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We define new stochastic orders in higher dimensions called weak correlation orders. It is shown that weak correlation orders
imply stop-loss order of sums of multivariate dependent risks with the same marginals. Moreover, some properties and relations of
stochastic orders are discussed.

1. Introduction

Correlation order as an important stochastic order relation
was first introduced by Joe [1]; Dhaene and Goovaerts [2]
studied the bivariate case with the same marginals. After
that, the bivariate case has been generalized by Lu and
Zhang [3]. Recall that given two random vectors (𝑋1, . . . , 𝑋𝑛)
and (𝑌1, . . . , 𝑌𝑛) with the same marginals, (𝑋1, . . . , 𝑋𝑛) is
said to be less correlated than (𝑌1, . . . , 𝑌𝑛), written as(𝑋1, . . . , 𝑋𝑛) ≤𝑐 (𝑌1, . . . , 𝑌𝑛), if for every pair of disjoint sub-
sets 𝐴1 and 𝐴2 of {1, 2, . . . , 𝑛},

cov (𝑓 (𝑋𝑖, 𝑖 ∈ 𝐴1) , 𝑔 (𝑋𝑗, 𝑗 ∈ 𝐴2))
≤ cov (𝑓 (𝑌𝑖, 𝑖 ∈ 𝐴1) , 𝑔 (𝑌𝑗, 𝑗 ∈ 𝐴2)) , (1)

where 𝑓 and 𝑔 are nondecreasing functions for which
the covariances exist. The main result of Lu and Zhang
[3] showed that the correlation order implied stop-loss
order for portfolios of multivariate dependent risks; that is,(𝑋1, . . . , 𝑋𝑛) ≤𝑐 (𝑌1, . . . , 𝑌𝑛) implies ∑𝑛𝑖=1𝑋𝑖 ≤sl ∑𝑛𝑖=1 𝑌𝑖. Stop-
loss order as a special case of convex order is the most
frequently used order relation for the comparison of risks,
written as 𝑋≤sl 𝑌, for any two random variables 𝑋 and 𝑌, if
and only if the inequality 𝐸[(𝑋 − 𝑑)+] ≤ 𝐸[(𝑌 − 𝑑)+] holds
for all real 𝑑, where (𝜉)+ denotes the positive part of the real𝜉. In addition, 𝑋 is said to precede 𝑌 in the convex order
sense; define𝑋≤cx 𝑌, if and only if𝑋≤sl 𝑌 and 𝐸[𝑋] = 𝐸[𝑌].

More details and other characterizations about stop-loss
order can be found in Denuit et al. [4], Dhaene et al. [5],
Landsman and Tsanakas [6], and Shaked and Shanthikumar
[7]. Rüschendorf [8] introduced a new dependence order
among risks called the weakly conditional increasing in
sequence order; by definition given two random vectors𝑋 =(𝑋1, . . . , 𝑋𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑛) with the same marginals,(𝑋1, . . . , 𝑋𝑛) is said to be smaller than (𝑌1, . . . , 𝑌𝑛) in the
weakly conditional increasing in sequence order, written as𝑋≤wcs 𝑌, if for all 𝑡 ∈ R, all 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑓 is
monotonically nondecreasing,

cov (𝐼 (𝑋𝑖 > 𝑡) , 𝑓 (𝑋(𝑖+1)))
≤ cov (𝐼 (𝑌𝑖 > 𝑡) , 𝑓 (𝑌(𝑖+1))) , (2)

where 𝑋(𝑖+1) = (𝑋𝑖+1, . . . , 𝑋𝑛) and 𝑌(𝑖+1) = (𝑌𝑖+1, . . . , 𝑌𝑛).
It is showed that more positive dependence with respect
to the wcs ordering implied more risk with respect to the
supermodular ordering (see Rüschendorf [8] for the defini-
tions of supermodular function and supermodular ordering)
for 𝑛-dimensional random vectors; that is, 𝑋≤wcs 𝑌 implies𝑋≤sm 𝑌. Note that, in (1), we let 𝑓(𝑋𝑖, 𝑖 ∈ 𝐴1) = 𝐼{𝑋𝑖 >𝑡} and 𝑔(𝑋𝑗, 𝑗 ∈ 𝐴2) = 𝑓(𝑋(𝑖+1)), (2) is an immediate
consequence of (1), and by Example 5 of this paper, the
weakly conditional increasing in sequence order is weaker
than correlation order, while the stop-loss order still holds
by Müller [9]. Enlightened by this, we are committed to find
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more general conditions for the multivariate case which can
also imply stop-loss order.

In this short note, we give the concepts of weak cor-
relation orders in higher dimensions and show that the
weak correlation orders imply stop-loss order of multivariate
dependent risks with the same marginals. The remainder
of the paper is organized as follows. In Section 2, we
introduce some concepts of stochastic orders including the
new definitions and discuss the properties and stochastic
order relations. The main results of this paper are presented
and proved in Section 3.

