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The paper is devoted to several examples of control algorithm development for two-wheeled double-track robot and low-tonnage
vessel-catamaran with two Azipods that show practical aspects of the application of one nonlinear system control method —
terminal state method. This method, developed by the authors of the present paper, belongs to the class of methods for inverse
dynamics problem solving. Mathematical models of control objects in the form of normal systems of third-order nonlinear
differential equations for the wheeled robot and seventh-order ones for the vessel are presented. Design formulas of the method
in general form for terminal and stabilizing controls are shown. A routine of obtaining calculation expressions for control actions
is shown. Results of computer simulation of bringing the robot to a given point in a given time, as well as bringing the vessel to a
given course during a “strong” maneuver, are described.

1. Introduction

Currently, ultimate nonlinear system modes often arise in
control problems. In such cases, classical methods based on
the linear automatic control theory are unusable. Due to it,
more and more attention is being paid to the development
and improvement of nonlinear system control methods. We
can single out several approaches that gave rise to most
nonlinear system control methods. They include methods
of solving the inverse mechanics (dynamics) problem [1–
4]; differential-geometric methods [5]; and methods based
on artificial neural networks [6] and fuzzy logic [7]. These
approaches do not require preliminary linearization in the
classical sense.Therefore, there is no need to specify reference
modes for the system operation and subsequently pursue a
composite control. One of the methods of the first group is a
“terminal statemethod” (TSM) [4]. Both the control objective
and the system model are formulated via the “terminal state
variables” (TSV) in it. These variables depend on two times
(terminal 𝑡𝑓 and current 𝑡) and on the current state 𝑥(𝑡).

The TSV sense is the finite state of the uncontrolled system
which is at the current moment 𝑡 in the state 𝑥(𝑡). The
ability to solve control problems via the TSV is related to
its obvious property 𝑥(𝑡, 𝑡, 𝑥(𝑡)) = 𝑥(𝑡), which is valid for
any moments 𝑡 ∈ [𝑡0, 𝑡𝑓] of the system operation interval.
The terminal state method is developed for various types
of nonlinear systems: differential systems with smooth right
sides; discrete in time and mixed; with state independent
variable time delays; multi-index (discrete analogs of the
distributed systems). The initial application area of the TSM
was terminal problems on a finite time interval. Consecutive
application of the TSM at short intervals allows solving
adaptive control problems, including problemswith reference
models. In general, the calculation of TSM control requires
significant computational costs. They are associated with the
multiple numerical integration of differential equations to
evaluate the TSV and nonlinear (according to V.M. Alekseev)
transition matrices as functions of the second argument (in
the continuous case) or solutions of nonlinear systems of
finite type equations (in discrete cases). There are, however,
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problems in which the control evaluation is performed by
sufficiently simple finite type expressions that are easily
realized in practice.

The paper is devoted to the questions of practical appli-
cation of the method under discussion in cases when TSM-
control calculations are rather simple. So are the terminal
problem of bringing a two-wheeled double-track mobile
robot to a given point and the problem of bringing the vessel
at a given heading angle. Herewith, it is required to ensure
the possibility of pursuing the so-called “strong” vessel
maneuvers. These are, for instance, maneuvers with a large
angle of deviation of the steering components (in this paper,
Azipod).

Two-wheeled two-track robots are employed as amphibi-
ous platforms for observation and measurement. For exam-
ple, a similar robot with crawler is proposed in [8] to be used,
in particular, for monitoring underwater cables.

A mathematical model of a two-wheeled double-track
robot is given in paper [9], and an algorithm for its terminal
control based on the TSM is constructed in [4]. Because of the
robot mathematical model specificity, obtained algorithm is
a set of algebraic relations. Control was implemented on real
equipment — programmable robot Sparki by ArcBotics. It
showed the algorithm efficiency in conditions when discrete
time step in the control calculation is not less than 0.1s. Such
step, combined with the algorithm relative complexity and
the need to evaluate robot current position by the numbering
method using its mathematical model, prompts the use of
controls calculated at discrete moments [10]. Herewith, the
current state can be calculated with a small step, and the
control with a large step.

The second problem being solved is a part of a larger
problem, which is to develop a crew-free operation mode for
a small-sized robotic research vessel designed for environ-
mental monitoring of the marine coastal area. In this case,
a version of TSM with stabilizing (tracking) type criterion
was used. To keep the vessel on a previously specified route,
it is necessary to control it in automatic mode so that in
case of deviation from the route the vessel returns to the
route. In this case, there may be situations (sudden obstacle
avoidance, moving in narrow areas, etc.) when the vessel
maneuver is performed at a large rudder angle or Azimuthing
Electric Propulsion Drive (Azipod) rotation. Then vessel
dynamics becomes nonlinear and therefore the appropriate
control methods should be applied. In navigation such vessel
maneuvers are called “strong”.

The specifics of the problem to keep the vessel on a route
and the vessel mathematical model limit the range of possible
control methods appropriate for obtaining a solution. In
particular, it refers to the nonlinear vessel model we have
obtained [11]. To solve the problem of vessel control during
“strong” maneuvers, when model linearization is difficult,
it is proposed, for example, to use methods [12, 13]. The
essence of these inventions is the following. Firstly, control
is pursued according to information from satellites and
onboard measuring devices. Secondly, it is calculated with
the use of “engineering” control signals generating methods,
i.e., intuitively understandable algorithms that do not require
vessel mathematical model using. Thus, for example, rudder

deflection angle is calculated by numerical integration of the
following differential equation [12]:𝑑𝛿𝑑𝑡 = 𝑘1 (𝐾 − 𝐾∗) + 𝑘2𝜔 − 𝑘3𝛿, (1)

where 𝛿, 𝐾,𝐾∗, 𝜔 are, respectively, rudder angle, current
course, given course, angular velocity of the ship’s rotation
around the center of mass; 𝑘1, 𝑘2, 𝑘3 are undetermined coef-
ficients.

For bow maneuvering devices, it is proposed to use
additionally the algorithm in the form of differential equation
relative to the transverse control force [13]:𝑑𝑃𝑑𝑡 = 𝑘1𝛽 + 𝑘2 ∫𝛽𝑑𝑡 − 𝑘3𝑃. (2)

Herewith algorithms of calculating anticipatory points
are used. From these points precalculated program controls
are pursued to turn the vessel to a new course. Conditions
of the stabilization along a given course 𝐾∗ mode reverse
activation are used as well.

