𝑁𝐿; and let 𝑘1, 𝑙1 be the integers
associated with integers 𝑘, 𝑙, introduced by the notations
(23)–(54); one has

(𝑘0, . . . , 𝑘𝑛−1) = 𝜓−1𝑛−1 (𝑘) ;(𝑙0, . . . , 𝑙𝑛−1) = 𝜓−1𝑛−1 (𝑙) ,𝑘1 = 𝜓2 (𝑘0, 𝑘1) ,𝑙1 = 𝜓2 (𝑙0, 𝑙1) .
(105)

Thematrices𝐻𝑖, introduced in (74), are given in this case
by

𝐻0 (𝑘1, 𝑙1) = (𝐸 (𝐶0)Υ (𝑘1 + 1, 𝑙1 + 1)
+ 𝜎10Τ0 (𝑘1 + 1, 𝑙1 + 1)) 𝑛−1∏

𝑑=2

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1))
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𝐻2 (𝑘1, 𝑙1) = (𝐸 (𝐶1)Υ (𝑘1 + 1, 𝑙1 + 1)
+ 𝜎11Τ2 (𝑘1 + 1, 𝑙1 + 1)) 𝑛−1∏

𝑑=2

(𝛽𝑑0 (𝑙𝑑+1, 𝑘𝑑 + 1)) ,
𝐻1 = 𝛼𝐻0 + 𝛽𝐻2

(106)

and the variable vector 𝐸 of dimension (𝑁𝐿 + 1), introduced
in (75), is given by

𝐸𝑙 (𝑡) = 𝑛∑
𝑗=3

𝛿0𝑙1( 𝑛∏
𝑞=3
𝑞 ̸=𝑗

𝛿0𝑙𝑞−1)(𝑎0𝑗𝛿0𝑙𝑗−1 + 𝑎1𝑗𝛿𝑗𝑙𝑗−1)
⋅ sin (𝜃𝑗𝑡) 𝑙 = 1,𝑁𝐿 + 1.

(107)

The number of random variables, 𝑛, is arbitrary consid-
ered. For more clarity about the needed operations, let us
consider 𝑛 = 5. Based on the classical polynomial chaos and if
the decomposition of the solution into the polynomials chaos
of degree less than or equal to seven is considered then the
needed unknowns to be determined are of number ( 137 ) =1716, while the internal random coefficient method requires( 127 ) = 792 unknowns to be determined. The number
unknowns of is thus diminished by half. In addition the deter-
mination of the tensors 𝑇0, 𝑇1, 𝑇2 needs the computation of
the scalar products ⟨∏𝑝

𝑑=0
(𝜉𝛼𝑑
𝑑
)𝜓𝑘,𝜓𝑙⟩ where ∑𝑝

𝑑=0
𝛼𝑑 ≤ 𝑞𝑖

and 𝑞𝑖 is the degree of a randompolynomial coefficient𝐶𝑖(𝜔1)
given by relationship (10), while the tensors𝐻0,𝐻1,𝐻2 need
only the calculation of the inner products ⟨(𝑋1

𝑖 )𝑝Ψ1𝑘,Ψ1𝑙 ⟩ for𝑝 = 0 or 1. This demonstrates an extra reduction in the com-
putation effort. For more reduction in the CPU time, the
internal random coefficient method is coupled with the
superposition method.

3.3. Superposition Method. Here, (97) is replaced with an
equivalent system with (𝑛 − 2) equations; each equation is a
random equation depending on the randomvector𝑋11 intro-
duced in (46). These equations are given by

2∑
𝑖=0

𝐶𝑖 (𝜔1) 𝑑𝑖𝑈0 (𝑡, 𝑋11)𝑑𝑡𝑖 = 𝑛∑
𝑗=3

𝑎0𝑗 sin (𝜃𝑗𝑡) (108a)

with the initial conditions given by (𝑑𝑈0(𝑡, 𝑋11)/𝑑𝑡)|𝑡=0 =�̇�0. 𝑈0(0, 𝑋11) = 𝑢0,
And, for 1 ≤ 𝑘 ≤ 𝑛 − 2,

2∑
𝑖=0

𝐶𝑖 (𝜔1) 𝑑𝑖𝑈𝑘 (𝑡, 𝑋11)𝑑𝑡𝑖 = 𝑎1(2+𝑘) sin (𝜃2+𝑘𝑡) (108b)

with the initial conditions given by𝑑𝑈𝑘 (𝑡, 𝑋11)𝑑𝑡 𝑡=0 = 0,
𝑈𝑘 (0, 𝑋11) = 0. (109)