2. Preliminaries

Given Fréchet space R(𝐹1, . . . , 𝐹𝑛) of all 𝑛-dimensional
random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛), we have 𝐹1, . . . , 𝐹𝑛 as
marginal distributions, where 𝐹𝑖(𝑥) fl 𝑃(𝑋𝑖 ≤ 𝑥), and
the joint distribution function is 𝐹𝑋(𝑥1, . . . , 𝑥𝑛) fl 𝑃(𝑋1 ≤𝑥1, . . . , 𝑋𝑛 ≤ 𝑥𝑛). For all 𝑋 ∈ R(𝐹1, . . . , 𝐹𝑛), we have the
following inequality:

𝑀𝑛 (𝑥1, . . . , 𝑥𝑛) ≤ 𝐹𝑋 (𝑥1, . . . , 𝑥𝑛) ≤ 𝑊𝑛 (𝑥1, . . . , 𝑥𝑛)
∀ (𝑥1, . . . , 𝑥𝑛) ∈ R

𝑛, (3)

where𝑊𝑛(𝑥1, . . . , 𝑥𝑛) fl min{𝐹1(𝑥1), . . . , 𝐹𝑛(𝑥𝑛)} and

𝑀𝑛 (𝑥1, . . . , 𝑥𝑛) fl max{ 𝑛∑
𝑖=1

𝐹𝑖 (𝑥𝑖) − 𝑛 + 1, 0} (4)

are called Fréchet upper bound and Fréchet lower bound of
R(𝐹1, . . . , 𝐹𝑛), respectively. Remark that 𝑊𝑛 is reachable in
R(𝐹1, . . . , 𝐹𝑛) and when 𝑛 = 2, 𝑀2 is indeed a distribution
function. However, when 𝑛 ≥ 3, 𝑀𝑛 is no longer always
a distribution function (see Denuit et al. [4]). A necessary
and sufficient condition for𝑀𝑛 to be a distribution function
in R(𝐹1, . . . , 𝐹𝑛) can be found in Dhaene and Denuit [10].
Throughout the short note, it is assumed that all random
variables are real random variables on this space.

Comparing random variables is the essence of the actu-
arial profession; in order to acquire more general results, we
give the notion of weak correlation orders as follows.

Definition 1. Let random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 =(𝑌1, . . . , 𝑌𝑛) be elements of R(𝐹1, . . . , 𝐹𝑛), and we say that 𝑋
is smaller than 𝑌 in type I weak correlation order, written as𝑋≤wco-I 𝑌, if for all 𝑡, 𝑠 ∈ R, 1 ≤ 𝑘 ≤ 𝑛−1, any of the following
equivalent conditions holds:

(i) cov(𝐼{ 𝑘∑
𝑖=1

𝑋𝑖 > 𝑡} , 𝐼 {𝑋𝑘+1 > 𝑠})

≤ cov(𝐼{ 𝑘∑
𝑖=1

𝑌𝑖 > 𝑡} , 𝐼 {𝑌𝑘+1 > 𝑠}) ,

(ii) cov(𝐼{ 𝑘∑
𝑖=1

𝑋𝑖 ≤ 𝑡} , 𝐼 {𝑋𝑘+1 ≤ 𝑠})

≤ cov(𝐼{ 𝑘∑
𝑖=1

𝑌𝑖 ≤ 𝑡} , 𝐼 {𝑌𝑘+1 ≤ 𝑠}) ,
(5)

where 𝐼 is an indicator function.

Remark 2. The equivalence between (5) can be obtained as
follows. We have

cov(𝐼{ 𝑘∑
𝑖=1

𝑋𝑖 > 𝑡} , 𝐼 {𝑋𝑘+1 > 𝑠}) = 𝑃( 𝑘∑
𝑖=1

𝑋𝑖

> 𝑡, 𝑋𝑘+1 > 𝑠) − 𝑃( 𝑘∑
𝑖=1

𝑋𝑖 > 𝑡)𝑃 (𝑋𝑘+1 > 𝑠) = 1

− 𝑃( 𝑘∑
𝑖=1

𝑋𝑖 ≤ 𝑡) − 𝑃 (𝑋𝑘+1 ≤ 𝑠) + 𝑃( 𝑘∑
𝑖=1

𝑋𝑖

≤ 𝑡, 𝑋𝑘+1 ≤ 𝑠) − [1 − 𝑃( 𝑘∑
𝑖=1

𝑋𝑖 ≤ 𝑡)

− 𝑃 (𝑋𝑘+1 ≤ 𝑠) + 𝑃( 𝑘∑
𝑖=1

𝑋𝑖 ≤ 𝑡)𝑃 (𝑋𝑘+1 ≤ 𝑠)]