A common drawback of these methods, as well as others
based on the use of linear feedback from the state coordinates
[14, 15], is that they contain indeterminate coefficients that
are unknown in advance and may depend on the operating
conditions. To adapt to the operation conditions, principles
of adaptive and intelligent control are used [16, 17]. To a lesser
extent, such drawbacks are inherent in methods based on the
use of control object mathematical models [18, 19].

Often during the nonlinear system synthesis, methods
of solving the inverse dynamics problem are used. These
include, in particular, the input-output linearization method
[1, 2], Batenko’s method [3], and the terminal state method
(TSM) [4]. Method [1, 2] is developed for solving the
stabilization or tracking problems and is suitable for keeping
the vessel on a given route. The other two methods [3, 4]
are terminal; i.e., they are designed to bring the system to a
specified state at a given time. Their application to the vessel
track-keeping control is possible when the system operation
time is divided into small intervals, and then the terminal
method is applied on each of these small intervals.

2. Terminal State Method

2.1. Terminal State Method for Terminal Differential Systems.
Terminal state method was developed to solve terminal con-
trol problems for nonlinear affine systems in the form of (3)
with smooth criterion functions and dynamic constraints of
various kinds (differential, delay differential, finite difference,
etc.).

For differential systems with smooth constraints, crite-
rion problem is formulated according to (3), (4).𝐽 = 𝐽 (𝑧 (𝑡𝑓)) = 𝐽 (𝑧 (𝑡𝑓, 𝑡𝑓, 𝑧 (𝑡𝑓))) → 𝐽∗, (3)𝑑𝑧𝑑𝑡 = Φ (𝑡, 𝑧) + 𝐵 (𝑡, 𝑧) 𝑢, 𝑡 ∈ [𝑡0, 𝑡𝑓] , 𝑧 (𝑡0) = 𝑧0. (4)
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According to this method, control (TSM control) is
calculated by the following expressions:𝑢 (𝑡, 𝑧 (𝑡) )) = 𝐺+ ⋅ 𝑓𝐽,𝐺+ = 𝐺𝑇 (𝐺𝐺𝑇)−1 ,𝐺 = 𝜕𝐽 (𝑧)𝜕𝑧 𝑧=𝑧(𝑡𝑓 ,𝑡,𝑧(𝑡))⋅ 𝑊 (𝑡𝑓, 𝑡, 𝑧 (𝑡)) 𝐵 (𝑡, 𝑧 (𝑡)) ,

𝑓𝐽 = 𝐽∗ − 𝐽 (𝑧 (𝑡𝑓, 𝑡, 𝑧 (𝑡)))𝑇𝑢
(5)

where 𝑓𝐽 is the right side of the differential equation 𝑑𝐽/𝑑𝑡 =(𝐽∗−𝐽)/𝑇𝑢, defining a criterion function exponential approx-
imation with time constant 𝑇𝑢 to the desired value 𝐽∗, which
occurs at a sufficiently small value of 𝑇𝑢 << 𝑡𝑓. Criterion
function 𝐽(𝑧(𝑡𝑓, 𝑡, 𝑧(𝑡))) is a function of time 𝑡. Other forms
for the criterion function curve may be specified. Thus, with
a variable during a period 𝑇𝑢 = 𝑡𝑓 − 𝑡 shape of the line, along
which the criterion function converges to 𝐽∗, is no longer an
exponent, but a straight line.

Obtained controls may be constrained by amplitude
limitations, if necessary. Such constraints in the active state
affect deviation from the given (e.g., exponential) form of
the criterion function. At the same time, control goal—to
achieve a given terminal state—is commonly accomplished.
Sometimes, for the process of control to be sustainable,
artificial imposition of restrictions is preferable.

In (5), terminal state variables (TSV) 𝑧 and nonlinear
transition matrix according to V.M. Alekseev (TM) 𝑊 are
used. They are defined by a joint system of differential
equations [20]:𝑑𝑧 (𝜗, 𝑡, 𝑧 (𝑡))𝑑𝜗 = Φ (𝜗, 𝑧) ,𝑑𝑊 (𝜗, 𝑡, 𝑧 (𝑡))𝑑𝜗 = 𝜕Φ (𝜗, 𝑧)𝜕𝑧 𝑧=𝑧(𝜗,𝑡,𝑧(𝑡)) ⋅ 𝑊,𝜗 ∈ [𝑡, 𝑡𝑓] , 𝑧 (𝑡, 𝑡, 𝑧 (𝑡)) = 𝑧 (𝑡) , 𝑊 (𝑡, 𝑡, 𝑧 (𝑡)) = 𝐼,

(6)

where 𝐼 is identity matrix.
It is important to realize that for calculations in (5), TSV

and TM are required as functions of the second argument 𝑡,
and they are defined as functions of the first argument 𝜗 for
each of the 𝑡 values by (6).
2.2. Terminal State Method for Differential System Stabiliza-
tion Tasks. For stabilization problems, the algorithm formed
from (5), (6) is used at each of the short time intervals 𝑡𝑖+1 −𝑡𝑖 = ℎ = 𝑐𝑜𝑛𝑠𝑡.

Then the criterion transforms to𝐽 = 𝐽 (𝑧 (𝑡𝑖+1)) = 𝐽 (𝑧 (𝑡𝑖+1, 𝑡𝑖+1, 𝑧 (𝑡𝑖+1))) → 𝐽∗, (7)

and instead of (6), simplified expressions obtained by lin-
earizing (6) are used:𝑧 (𝑡𝑖+1, 𝑡𝑖, 𝑧 (𝑡𝑖)) = 𝑧 (𝑡𝑖) + Φ (𝑡𝑖, 𝑧 (𝑡𝑖)) ⋅ ℎ,𝑊 (𝑡𝑖+1, 𝑡𝑖, 𝑧 (𝑡𝑖)) = 𝐼 + [𝜕Φ (𝑡𝑖, 𝑧)𝜕𝑧 ]𝑧=𝑧(𝑡𝑖) ⋅ ℎ,𝑖 = 1, 2, . . . , 𝑁. (8)

3. Model Formulation

3.1. A Mathematical Model of a Two-Wheeled Double-Track
Mobile Robot. The robot model excluding the wheel drives
dynamics description, i.e., its kinematic model, has the
following form [10]:𝑑𝑥1𝑑𝑡 = 𝐷𝑤 (𝜔1 + 𝜔2)4 [cos 𝜙] ,𝑑𝑥2𝑑𝑡 = 𝐷𝑤 (𝜔1 + 𝜔2)4 [sin 𝜙] ,𝑑𝜙𝑑𝑡 = 𝐷𝑤 (𝜔1 − 𝜔2)2𝐿𝑟 ,

(9)

where 𝑥1, 𝑥2 are linear movements of the robot along the
coordinate axes; 𝐷𝑤 is the diameter of the first and second
wheels; 𝜔1, 𝜔2 are the first and second wheels angular speeds
of rotation (control actions); 𝐿𝑟 is the distance between
wheels.