The associated matrices, introduced in (91), are given by

F0 = 𝐸 (𝐶0)Υ + 𝜎10Τ0
F2 = 𝐸 (𝐶2)Υ + 𝜎12Τ2,
F1 = 𝛼F0 + 𝛽F2. (110)

These matrices are replaced with their expressions in
systems (108a) and (108b). In this case, the determination
of the tensors F0, F1, F2 needs the determination of inner
products ⟨(𝑋11

𝑖 )𝑝Ψ11𝑘1 ,Ψ11𝑙1 ⟩ for 𝑝 = 0 or 1 where 𝑘1 and l1 are
the integers associated with integers 𝑘 and 𝑙 given by notation
(54). In this case, the polynomial chaos Ψ11𝑘1 associated
with the random vector 𝑋11 is simple. The solution of the
deterministic system defined by (86)-(87) determines an
approximate solution 𝑈 of the initial random equation (97).

This system largely reduces the number of unknowns to
be determined for the approximate solution 𝑈 and makes
the use of polynomial chaos possible even when the classical
projection method is unable to determine the solution. The
CPU time and memory required to solve this problem by
classical projection methods are significantly reduced by this
method.

It is well known that, for a stochastic excitation and with
Karhunen-Loéve expansion, the classical projectionmethods
are limited to a small number of random variables used in the
decomposition. This will affect the accuracy of the obtained
solution. This kind of problems is completely solved the by
the presented method.

4. Numerical Results

The dynamical system defined in (97) is considered. To
analyze the effect of the uncertain parameters, the free system(𝐹(𝑡) = 0) is first considered. For free systems, two variants
of the internal random coefficients method are used.The first
one consists of using two random coefficients 𝐶0 and 𝐶2
called here IRCM2; the second one consists of dividing by𝐶2 and then using only one random coefficient (𝐶2/𝐶0).This
variant is referred to here as IRCM1.

4.1. Free Dynamics Response. For numerical analysis, the
following values are used:

𝜌0 = 7800,𝜌1 = 𝛼0𝜌0,ℎ0 = 5 ∗ 10−5,ℎ1 = 𝛼1ℎ0,𝐸0 = 21 ∗ 1010,𝐸1 = 𝛼2𝐸0,𝛼 = 0.01,𝛽 = 0.001.

(111)
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The random variables 𝜉0, 𝜉1, 𝜉2 are assumed to follow
various laws and 𝛼0, 𝛼1, and 𝛼2 are the ratios of the standard
deviation and the mean of the random variables 𝜌, ℎ, and 𝐸.

Figures 1(a) and 1(b) present the standard deviation
and mean of the random solution 𝑈, where 𝜉𝑖 are random
variables with normalized truncated exponential laws in[0, 10], with 5% of standard deviation for parameters (𝛼0 =𝛼1 = 𝛼2 = 5%).The solution𝑈(𝑡) is computed using the chaos
methods associated with the random variables 𝜉𝑖, the IRCM1,
IRCM2, the conditional expectationmethod, and theMonte-
Carlo method with 1000 simples.

In the case of the classical chaos method, solution 𝑈
is expanded in the polynomial chaos of degree less than
or equal to 7 and these polynomials are dependent on the
three random variables 𝜉𝑖 for 𝑖 = 0, 1, and 2. For the first
internal random coefficient method, IRCM1, the coefficients
of the random equation (97) are divided by the random
variables 𝐶0(𝜔1) and the random equation depends only on
one new random variable 𝜂 = 𝐶2(𝜔1)/𝐶0(𝜔1). The solution𝑈 is then expanded into the polynomials chaos associated
with the random variable 𝜂 of degree less than or equal
to 12. For the second internal random coefficient method
(IRCM2), the random equation depends on the random
variables 𝐶0(𝜔1), 𝐶2(𝜔2). Solution 𝑈is here expanded into
the polynomials chaos associated with these two random
variables of degree less than or equal to 2 and also less than 7.
The number of unknowns used by the classical chaos method
is 120 variables for degrees≤ 7.The ICRM2needs 6 unknowns
for degrees ≤ 2 and 36 unknowns for degrees ≤ 7 while the
IRCM1 needs only 13 unknowns for degrees ≤ 12 as presented
in Table 2. This simple case demonstrates clearly how the
IRCM reduces the number of unknowns.

The mean and standard deviation of the solution 𝑈
obtained by IRCM1, IRCM2, chaos, conditional expectation,
and Monte-Carlo methods, presented in Figures 1(a) and
1(b), demonstrate a good accuracy between the predictions
obtained by these methods.

Figures 2(a) and 2(b) present the standard deviation
and mean of the solution 𝑈, when the random variables 𝜉𝑖
are uniform in [−4, 4] with 5% standard deviation for each
parameter (𝛼0 = 𝛼1 = 𝛼2 = 5%). Solution 𝑈 is computed
using the previousmethods. For the case of chaosmethod, the
solution𝑈 is expanded into polynomials chaos of degree less
than or equal to seven and these polynomials are dependent
on the three random variables 𝜉𝑖 for 𝑖 = 0, 1, and 2. For the
ICRM1, solution 𝑈 is expanded into the polynomial chaos
associated with the random variable 𝜂 of degree less than or
equal to 12. For ICRM2, solution𝑈 is expanded into the poly-
nomial chaos associated with two random variables of degree
less than or equal to 7.

For large standard deviations, these methods are also
tested. Figures 3(a) and 3(b) present the standard deviation
and mean of the solution 𝑈, when the random variables 𝜉𝑖
are uniform in [−4, 4] with 20% standard deviation (𝛼0 =𝛼1 = 𝛼2 = 20%). For the case of chaos method, solution𝑈 is expanded in polynomial chaos of degree less than or
equal to 7 and these polynomials are dependent on the three
random variables 𝜉𝑖 for 𝑖 = 0, 1, and 2. ICRM1 and ICRM2
are also used with polynomial of degree ≤ 7. The number

of coefficients to compute is presented in Table 3. Results
obtained by the conditional expectation and Monte-Carlo
methods are also presented. It is observed that, even for large
standard deviation, 20%, a good agreement is observed be-
tween the predictions obtained by these methods.

Figures 4(a) and 4(b) present the standard deviation and
mean of solution 𝑈, where the random variables 𝜉𝑖 follow
a truncated exponential law in [0, 10] with 20% standard
deviation (𝛼0 = 𝛼1 = 𝛼2 = 20%).The degree of the used poly-
nomials is ≤7 for chaos, ≤12 for IRCM1, and ≤2 and ≤7
for IRCM2 and the number of coefficients to compute is
presented in Table 4. It is demonstrated that, for the mean
value, all the methods agree with each other but there are
some discrepancies for the standard deviation. The IRCM2
is better than IRCM1 and particularly for large standard
deviations. The division procedure, used in IRCM1, reduces
the number of random parameters by one but introduces
additional nonlinear random effect. This effect affects the
accuracy of the IRCM1, as clearly presented in Figure 3.

4.2. Dynamical System with a Random Excitation. To test
the flexibility of the presented methodological approach to
handle dynamical systems with random variables following
different laws, (97) is considered with a random excitation
given by 𝐹(𝑡) = (𝑎0 + 𝑎1𝜉3) sin(𝜔0𝑡). 𝑎0, 𝑎1, and 𝜔0 are con-
sidered deterministic. The random coefficients 𝜉0, 𝜉1, 𝜉2, and𝜉3 are assumed here to follow different laws.

Figures 5(a) and 5(b) present the mean and standard
deviation of U(𝑡) obtained by the presented methods. 𝜉0 and𝜉2 are truncated normal variables in [−4, 4],𝜉1 is a uniform
variable in [−1, 1], and 𝜉3 is a truncated exponential variable
in [0, 10] with 5% of standard deviations.

The presented results are obtained by the chaos method
where solution U is expanded in the polynomials chaos of
degree less than or equal to 2 and 5 and these polynomials
depend on the four random variables 𝜉𝑖 for 𝑖 = 0, 1, 2, and
3. For internal random coefficients method, solution U is
expanded in polynomial chaos associated with the two ran-
dom variables 𝐶0(𝜔1),𝐶2(𝜔1) of degree less than or equal to
2 and 5. The results predicted by the IRCM are better than
those obtained by the chaosmethod. In addition, the number
of unknowns used by the chaos method is 15 for polynomial
chaos of degrees ≤ 2 and 126 for polynomial chaos of degree ≤
5 while by the IRCM combined to the superposition method
we have to solve a system with two differential equations and
each one with 6 unknowns for expansion into polynomials
of degrees ≤ 2 and 21 unknowns for expansion into the
polynomial of degree ≤ 7 as presented in Table 5.