The kinematic model defined by (9) actually coincides
with the model from [16]. The only difference between the
models is that control actions in (9) have the form of robot
wheels angular velocities, and in [16] the form of robot
wheels linear velocities 𝑉𝐿, 𝑉𝑅. Replacing linear velocities
with expressions 𝑉𝐿 = (𝐷𝑤/2)𝜔1, 𝑉𝑅 = (𝐷𝑤/2)𝜔2 makes the
model from [16] coincide with (9).

First of all, it should be noted that models of this type take
place in the case of using stepper driving motors, as well as
when using crawler propulsions.

Some features of this model are as follows: the right sides
of its differential equations are independent from the state
vector; controls 𝜔1, 𝜔2 are included linearly in the right sides
with state dependent coefficients. The latter feature allows us
to classify this model as affine (see below).

3.2. A Mathematical Model of a Vessel

3.2.1. A Mathematical Model of a Vessel for Integrating Drives.
Mathematical model was obtained in [11] by the methods
described in [21–24] assuming that the Azipod drives are of
integrating type. In accordance with the problem formula-
tion, vessel is controlled by rotating two Azipod units at the
same angle𝛿 with given thrusts equal on both units:𝑇V1,𝑇V2,
i.e., 𝑇V1 = 𝑇V2 = 𝑇V.

Mathematical model has the form of (4), where the vessel
state vector consists of seven components:𝑧 = 𝑐𝑜𝑙𝑜𝑛 (𝑉𝑥, 𝑉𝑦, 𝜔, 𝑥1, 𝑦1, 𝐾, 𝛿) . (10)
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Herewith, 𝛿, 𝐾, 𝜔 are, respectively, Azipod rotation angle,
heading angle, vessel angular velocity relative to its center
of mass; 𝑉𝑥, 𝑉𝑦, 𝑥1, 𝑥2 are, respectively, speeds and positions
of the vessel center of mass along its longitudinal and
transverse axes. The seventh component 𝛿 ≡ 𝑧7 that is
a control action essentially, is included in vessel model
equations not additively (see below). To transform the sys-
tem to an affine form, its state vector is extended by one

component 𝑧7 ≡ 𝛿 with a differential equation for the new
state: 𝑑𝛿𝑑𝑡 = 𝑢 (11)

where 𝑢 is the new control action. Equation (11) describes
a drive of integrating type. The transformed system of the
seventh order, in accordance with the form (4) and extended
state vector, has the following components.

Φ(𝑡, 𝑧) fl
(((((((((((((((
(

2 ⋅ 𝑇V ⋅ cos (𝑧7) − 𝑅𝑥 (𝑧) − 𝑚𝑦 ⋅ 𝑧3 ⋅ 𝑧2𝑚𝑥2 ⋅ 𝑇V ⋅ sin (𝑧7) − 𝑚𝑥 ⋅ 𝑧3 ⋅ 𝑧1𝑚𝑦𝐿 ⋅ 𝑇V ⋅ sin (𝑧7) +𝑀𝑟𝑒𝑧 (𝑧) +𝑀𝐷 (𝑧) − 𝑧1 ⋅ 𝑧2 ⋅ (𝑚𝑥 − 𝑚𝑦)𝐽𝑤𝑉 (𝑧) ⋅ cos (𝑧6 − 𝛽 (𝑧))𝑉 (𝑧) ⋅ sin (𝑧6 − 𝛽 (𝑧))𝑧30

)))))))))))))))
)

(12)

𝐵 (𝑡, 𝑧) fl 𝑐𝑜𝑙𝑜𝑛 (0 0 0 0 0 0 1) (13)

State functions 𝑉, 𝑅𝑥, 𝑅𝑦,𝑀𝐾,𝑀𝐷, 𝛽 are defined in terms
of variables 𝑧 by the expressions [21]:𝑉 = √𝑧21 + 𝑧22 ,𝛽 = arctg(𝑧2𝑧1) , (14)

𝑅𝑥 (𝑉, 𝑧1, 𝑧2) = 2000 ⋅ 𝑅𝐾 ⋅ 𝑉 ⋅ cos 𝛽, (15)𝑅𝑦 (𝑉, 𝑧1, 𝑧2) = 2000 ⋅ 𝑅𝐾 ⋅ 𝑉 ⋅ sin 𝛽, (16)𝑅𝐾 (𝑉) = 8,1 − 8,436 ⋅ 𝑉 + 2,536 ⋅ 𝑉2, (17)𝑀𝐾 (𝑉, 𝑧1, 𝑧2) = 𝑅𝑦 (𝑉, 𝑧1, 𝑧2) ⋅ 𝑙𝐾,𝑙𝐾 = 0,4 ⋅ 𝐿 ⋅ (0.5 − 𝛽𝜋) , (18)

𝑀𝐷 (𝑉, 𝑧3) = −0,148𝜌2𝑉 ⋅ 24,092 ⋅ 𝐿2𝑧3. (19)

In (12)-(19), 𝑉 is the vessel resulting speed in the coor-
dinate system associated with the vessel; 𝑅𝑥, 𝑅𝑦 are the vessel
resistance forces in the longitudinal and transverse directions
considering the two catamaran hulls and conversion of
the force dimension from kilonewtons to newtons; 𝑅𝐾 is
approximated by the polynomial vessel resistance in kilonew-
tons dependent on the speed 𝑉 (in 𝑚 ⋅ 𝑠−1), obtained by
simulating vessel in the OpenFOAM software; 𝐿 is the vessel
length in meters; 𝑚𝑥, 𝑚𝑦 are the vessel weights, taking into

account water added masses in longitudinal and transverse
movements; 𝜌 = 1025 𝑘𝑔 ⋅ 𝑚−3 is the sea water density.