To analyze the standard deviation effect on the obtained
results, the parameters of the system and of the excitation are
randomvariableswith 20% standard deviations.Theobtained
results are given in Figures 6(a) and 6(b) for mean and
standard deviation. It is shown that chaos of degree ≤ 2 does
not predict good results in comparison with reference results,
obtained by conditional expectation and Monte-Carlo 2000
methods. The IRCM with degree ≤ 2 predicts better results
than chaos with degree ≤ 5 and IRCM with degree ≤ 5
coincides perfectly with the reference results. The random
coefficients 𝜉0, 𝜉1, 𝜉2, and 𝜉3 are assumed here to follow



16 Journal of Applied Mathematics

Table 2: Number of coefficients to compute for IRCM1-IRCM2 and PC at the considered degrees.

Method IRCM1 IRCM2 IRCM2 Chaos
Degree 12 2 7 7
Unknowns 13 6 36 120
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Monte Carlo
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Figure 1: (a) Standard deviation of 𝑈 when 𝜉𝑖 follow the truncated exponential law in [0, 10] and 𝜎𝑖 = 5%. (b) Means of 𝑈 when 𝜉𝑖 follow the
truncated exponential law in [0, 10] and 𝜎𝑖 = 5%.

Table 3: Number of coefficients to compute for IRCM1-IRCM2 and
PC at degree 7 for the considered number of variables.

Method IRCM1 IRCM2 Chaos
Degree 7 7 7
Unknowns 8 36 120

different laws. The required CPU time for the used methods
is presented in Table 6. These results demonstrate clearly the
efficiency and accuracy of the proposed IRCM.

The error between the used methods is clearly demon-
strated in Figures 7, 8, and 9. It is clearly seen that the error
is lower for IRCM than for PC related to the conditional
solution assumed to be the reference solution.

5. Conclusion

Methodological approaches based on generalized polynomial
chaos for random differential equation with an arbitrary
number of random parameters following different types of
distribution laws are developed. These random parameters
can be linear or nonlinear. The conditional expectation
method for the considered random differential equations is
well clarified. The obtained results based on this method are
considered to be exact results and used as reference results as
well as those obtained by the Monte-Carlo method.

A procedure to build a new polynomial chaos basis and
a connection between the one-dimensional and multidimen-
sional polynomials is well-established. Firstly, this procedure
is given for independent variables and then generalized for
variables that may be dependent. This procedure permits

considering a basis given by the general polynomial chaos
associated with the considered parameters and the solution
is expanded into this new basis. A new methodological
approach called internal random coefficient method is devel-
oped. Compactmatrix representations are elaborated and the
required matrices, vectors, and scalar products are explicitly
given. These projection methods, combined with the super-
position method, lead to large CPU time and memory space
reductions required for the solution. It is demonstrated that
the developed methods are efficient and accurate and these
methods may lead to spectacular memory space and CPU
time reductions and particularly when a large number of
random parameters are considered.

Appendix

For the sake of clarity about the used indices, let us consider
the case of two random variables, 𝑛 = 1. The canonical basis
of the polynomial space generated by the random variables(𝜉1, 𝜉2) can be ordered in the given following form:

𝐵 = {1, 𝜉1, 𝜉2, 𝜉21 , 𝜉1𝜉2, 𝜉22 , 𝜉31 , 𝜉21𝜉2, 𝜉1𝜉22 , 𝜉32 , 𝜉41 , 𝜉31𝜉2, 𝜉21𝜉22 ,𝜉1𝜉32, . . . etc} . (A.1)

For this order, the function 𝜓1 given in (21) is defined by

𝜓1 : N2 → N(𝑖0, 𝑖1) → 𝜓1 (𝑖0, 𝑖1) = 𝑖. (A.2)
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in [−4, 4] and 𝜎𝑖 = 5%.
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Table 4: Number of coefficients to compute for IRCM1-IRCM2 and PC at different degrees.

Method IRCM1 IRCM2 IRCM2 Chaos
Degree 12 2 7 7
Unknowns 13 6 36 120
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Table 5: Number of coefficients to compute for IRCM and PC at degrees 2 and 5.

Method IRCM IRCM Chaos Chaos
Degree 2 5 2 5
Unknowns 12 42 15 126

Table 6: CPU times to compute for IRCM, PC at degrees 12, MC (2000), and conditional method.

Method IRCM d∘ 12 PC d∘ 12 Conditional MC (2000)
CPUT 6.52 1.47𝑒 + 002 2.98𝑒 + 003 36.43
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The explicit expression of 𝜓1 is thus given by𝜓1 (0, 0) = 0,𝜓1 (1, 0) = 1,𝜓1 (0, 1) = 2;𝜓1 (2, 0) = 3,𝜓1 (1, 1) = 4,𝜓1 (0, 2) = 5𝜓1 (3, 0) = 6...
etc.