Masses and moment of inertia from (12) are determined
by the relations [21]: 𝑚𝑥 = (1 + 𝑘11)𝐷,𝑚𝑦 = (1 + 𝑘22)𝐷,𝐽𝜔 = (1 + 𝑘66) 𝐽𝑍, (20)

where 𝐽𝑍 is themoment of inertia of the vessel;𝐷 is theweight
draught (mass) of the vessel in kilograms. Coefficients of the
added masses and moment are selected from the following
ranges: 𝑘11 = 0.05 ÷ 0.15; 𝑘22 = 0.7 ÷ 1.2; 𝑘66 = 0.6 ÷ 1.3.
For the considered vessel of small tonnage 𝐷 = 155000 𝑘𝑔,
the lower bounds of the mentioned coefficients were
taken.

3.2.2. A Mathematical Model of a Vessel Considering Drives
Inertance. To obtain control formula considering Azipod
drives dynamics instead of (11), we should use the following
drive dynamics equation in the form of first order inertial link
of (4): 𝑑𝑧7𝑑𝑡 = − 1𝑇𝛿 𝑧7 + 𝑘𝛿𝑇𝛿 V (21)

with a coefficient 𝑘𝛿, time constant 𝑇𝛿, and a control action V.
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Equating right sides of (21) with the control 𝑢 for the case
when drives dynamics is not taken into account, results in− 1𝑇𝛿 𝑧7 + 𝑘𝛿𝑇𝛿 V = 𝑢. (22)

Subsequently we obtain expression demonstrating depen-
dence between the controls with and without assumption of
the drive dynamics:

V = 1𝑘𝛿 𝑧7 + 𝑇𝛿𝑘𝛿 𝑢. (23)

4. Terminal State Method Applications

4.1. Robot Control. A. Isidori’s linearizing by input/output
method [1] in Wei Wu’s modification [2] and TSM [4] were
used in [9] to bring robot to a given point at a given time.
Because of the specificity of the model described by (4), both
methods led to the same algorithm:𝑢 (𝑡) = 𝐺+ (𝐽∗ − 𝐽 (𝑧 (𝑡))𝑇 ) ,

𝐺+ = 𝐺𝑇 (𝐺𝐺𝑇)−1 ,𝐺 = 𝜕𝐽 (𝑧 (𝑡))𝜕𝑥 𝐵 (𝑡, 𝑧 (𝑡)) ,
(24)

where 𝐽(𝑡) ≡ 𝐽(𝑧(𝑡)) is the criterion function that defines
desired exponential trajectory with a time constant 𝑇𝑢.
Differential equation for this function is the following:𝑑𝐽 (𝑡)𝑑𝑡 = 𝐽∗ − 𝐽 (𝑡)𝑇𝑢 . (25)

(24), (25) result from (5), (6) and the fact that TM𝑊 in
this case is identity matrix on the entire period of the system’s
operation, since the uncontrolled system vector Φ is equal to
zero according to (9).

In (24) state variables 𝑧 = {𝑧𝑖}, 𝑖 = 1, . . . , 𝑛 and control
variables 𝑢 = {𝑢𝑗}, 𝑗 = 1, . . . , 𝑟, are redefined according to

𝑧 = (𝑥1𝑥2𝜑) ,
𝑢 = (𝜔1𝜔2) .

(26)

For the criterion function, the following quadratic form
is used:𝐽 (𝑧 (𝑡𝑓)) = 𝐹1 (𝑧1 (𝑡𝑓) − 𝑥∗1 )2 + 𝐹2 (𝑧2 (𝑡𝑓) − 𝑥∗2 )2+ 𝐹3 (𝑧3 (𝑡𝑓) − 𝜔∗)2 → 𝐽∗ = 0, (27)

where 𝑧∗ = 𝑐𝑜𝑙𝑜𝑛(𝑥∗1 , 𝑥∗2 , 𝜔∗) are the desired values of the
robot coordinates at the finite time 𝑡𝑓.

The sense of criterion by (27) is that when the current
state 𝑧(𝑡) converges to a given point 𝑧∗, the value of the
criterion function tends to the given value 𝐽∗, which must
obviously be equal to zero. This target may be unattainable
by the control (24) that results in deviation of the actual
behavior by (27) from the desired trajectory (25). The main
reason for unattainability is that the scalar 𝐺𝐺𝑇 nulls at
some points or intervals of the time axis. Obviously, this fact
causes unattainability, as control target does not meet the
way it is being achieved along the trajectory according to
(25). Another possible reason for the deviation of the actual
trajectory from the given one is the amplitude constraints on
the control actions that cannot be taken into account in the
methods used.Thus, rotational speeds of the robot wheels are
limited in amplitude by the 𝜔𝑚 value:

𝜔𝑖 = {{{{{{{{{
−𝜔𝑚, 𝑢𝑖 < −𝜔𝑚,𝑢𝑖, −𝜔𝑚 ≤ 𝑢𝑖 ≤ 𝜔𝑚,𝜔𝑚, 𝑢𝑖 > −𝜔𝑚, 𝑖 = 1, 2. (28)

The output of the controls evaluated by (24) with con-
straints by (28) also distorts the form of the criterion function
defined by (25). But still the criterion function decreases,
converging to some minimally attainable value 𝐽∗. Herewith
attained value 𝐽∗ determines the accuracy of bringing state
vector components to given values.

System of (9) is a nonlinear affine system of (4) with
two control actions 𝜔1, 𝜔2, where Φ is zero vector, and the
components of the matrix 𝐵 = {𝐵𝑖𝑗}, 𝑖 = 1, 2, 3, 𝑗 = 1, 2, are
the following: 𝐵11 = 𝐵12 = 𝐷𝑤 cos (𝜙)4 ,

𝐵21 = 𝐵22 = 𝐷𝑤 sin (𝜙)4 ,
𝐵31 = −𝐵32 = 𝐷𝑤2𝐿𝑟 .