(A.3)

This bijection can be easily condensed in the following
form:

𝜓1 (𝑖0, 𝑖1) = ( 2𝑖0 + 𝑖1 + 1) + 𝑖1 − 1. (A.4)

The orthogonalization of the canonical basis, using the
scalar product defined by (6), coincides with the classical
chaos polynomial defined in the literature.

For the two random variables case, the relationship
between the indices and the construction of the used basis
is straightforward. Three independent random variables are
more instructive. For this aim, let us consider the simple
random differential equation with three random variables
defined by �̈� + 𝐶0�̇� + 𝐶1𝑈 = 0, (A.5)

where 𝐶1 and 𝐶2 are random variables given by𝐶0 = 𝐶00 + 𝐶01𝜉0,𝐶1 = (𝐶10 + 𝐶11𝜉1) (𝐶20 + 𝐶21𝜉2) , (A.6)

in which 𝜉0, 𝜉1, and 𝜉2 are independent random variables
having the same distribution function 𝑓 and𝐸 (𝜉0) = 𝐸 (𝜉1) = 𝐸 (𝜉2) = 0,𝜎 (𝜉0) = 𝜎 (𝜉1) = 𝜎 (𝜉2) = 1. (A.7)

The procedure giving the polynomial chaos associated
with the random vector (𝜉0, 𝜉1, 𝜉2) is first given. The order
defined by (20) is considered and the canonical basis associ-
ated with polynomial spaced generated by the random vector(𝜉0, 𝜉1, 𝜉2) is considered. In this case, the basis is explicitly
given by𝐵 = {1, 𝜉0, 𝜉1, 𝜉2, 𝜉20 , 𝜉0𝜉1,𝜉0𝜉2, 𝜉21 , 𝜉1𝜉2, 𝜉22, 𝜉30 , 𝜉20𝜉1, 𝜉20𝜉2,𝜉0𝜉21 , 𝜉0𝜉1𝜉2, 𝜉0𝜉22 , 𝜉31 , 𝜉21𝜉2, 𝜉1𝜉22 , 𝜉32 , 𝜉40 , 𝜉30𝜉1, 𝜉30𝜉2, 𝜉20𝜉21 ,𝜉20𝜉1𝜉2, 𝜉20𝜉22 , 𝜉0𝜉31 , 𝜉0𝜉21𝜉2, 𝜉0𝜉1𝜉22 , 𝜉0𝜉32 , 𝜉41 , 𝜉31𝜉2, 𝜉21𝜉22 ,𝜉1𝜉32, 𝜉42 , ect . . .} .

(A.8)

Assuming that the random variables 𝜉𝑖 follow the normal
law, the orthogonalization procedure leads to the following
classical polynomial chaos of degree less than 4:[1, 𝜉0, 𝜉1, 𝜉2, 𝜉20 − 1, 𝜉0𝜉1, 𝜉0𝜉2, 𝜉21 − 1, 𝜉1𝜉2, 𝜉22 − 1, 𝜉30− 3𝜉0, 𝜉20𝜉1 − 𝜉1, 𝜉20𝜉2 − 𝜉2, 𝜉0𝜉21 − 𝜉0, 𝜉0𝜉1𝜉2, 𝜉0𝜉22− 𝜉0, 𝜉31 − 3𝜉1, 𝜉21𝜉2 − 𝜉2, 𝜉1𝜉22 − 𝜉1, 𝜉32 − 3𝜉2, 𝜉40− 6𝜉20 + 3, 𝜉30𝜉1 − 3𝜉0𝜉1, 𝜉30𝜉2 − 3𝜉0𝜉2, 𝜉20𝜉21 − 𝜉20− 𝜉21 + 1, 𝜉20𝜉1𝜉2 − 𝜉1𝜉2, 𝜉20𝜉22 − 𝜉20 − 𝜉22 + 1, 𝜉0𝜉31− 3𝜉0𝜉1, 𝜉0𝜉21𝜉2 − 𝜉0𝜉2, 𝜉0𝜉1𝜉22 − 𝜉0𝜉1, 𝜉0𝜉32− 3𝜉0𝜉2, 𝜉41 − 6𝜉21 + 3, 𝜉31𝜉2 − 3𝜉1𝜉2, 𝜉21𝜉22 − 𝜉21 − 𝜉22+ 1, 𝜉1𝜉32 − 3𝜉1𝜉2, 𝜉42 − 6𝜉22 + 3] .

(A.9)

It is then demonstrated that, in this case, these polyno-
mials chaos coincide with the classical Hermit polynomial
chaos.

The connection between the 1D and multi-D polynomial
chaos is given by the bijection 𝜓2. To make this connection
explicit, let us consider the index (0, 2, 2). Using Algorithm 1,
one gets 𝜓2 (0, 2, 2) = 32,
𝜙32 (𝜉0, 𝜉1, 𝜉2) = 𝜙00 (𝜉0) 𝜙12 (𝜉1) 𝜙22 (𝜉2) , (A.10)

where

𝜙32 (𝜉0, 𝜉1, 𝜉2) = 𝜉21𝜉22 − 𝜉21 − 𝜉22 + 1,𝜙00 (𝜉0) = 1,𝜙12 (𝜉1) = 𝜉21 − 1,𝜙22 (𝜉1) = 𝜉22 − 1.
(A.11)

Based on this algorithm, the 1D and multi-D indices
connection can be easily established.

It should be noted that there are two procedures to build
the multi-D polynomial chaos. The first one is to use a
numerical method to orthogonalize base 𝐵 defined above. It
is well known that this procedure is numerically expensive
and particularly when a large number of random variables
are considered.

The second one, elaborated in this paper, consists of
determining the 1D polynomial chaos associated with each
random variable 𝜉𝑘, 0 ≤ 𝑘 ≤ 2 and using the bijection 𝜓2 to
build the 3D polynomial chaos related to the random vector(𝜉0, 𝜉1, 𝜉2). As presented in Section 2.1, this procedure can be
easily generalized to multivariables following different laws.

Response 𝑈 of the considered random differential equa-
tion is developed into the multi-D polynomial chaos associ-
ated with the random vector (𝜉0, 𝜉1, 𝜉2) and given by

𝑈 = 𝑁∑
𝑘=0

𝑢𝑘 (𝑡)Φ𝑘 (𝜉0, 𝜉1, 𝜉2) , (A.12)
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where integer 𝑁 is defined such that this expansion is to be
considered for the polynomial chaos of degree less than a
given integer 𝐿. Thus,𝑁 can be written as follows:

𝑁 = 𝜓2 (0, 0, 𝐿) (A.13)

This expansion can be given in the following form:

𝑈 = ∑
0≤𝑘0+𝑘1+𝑘2≤𝐿

𝑢𝜓2(𝑘0 ,𝑘1 ,𝑘2)Φ𝜓2(𝑘0 ,𝑘1 ,𝑘2) (𝜉0, 𝜉1, 𝜉2) (A.14)

Based on the relationship between the 1D and themulti-D
polynomial chaos, this expression is given by

𝑈 = ∑
0≤𝑘0+𝑘1+𝑘2≤𝐿

𝑢𝜓2(𝑘0 ,𝑘1 ,𝑘2) (𝑡) Φ𝑘0
(𝜉0)Φ𝑘1

(𝜉1)
⋅ Φ𝑘2

(𝜉2) (A.15)

Introducing this expansion in the first randomdeferential
equation, one gets

∑
0≤𝑘0+𝑘1+𝑘2≤𝐿

�̈�𝜓2(𝑘0 ,𝑘1 ,𝑘2) (𝑡) Φ𝑘0
(𝜉0)Φ𝑘1

(𝜉1)Φ𝑘2
(𝜉2)

+ ∑
0≤𝑘0+𝑘1+𝑘2≤𝐿

�̇�𝜓2(𝑘0 ,𝑘1 ,𝑘2) (𝑡) 𝐶1Φ𝑘0
(𝜉0)Φ𝑘1

(𝜉1)
⋅ Φ𝑘2

(𝜉2) + ∑
0≤𝑘0+𝑘1+𝑘2≤𝐿

𝑢𝜓2(𝑘0 ,𝑘1 ,𝑘2) (𝑡) 𝐶2Φ𝑘0
(𝜉0)

⋅ Φ𝑘1
(𝜉1)Φ𝑘2

(𝜉2) = 0.
(A.16)

Projecting this random differential equation with
respect to the polynomial chaos of degree less than 𝐿,
Φ𝜓2(𝑙0 ,𝑙1,𝑙2)(𝜉0, 𝜉1, 𝜉2) where 0 ≤ 𝑙0 + 𝑙1 + 𝑙2 ≤ 𝐿, and using
the relation between 1D and the multi-D polynomial chaos
and the square matrix 𝛽𝑖ℎ defed by (26), the following
deterministic differential system resulted:

�̈�𝜓2(𝑙0 ,𝑙1,𝑙2)
(𝑡) 𝛼0𝑙0𝛼1𝑙1𝛼2𝑙2 + �̇�𝜓2(𝑙0 ,𝑙1,𝑙2)