(29)

In [9], the results of Mathcad modeling of the system
of (9) with control by (24), criterion by (27), and amplitude
constraints by (28) are applied to the ArcBotics Sparki robot
with the following parameters:𝐷𝑤 = 0,05m; 𝐿𝑟 = 0.085m; 𝐹1
= 10; 𝐹2 = 0; 𝐹3 = 1; 𝑥∗1 = 0.6m; 𝑥∗2 = 0.3m; 𝑥∗3 = 0.8m; 𝜔𝑚 =
1.5𝑠−1; ℎ = 0.1 s; Tu = 0.01 s; 𝑡𝑓 = 40 s.

The same algorithm is implemented in the onboard C++
version of a real robot. As follows from the kinematic scheme,
which is the basis for (9), there is a nonlinear dependence
between the states of the system of (9).

tg (𝑧3) = 𝑧2𝑧1 (30)

Consequently, equations (9) are dependent. It means that
during control by (24) implementation, specified values can
be reached simultaneously for a pair of variables 𝑥1, 𝜑(𝑧1, 𝑧3)
or for a pair 𝑥2, 𝜑(𝑧2, 𝑧3). As for the pair 𝑥1, 𝑥2 (𝑧1, 𝑧2), this
target is generally unattainable.
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This is clear from (9) with other control actions:

V1 = 𝜔1 + 𝜔22 ,
V2 = 𝜔1 − 𝜔22 . (31)

The resulting system is

𝑑𝑧1𝑑𝑡 = 𝐷𝑤2 V1 [cos 𝜙] ,𝑑𝑧2𝑑𝑡 = 𝐷𝑤2 V1 [sin 𝜙] ,𝑑𝑧3𝑑𝑡 = 𝐷𝑤𝐿𝑟 V2.
(32)

From (32) it is clear that control V2 affects only 𝑧3, and
control V1 affects simultaneously 𝑧1 and 𝑧2. If a certain value
of 𝑧3 is reached at a selected value V2, then V1 may be chosen
for the known 𝑧3, providing either a given 𝑧1 or given 𝑧2.
A pair of variables 𝑧1, 𝑧2 can simultaneously reach specified
values 𝑥∗1 and 𝑥∗2 only if those values are agreed.

However, it is more interesting to bring the robot to a
given point 𝑧1, 𝑧2 at a given time from a practical point
of view. Therefore, it is necessary to obtain a robot control
variant, which takes (30) into account.

For this purpose, the control problem should bemodified
by assigning the other criterion function instead of (27).

𝐽 (𝑧 (𝑡)) = 𝐹1 (𝑧1 (𝑡) − 𝑥∗1 )2+ 𝐹3 (𝑧3 (𝑡) − arctg
𝑥∗2 (𝑡) − 𝑧2 (𝑡)𝑥∗1 − 𝑧1 (𝑡) )2 (33)

This function reflects the following control objective:
bringing the coordinate 𝑧1 to a value 𝑥∗1 , and the coordinate𝜑 ≡ 𝑧3 to such a value that will provide a value 𝑥∗2 according
to (30). As movement trajectory of the robot is curvilinear, at
each current moment the angle of convergence to the target is
variable and is reckoned from the attained state.This explains
the use of the differences under the sign of arctangent in (33).
Algorithm (24)modification for the case of transforms to new
expressions for 𝐽(𝑧(𝑡)) (33) instead of (27) and for the vector
components:

𝜕𝐽 (𝑧)𝜕𝑧 = (𝜕𝐽 (𝑧)𝜕𝑧1 𝜕𝐽 (𝑧)𝜕𝑧2 𝜕𝐽 (𝑧)𝜕𝑥3 ) . (34)

The latter are now much more complicated than in the
case of criterion in the form of (27). This may be especially
critical when implementing on the onboard robot controller,
whose software does not include inverse trigonometric
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Figure 1: Time dependence of the robot left wheel coordinate.

functions. Expressions for the components have the following
form (we omit argument 𝑡 for the sake of brevity):
𝜕𝐽 (𝑧)𝜕𝑧1 = 2𝐹1 (𝑧1 − 𝑥∗1 )
+ 2𝐹3 (𝑧2 − 𝑥∗2 ) (𝑧3 − arctg ((𝑧2 − 𝑥∗2 ) / (𝑧1 − 𝑥∗1 ))) 𝑥∗2(𝑧1 − 𝑥∗1 )2 ((𝑧2 − 𝑥∗2 )2 / (𝑧1 − 𝑥∗1 )2 + 1) , (35)

𝜕𝐽 (𝑧)𝜕𝑧2 = 2𝐹3 (𝑧3 − arctg ((𝑧2 − 𝑥∗2 ) / (𝑧1 − 𝑥∗1 ))) 𝑥∗2(𝑧1 − 𝑥∗1 ) ((𝑧2 − 𝑥∗2 )2 / (𝑧1 − 𝑥∗1 )2 + 1) , (36)

𝜕𝐽 (𝑧)𝜕𝑧3 = 2𝐹3 (𝑧3 − arctg(𝑧2 − 𝑥∗2𝑧1 − 𝑥∗1 )) . (37)

Control by (24) with criterion by (33) was verified by
Mathcad modeling, in particular, for the case of 𝑥∗1 = 1.5m,𝑥∗2 = 0.8m, 𝑡𝑓 = 60 s, integration step ℎ = 0.001 s, 𝐹1 = 10,𝐹3 = 1. The specified point is reached with a sufficiently
high accuracy (1.488m versus 1.5m for 𝑥1, and 0.784m
versus 0.8m for 𝑥2). In other tried cases, the accuracy is
approximately the same. Figures 1–3 show time dependencies
graphs of coordinates and trajectory of the robot.

Figures 4 and 5 show time dependencies graphs of the
robot control actions.

4.2. Vessel Motion Control

4.2.1. Heading Angle Control by Simultaneous Rotation of Two
Azipod Units at the Same Angle. For the denoted problem,
criterion by (3) is specified in the form:

𝐽 = 𝐹6 (𝑧6 (𝑡𝑖+1) − 𝑧∗6 )2 + 𝐹7 (𝑧7 (𝑡𝑖+1) − 𝑧∗7 )2 → 𝐽∗. (38)

It should be noted that we had to add a term containing𝑧7 (Azipod rotation angle) to the criterion by (38), because
without this term the TSM control cannot be obtained.
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Figure 2: Time dependence of the robot right wheel coordinate.
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Figure 3: Robot trajectory.

Thematrices from the system of (4) have the form of (12),
(13). Applying (5), (6) to this case, we obtain the following:𝜕𝐽𝜕𝑧𝑊 = (0 0 0 0 0 2𝐹6 (𝑧6 − 𝑧∗6 ) 2𝐹7 (𝑧7 − 𝑧∗7 ))

⋅ (𝑊11 . . . 𝑊17. . . . . . . . .𝑊71 . . . 𝑊77)= 2 (𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7) ,𝑎𝑖 = 𝑊6𝑖𝐹6 (𝑧6 − 𝑧∗6 ) +𝑊7𝑖𝐹7 (𝑧7 − 𝑧∗7 ) ,𝑖 = 1, . . . , 7,
(39)

where 𝜕𝐽𝜕𝑧 = 𝜕𝐽𝜕𝑧 𝑧=𝑧(𝑡𝑖+1,𝑡𝑖,𝑧(𝑡𝑖)) ,𝑧 = 𝑧 (𝑡𝑖+1, 𝑡𝑖, 𝑧 (𝑡𝑖)) . (40)
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Figure 4: Time dependence of the robot left wheel angular velocity
(control action).
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Figure 5: Time dependence of the robot right wheel angular velocity
(control action).

For the case when the drive (integrating) inertia is not
taken into account, we have

𝐺 = 2 (𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7) ⋅((((((((
(

0000001
))))))))
)

= 2𝑎7
= 2𝑊67𝐹6 (𝑧6 − 𝑧∗6 ) + 2𝑊77𝐹7 (𝑧7 − 𝑧∗7 )= 2𝐹7𝑊77 (𝑧7 − 𝑧∗7 ) .

(41)
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Herewith, according to (23),𝑊67 = 0 + 𝜕Φ6𝜕𝑧7 ⋅ ℎ = 𝜕𝑧3𝜕𝑧7 ⋅ ℎ = 0,𝑊77 = 1 + 𝜕Φ7𝜕𝑧7 ⋅ ℎ, (42)

whereΦ7 = 0 and𝑊77 = 1.
The expression for the pseudoinverse matrix is the follow-

ing: 𝐺+ = 𝐺𝑇 (𝐺𝐺𝑇)−1 = 12𝐹7 ⋅ 𝑊77 ⋅ (𝑧7 − 𝑧∗7 )= 12𝐹7 ⋅ (𝑧7 − 𝑧∗7 ) (43)

and the expression for TSV is𝑧6 (𝑡𝑖+1, 𝑡𝑖, 𝑧 (𝑡𝑖)) = 𝑧6 (𝑡𝑖) + Φ6 (𝑡𝑖, 𝑧) ⋅ ℎ= 𝑧6 (𝑡𝑖) + ℎ ⋅ 𝑧3 (𝑡𝑖) ≡ 𝑧6 + ℎ ⋅ 𝑧3,𝑧7 (𝑡𝑖+1, 𝑡𝑖, 𝑧 (𝑡𝑖)) = 𝑧7 (𝑡𝑖) + Φ7 (𝑡𝑖, 𝑧) ⋅ ℎ = 𝑧7 (𝑡𝑖) . (44)

As a result, we obtain the following expression for the
control action at the integrating drive input:𝑢 (𝑡, 𝑧)

= (𝐽∗ − 𝐹6 (𝑧6 + ℎ ⋅ 𝑧3 − 𝑧∗6 )2 − 𝐹7 (𝑧7 − 𝑧∗7 )2)2𝑇𝑢𝐹7 (𝑧7 − 𝑧∗7 ) , (45)

where 𝑧𝑖 ≡ 𝑧𝑖(𝑡) are the state variables. Weights and
parameter 𝑇𝑢 are chosen depending on the goals of the
system.

In the algorithm of (45), ℎ is the integration step of the
differential equations; 𝐹6, 𝐹7 are the weight coefficients, and𝐹7 << 𝐹6 so that the control target (bringing the vessel path 𝑧6
to a given value 𝑧∗6 ) is not distorted. Since the value of Azipod
rotation angle is not of interest, 𝑧∗7 can actually have any
value. However, during the modeling process it was revealed
that the algorithm stability depends on 𝐹7 and 𝑧∗7 values.
The values for which algorithm of (45) stable operation is
achieved in awide range of operating conditions are𝐹7 = 0,01
and 𝑧∗7 = 0,01 ⋅ sign𝐾∗. Because of the small value of the
weight coefficient 𝐹7, criterion by (38) in case of 𝐽∗ = 0
displays approximately the mentioned initial control target.
To prevent the division by zero in (45), a small number 𝜀 can
be added to the denominator. A control amplitude limit can
be set for this purpose as well.

Control by (23), where 𝑢 is substituted by (45), leads to a
given Azipod rotation angle in case of drive dynamics being
considered.

4.2.2. Angular Velocity and Heading Angle Control by Simul-
taneous Rotation of Two Azipod Units to the Same Angle. In
contrast to the problem solved in the previous paragraph,
now let us set the problem of controlling the vessel course by
means of an implicit criterion:𝐽 = 𝑧3 (𝑡) → 𝑧∗3 (𝑡) , (46)

where 𝑧∗3 (𝑡) = 𝜔∗(𝑡) is the specified behavior of the angular
velocity. From the sixth equation of the system of (4), (12) for
the heading angle 𝑑𝑧6/𝑑𝑡 = 𝑧3, at a constant angular velocity𝑧3(𝑡) = 𝑐𝑜𝑛𝑠𝑡 = 𝑧∗3 ≡ 𝜔∗, it follows that

𝑧∗6 = 𝑧6 (𝑡0) + ∫𝑡1
𝑡0

𝜔∗𝑑𝑡 = 𝑧6 (𝑡0) + 𝜔∗ ⋅ (𝑡∗ − 𝑡0) ,
𝑡∗ = 𝑡0 + 𝑧∗6 − 𝑧6 (𝑡0)𝜔∗ ,𝑧∗3 (𝑡) = if (𝑡 < 𝑡∗, 𝜔∗, 0) .