(𝑡) 𝐶00𝛼0𝑙0𝛼1𝑙1𝛼2𝑙2+ �̇�𝜓2(𝑙0+1,𝑙1,𝑙2)
(𝑡) 𝐶01𝛽01 (𝑙0 + 1, 𝑙0 + 2) 𝛼1𝑙1𝛼2𝑙2+ �̇�𝜓2(𝑙0 ,𝑙1,𝑙2)

(𝑡) 𝐶01𝛽01 (𝑙0 + 1, 𝑙0 + 1) 𝛼1𝑙1𝛼2𝑙2+ �̇�𝜓2(𝑙0−1,𝑙1,𝑙2)
(𝑡) 𝐶01𝛽01 (𝑙0, 𝑙0 + 1) 𝛼1𝑙1𝛼2𝑙2+ 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2)

(𝑡) 𝐶10𝐶20𝛼0𝑙0𝛼1𝑙1𝛼2𝑙2 + 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2)
(𝑡)⋅ 𝐶11𝐶20𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 1) 𝛼2𝑙2+ 𝑋𝜓2(𝑙0 ,𝑙1+1,𝑙2)

(𝑡) 𝐶11𝐶20𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 2) 𝛼2𝑙2+ 𝑋𝜓2(𝑙0 ,𝑙1−1,𝑙2)
(𝑡) 𝐶11𝐶20𝛼0𝑙0𝛽11 (𝑙1, 𝑙1 + 1) 𝛼2𝑙2+ 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2)

(𝑡) 𝐶10𝐶21𝛼0𝑙0𝛼1𝑙1𝛽21 (𝑙2 + 1, 𝑙2 + 1)

+ 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2+1)
(𝑡) 𝐶10𝐶21𝛼0𝑙0𝛼1𝑙1𝛽21 (𝑙2 + 1, 𝑙2 + 2)

+ 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2−1)
(𝑡) 𝐶10𝐶21𝛼0𝑙0𝛼1𝑙1𝛽21 (𝑙2, 𝑙2 + 1)

+ 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2)
(𝑡) 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 1)

⋅ 𝛽21 (𝑙2 + 1, 𝑙2 + 1) + 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2+1)
(𝑡)

⋅ 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 1) 𝛽21 (𝑙2 + 1, 𝑙2 + 2)
+ 𝑋𝜓2(𝑙0 ,𝑙1,𝑙2−1)

(𝑡) 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 1)
⋅ 𝛽21 (𝑙2, 𝑙2 + 1) + 𝑋𝜓2(𝑙0 ,𝑙1−1,𝑙2)

(𝑡)⋅ 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1, 𝑙1 + 1) 𝛽21 (𝑙2 + 1, 𝑙2 + 1)+ 𝑋𝜓2(𝑙0 ,𝑙1−1,𝑙2+1)
(𝑡)

⋅ 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1, 𝑙1 + 1) 𝛽21 (𝑙2 + 1, 𝑙2 + 2)
+ 𝑋𝜓2(𝑙0 ,𝑙1−1,𝑙2−1)

(𝑡) 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1, 𝑙1 + 1)
⋅ 𝛽21 (𝑙2, 𝑙2 + 1) + 𝑋𝜓2(𝑙0 ,𝑙1+1,𝑙2)

(𝑡)⋅ 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 2) 𝛽21 (𝑙2 + 1, 𝑙2 + 1)+ 𝑋𝜓2(𝑙0 ,𝑙1+1,𝑙2+1)
(𝑡)

⋅ 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 2) 𝛽21 (𝑙2 + 1, 𝑙2 + 2)
+ 𝑋𝜓2(𝑙0 ,𝑙1+1,𝑙2−1)

(𝑡) 𝐶11𝐶21𝛼0𝑙0𝛽11 (𝑙1 + 1, 𝑙1 + 2)
⋅ 𝛽21 (𝑙2, 𝑙2 + 1) = 0.

(A.17)

In this last expression if some indices are nonpositive then
the term vanishes.

In this case that the expansion of the response of response𝑈 of the differential equation defined above is considered,
this random vector is expanded using the polynomial chaos
associated with the random vector defined by the IRCM
method; for this, the given random variables are introduced:

𝑋1
𝑖 = 𝐶𝑖 − 𝐸 (𝐶𝑖)𝜎𝑖 For 𝑖 = 0 or 1. (A.18)

Let the canonical basis associated with the polynomial space
spanned by these new random variables𝑋1

𝑖 this canonical be
defined by:

𝐵 = {1,𝑋1
0, 𝑋1

1, (𝑋1
0)2 , 𝑋1

0𝑋1
1, (𝑋1

1)2 , (𝑋1
0)3 , (𝑋1

0)2
⋅ 𝑋1

1, 𝑋1
0 (𝑋1

1)2 , (𝑋1
1)3 , (𝑋1

0)4 , (𝑋1
0)3𝑋1

1, (𝑋1
0)2⋅ (𝑋1

1)2 , 𝑋1
0 (𝑋1

1)3, (𝑋1
1)4 , . . . etc} .