(47)

The second expression of (47) determines the moment𝑡∗ when the vessel reaches the given route 𝑧∗6 . Therefore,
the time-varying master control 𝑧∗3 (𝑡) is evaluated using
a conditional expression written in the third line of (47)
according to the rule: if the condition 𝑡 < 𝑡∗ is true, then𝑧∗3 (𝑡) = 𝜔∗; otherwise 𝑧∗3 (𝑡) = 0.

To evaluate the control, we apply (5), (6) and get

𝐺 = (0 0 1 0 0 0 0) ⋅ (𝑊11 . . . 𝑊17... . . . ...𝑊71 . . . 𝑊77)

⋅((((((((
(

0000001
))))))))
)

=𝑊37,

𝐺+ = 1𝐺 = 1𝑊37 .

(48)

In accordance with (8) and taking into account the
definition ofΦ3 from (12):

Φ3 (𝑡, 𝑧) = 1𝐽𝜔 ⋅ (𝐿 ⋅ 𝑇V ⋅ sin (𝑧7) +𝑀𝐾 (𝑧1, 𝑧2)+𝑀𝐷 (𝑧1, 𝑧2) − (𝑚𝑥 − 𝑚𝑦) ⋅ 𝑧1 ⋅ 𝑧2) , (49)

the element 𝑊37 of transition matrix 𝑊 is evaluated by the
following expression:

𝑊37 (𝑡𝑖+1, 𝑡𝑖, 𝑧 (𝑡𝑖)) = 0 + ℎ ⋅ 𝜕Φ3 (𝑡𝑖, 𝑧)𝜕𝑧7 𝑧7=𝑧7(𝑡𝑖)= ℎ ⋅ 𝐿 ⋅ 𝑇V ⋅ cos (𝑧7)𝐽𝜔 . (50)
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Then, for 𝑓𝐽 = (𝑧∗3 − 𝑧3(𝑡𝑖+1, 𝑡𝑖, 𝑧(𝑡𝑖)))/𝑇𝑢, we get the
following expression for control:

𝑢 (𝑡, 𝑧) = 𝑧∗3 − 𝑧3 (𝑡)𝑇𝑢𝑊37 (𝑡, 𝑧) ⋅ ,𝑧3 (𝑡) = 𝑧3 + Φ3 (𝑡, 𝑧) ⋅ ℎ. (51)

Simulation showed that, in any case, for the vessel in
question, instead of the latter formula, the simplified one
can be used. This follows from the fact that Φ3 (angular
acceleration) has sufficiently small value and from the second
relation of (51): 𝑢 (𝑡, 𝑧) = 𝑧∗3 − 𝑧3 (𝑡)𝑇𝑢𝑊37 (𝑡, 𝑧) . (52)

In (51), (52) ℎ is a time step of the control values
calculation; 𝑇𝑢 is a given time constant of the exponential
motion of a variable 𝑧3(𝑡) to a given value 𝑧∗3 according to
the equation: 𝑑𝑧3𝑑𝑡 = −𝑧∗3 − 𝑧3𝑇𝑢 . (53)

Control by (23), where 𝑢 is substituted by (51) or (52),
depending on used control (original or simplified), will result
in a given Azipod rotation angle in case of drive dynamics
being considered.

Thus, two algorithms for bringing the vessel to a given
course were obtained: by means of control by (45) and by
means of controls by (47)-(50), (51) or controls by (47)-(50),
(52). The first approach is simpler in terms of the amount
of calculations. Still it has low accuracy because its criterion
in the form of (38) reflects an artificial target—bringing to
the given values both the course and Azipod rotation angle.
The second approach is more difficult to implement, but its
target in the form of criterion by (46) and (47) is exactly the
attainment of the given course𝐾∗ ≡ 𝑧∗6 .

To achieve both simplicity and accuracy of computations,
a composite algorithm is offered. This algorithm includes a
“strong” maneuver through the control by (45). A “slight”
maneuver for static error compensation is included through
the control by (50), (52). In the latter case transition function𝑊37 is calculated by the simplified formula for small Azipod
rotation angles, when cos(𝑧7) ≈ 1.𝑊37 (𝑡, 𝑧) = ℎ ⋅ 𝐿 ⋅ 𝑇V𝐽𝜔 (54)

Applying composite algorithm makes sense in the case
of using onboard controllers, intended to perform simple
computational operations. This is of course not typical for the
catamaran vessel in question. It is more relevant to ordinary
small vessels intended for everyday purposes, for example,
for cleaning leaves and relatively large debris from the water
surface.

Simulation results in the form of the time 𝑡 dependence
of the vessel model coordinates are obtained by Mathcad
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Figure 6: Vessel trajectory during rotation towards the return
course for 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 = 3.14 𝑟𝑎𝑑.
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Figure 7: Time dependence of the vessel heading angle during
rotation towards the return course for 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 =3.14 𝑟𝑎𝑑.
modeling. The results are obtained for the model defined by
(4), (12)–(19)with correction by (21) using the control by (47),
(50), (52) for the given values 𝜔∗ (constant angular velocity of
the vessel rotation towards the given course) and 𝑧∗6 (the given
heading angle). Calculations were made for the following
vessel and control algorithm parameters: 𝐷 = 155000 𝑘𝑔;𝑘11 = 0.05; 𝑘66 = 0.6; 𝑘22 = 0.7; 𝜌 = 1025 𝑘𝑔 ⋅ 𝑚−3;𝐿 = 22.3𝑚; 𝐽𝑍 = 0.05 ⋅ 𝜌 ⋅ 𝐷 ⋅ 𝐿2; 𝑇V1 = 𝑇V2 = 20400𝑁;𝑇𝑢 = 0.1 𝑠; 𝑘𝛿 = 1; 𝑇𝛿 = 2 𝑠; ℎ = 0.1 𝑠, 𝜔max = 20.

It is possible to regulate both trajectory and time of
bringing the vessel to the specified course by choosing
parameters 𝑧∗3 , 𝑧∗6 , 𝑇𝑢.

Figures 6 and 7 show the vessel trajectory and heading
angle during the maneuver for the case of 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅𝑠−1, 𝑧∗6 = 3.14 𝑟𝑎𝑑, corresponding to a relatively slow vessel
rotation towards the return course.