(A.19)
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The orthogonalization of this basis gives the polynomial
chaos {Ψ1𝑘, 𝑘 ∈ N} associated with these new random vari-
ables 𝑋1

𝑖 ; the solution is expanded into this new polynomial
chaos and for this the following expression is obtained:

𝑈 = ∑
0≤𝑘≤𝑁

𝑢𝑘 (𝑡)Ψ1𝑘 (𝑋1
0, 𝑋1

1) , (A.20)

where 𝑁 is choosing that the polynomial chaos must be of
degree less than a given integer 𝐿. Then𝑁 is choosing that𝑁 = 𝜓1 (0, 𝐿) . (A.21)

Introducing this expression in differential equation
defined by (A.5), then the following differential equation is
given:

∑
0≤𝑘≤𝑁

�̈�𝑘 (𝑡)Ψ1𝑘 + ∑
0≤𝑘≤𝑁

�̇�𝑘 (𝑡) 𝐶1Ψ1𝑘
+ ∑
0≤𝑘≤𝑁

𝑢𝑘 (𝑡) 𝐶2Ψ1𝑘 = 0. (A.22)

Using the bijection 𝜓1 defined by (21), then deterministic dif-
ferential system is obtained:

∑
0≤𝑘0+𝑘1≤𝐿

�̈�𝜓1(𝑘0 ,𝑘1) (𝑡)Ψ1𝜓1(𝑘0 ,𝑘1)
+ ∑
0≤𝑘0+𝑘1≤𝐿

�̇�𝜓1(𝑘0 ,𝑘1) (𝑡) 𝐶1Ψ1𝜓1(𝑘0 ,𝑘1)
+ ∑
0≤𝑘0+𝑘1≤𝐿

𝑢𝜓1(𝑘0 ,𝑘1) (𝑡) 𝐶2Ψ1𝜓1(𝑘0 ,𝑘1) = 0.
(A.23)

Projecting this equation with respect to the polynomial
chaos Ψ1𝜓1(𝑙0 ,𝑙1) for 0 ≤ 𝑙0 + 𝑙1 ≤ 𝐿 and using the orthog-
onalization properties of the polynomial chaos Ψ1𝜓1(𝑙0 ,𝑙1) and
the matrix introduced in (67), then the deterministic system
resulted:�̈�𝜓1(𝑘0 ,𝑘1) (𝑡)𝛼1𝜓1(𝑘0 ,𝑘1) + �̇�𝜓1(𝑘0 ,𝑘1)𝛼1𝜓1(𝑘0 ,𝑘1)𝐶00+ �̇�𝜓1(𝑘0 ,𝑘1)Τ0 (𝜓1 (𝑘0, 𝑘1) + 1, 𝜓1 (𝑘0, 𝑘1) + 1)⋅ 𝐶01 + �̇�𝜓1(𝑘0 ,𝑘1)Τ0 (𝜓1 (𝑘0 + 1, 𝑘1)+ 1, 𝜓1 (𝑘0, 𝑘1) + 1) 𝐶01+ �̇�𝜓1(𝑘0 ,𝑘1)Τ0 (𝜓1 (𝑘0 − 1, 𝑘1) + 1, 𝜓1 (𝑘0, 𝑘1)+ 1) 𝐶00 + 𝑢𝜓1(𝑘0 ,𝑘1) (𝑡) 𝐸 (𝐶1)𝛼1𝜓1(𝑘0 ,𝑘1)+ 𝑢𝜓1(𝑘0 ,𝑘1)Τ0 (𝜓1 (𝑘0, 𝑘1) + 1, 𝜓1 (𝑘0, 𝑘1) + 1) 𝜎1+ 𝑢𝜓1(𝑘0 ,𝑘1)Τ0 (𝜓1 (𝑘0 + 1, 𝑘1) + 1, 𝜓1 (𝑘0, 𝑘1)+ 1) 𝜎1 + 𝑢𝜓1(𝑘0 ,𝑘1)Τ0 (𝜓1 (𝑘0 − 1, 𝑘1)+ 1, 𝜓1 (𝑘0, 𝑘1) + 1) 𝜎1 = 0.

(A.24)
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