Figures 8 and 9 show the vessel trajectory and heading
angle during the maneuver for the case of 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1
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Figure 8: Vessel trajectory during slowed rotation at a given heading
angle of 57.3 degrees for values 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 = 1 𝑟𝑎𝑑.
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Figure 9: Time dependence of the vessel heading angle during
slowed rotation at a given heading angle of 57.3 degrees for values𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 = 1 𝑟𝑎𝑑.
and 𝑧∗3 = 0.05 𝑟𝑎𝑑 ⋅ 𝑠−1, corresponding to a slowed and
accelerated vessel rotation at a given heading angle of 57.3
degrees (𝑧∗6 = 1 𝑟𝑎𝑑).

A certain influence on the trajectory is also provided
by the value of the free parameter 𝑇𝑢, on which transient
period for angular velocity depends. Figure 9 shows how by
increasing parameter 𝑇𝑢 by a factor of twenty, a smoother
vessel turn trajectory can be attained (compare with the
trajectory in Figure 6 for 𝑇𝑢 = 0.1 𝑠).

Graphs shown in Figures 6–13 illustrate how the free
parameters 𝑧∗3 (vessel angular velocity), 𝑧∗6 (specified heading
angle), and 𝑇𝑢 (speed parameter) affect the shape of the vessel
trajectory.

We note that in all the cases presented, the control error
is close to zero (in the simulation, the first significant digit is
in fourth place after the decimal point). By control error, we
mean the difference between specified and attained values of
the course.
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Figure 10: Vessel trajectory during accelerated rotation at a given
heading angle of 57.3 degrees for values 𝑧∗3 = 0.05 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 =1 𝑟𝑎𝑑.
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Figure 11: Time dependence of the vessel heading angle during
accelerated rotation at a given heading angle of 57.3 degrees for
values 𝑧∗3 = 0.05 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 = 1 𝑟𝑎𝑑.
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Figure 12: Vessel trajectory during rotation towards the return
course for values 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 = 3.14 𝑟𝑎𝑑; 𝑇𝑢 = 2 𝑠.
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Figure 13: Time dependence of the heading angle during rotation
towards the return course for values 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 =3.14 𝑟𝑎𝑑; 𝑇𝑢 = 2 𝑠.
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Figure 14: Vessel trajectory during rotation towards the return
course for values 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 = 3.4 𝑟𝑎𝑑; 𝑇𝑢 = 0.1 𝑠,𝐹6 = 10, 𝐹7 = 0.01, 𝑧∗7 = 0.01 sign(𝑧∗6 ).

Graphs in Figures 14 and 15 show the results of vessel
motion simulation under the influence of composite control
by (45), (52), (54).

Simulation was performed for two consecutive time
intervals with a duration of 500 𝑠. During the first time
interval, the vessel was controlled by algorithm of (45) with
all zero initial conditions except speed 𝑉𝑥(0) = 4𝑚 ⋅ 𝑠−1.
During the second time interval, the vessel was controlled
by algorithm of (47), (52), (54). The initial conditions for the
second interval were the values of all coordinates at the end
of the first interval, except for 𝑧7(0) = 0. From a technical
point of view, thismeans thatAzipod should be brought to the
zero (neutral) position at the beginning of second interval.
This peculiarity of composite control is connected with the
fact that the algorithm of (47), (52), (54) does not contain
a feedback from 𝑧7. Therefore, the nonzero initial condition
of this coordinate is ignored by the control algorithm. If the
initial condition 𝑧7(0) for the second interval is nonzero,
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Figure 15: Time dependence of the heading angle during rotation
towards the return course for values 𝑧∗3 = 0.005 𝑟𝑎𝑑 ⋅ 𝑠−1, 𝑧∗6 =3.4 𝑟𝑎𝑑; 𝑇𝑢 = 0.1 𝑠, 𝐹6 = 10, 𝐹7 = 0.01, 𝑧∗7 = 0.01 ⋅ sign(𝑧∗6 ).
an uncompensated static error is formed at the end of the
process.

As can be seen from the graphs of Figures 14 and 15,
vessel reached the heading angle of 3.051 radians under the
influence of control by (45). Then the vessel made a turn of
3.14 radians to the set course under the influence of control
by (52), (54). Herewith, the actual time of the turn is very
short—it is about one minute (more precisely, 1193 steps with
a duration of 0.05 seconds, that is, 59.65 seconds).

It is important to note that the control by (47), (52), (54)
explicitly depends on the mass-dimensional and propulsion
parameters of the vessel, as well as on parameters ℎ, 𝑇𝑢, 𝑧∗3 ≡𝜔∗ affecting the shape of the vessel track to the given course.
This fact makes it possible to eliminate the problem of
smoothing the trajectory (calculating anticipatory points,
etc., proposed in [12]).

It should be noted that the results concerning vessel con-
trol adduced in this paper represent development of meth-
ods and algorithms published in [25], regarding a definite
implementation of the composite algorithm and refinement
of the methods of analytical synthesis of controls as well. A
Mathcad program code simulating the vessel motion with a
model in the form of (12)-(19) and control by (52) is given
in the mentioned paper. This program is easy to modify with
(23) and composite control by (45), (52), (54) for the case of
the Azipod inertial drive.

5. Conclusion

The practical aspects of using the author’s nonlinear sys-
tems control method—terminal state method (TSM)—are
discussed in the paper. Expressions for control calculating
according to TSM with respect to terminal and stabiliza-
tion (tracking) problems are presented. A special feature of
the method is the use of terminal state variables (TSV),
whose sense is the forecast of uncontrolled system final
state, dependent on the current time and current state. Two
examples of the method application are provided. The first
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one is a terminal state control of a two-wheeled double-
track mobile robot. The second one is a control of the
course of a small-capacity vessel-catamaran with Azipods
during the “strong” maneuvers performing, i.e., maneuvers
at large rudder angles. Two TSM algorithms are proposed
for the course control. The first one is based on a quadratic
criterion for deviations from a given course. The second
one is based on the criterion for tracking the vessel angular
velocity in relation to its center of mass. The first algorithm
is proven to be simpler from a computational point of view,
but gives a noticeable static error. The second algorithm is
more complicated but has a zero static error. A composite
algorithm, consisting of a consecutive implementation of
the first and second algorithms, combines the advantages
of both algorithms. Mathematical models of two control
objects and expressions for control are presented. A routine
of obtaining expressions for control actions is described.
Results of computer simulation in the form of graphs of time
dependencies for robot and vessel current coordinates, their
trajectories, and robot control actions are shown.
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