= 𝑃( 𝑘∑
𝑖=1

𝑋𝑖 ≤ 𝑡, 𝑋𝑘+1 ≤ 𝑠) − 𝑃( 𝑘∑
𝑖=1

𝑋𝑖 ≤ 𝑡)
⋅ 𝑃 (𝑋𝑘+1 ≤ 𝑠)
= cov(𝐼{ 𝑘∑

𝑖=1

𝑋𝑖 ≤ 𝑡} , 𝐼 {𝑋𝑘+1 ≤ 𝑠}) ,

(6)

and by the same way, we obtain

cov(𝐼{ 𝑘∑
𝑖=1

𝑌𝑖 > 𝑡} , 𝐼 {𝑌𝑘+1 > 𝑠})

= cov(𝐼{ 𝑘∑
𝑖=1

𝑌𝑖 ≤ 𝑡} , 𝐼 {𝑌𝑘+1 ≤ 𝑠}) .
(7)

Hence, (5) are equivalent. Moreover, (8) and (9) are also
equivalent.

Definition 3. Random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 =(𝑌1, . . . , 𝑌𝑛) are elements ofR(𝐹1, . . . , 𝐹𝑛), and we say that 𝑋
is smaller than 𝑌 in type II weak correlation order, written
as 𝑋≤wco-II 𝑌, if for all 𝑡, 𝑠 ∈ R, 1 ≤ 𝑘 ≤ 𝑛 − 1, any of the
following equivalent conditions holds:

(i) cov(𝐼 {𝑋𝑘 > 𝑡} , 𝐼 { 𝑛∑
𝑖=𝑘+1

𝑋𝑖 > 𝑠})

≤ cov(𝐼 {𝑌𝑘 > 𝑡} , 𝐼 { 𝑛∑
𝑖=𝑘+1

𝑌𝑖 > 𝑠}) ,
(8)
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(ii) cov(𝐼 {𝑋𝑘 ≤ 𝑡} , 𝐼 { 𝑛∑
𝑖=𝑘+1

𝑋𝑖 ≤ 𝑠})

≤ cov(𝐼 {𝑌𝑘 ≤ 𝑡} , 𝐼 { 𝑛∑
𝑖=𝑘+1

𝑌𝑖 ≤ 𝑠}) .
(9)

Remark 4. Obviously, (8) can be derived from (2) by letting

𝑓 (𝑋(𝑖+1)) = 𝐼{{{
𝑛∑
𝑗=𝑖+1

𝑋𝑗 > 𝑠}}}
. (10)

Let random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 =(𝑌1, . . . , 𝑌𝑛) be elements of R(𝐹1, . . . , 𝐹𝑛) with values in
R𝑛, 𝐹𝑋 is the distribution function, and 𝐹𝑋 is the survival
function of 𝑋; define 𝑋≤uo 𝑌, iff 𝐹𝑋(𝑥) ≤ 𝐹𝑌(𝑥), for any𝑥 ∈ R𝑛; 𝑋≤lo 𝑌, iff 𝐹𝑋(𝑥) ≥ 𝐹𝑌(𝑥), for any 𝑥 ∈ R𝑛;𝑋≤sm 𝑌, iff 𝐸𝑓(𝑋) ≤ 𝐸𝑓(𝑌), for all supermodular functions𝑓 such that the expectations exist. For more discussion about
supermodular order (sm order) and orthant orders (uo order
and lo order), see Shaked and Shanthikumar [11], Denuit and
Mesfioui [12], and Kzldemir and Privault [13]. The following
relations are well known by the definitions above, Lu and
Zhang [3] and Müller [9]:

(i) 𝑋≤𝑐 𝑌 ⇒ 𝑋≤wcs 𝑌 ⇒ 𝑋≤sm 𝑌 ⇒ 𝑋≤uo 𝑌 and𝑋≥lo 𝑌;
(ii)𝑋≤𝑐 𝑌 ⇒ 𝑋≤wcs 𝑌 ⇒ 𝑋≤wco-II 𝑌;
(iii)𝑋≤𝑐 𝑌 ⇒ 𝑋≤wco-I 𝑌.
Specially, these stochastic orders are equivalent in the

bivariate case.
It is well known that correlated order and weakly con-

ditional increasing in sequence order can deduce the weak
correlation orders, but the converse is not true in case 𝑛 ≥ 3;
the following example illustrates this point.

Example 5. Let 𝑋𝑖 and 𝑌𝑖 be random valuables with distri-
butions as 𝑃(𝑋𝑖 = 0) = 2/3, 𝑃(𝑋𝑖 = 1) = 1/3, 𝑃(𝑌𝑖 =0) = 2/3, and 𝑃(𝑌𝑖 = 1) = 1/3, 𝑖 = 1, 2, 3. In addition,𝑋 = (𝑋1, 𝑋2, 𝑋3) and 𝑌 = (𝑌1, 𝑌2, 𝑌3) are random vectors
with the following joint distributions:

𝑃 (𝑋1 = 0, 𝑋2 = 0, 𝑋3 = 0) = 29 ,
𝑃 (𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0) = 29 ,
𝑃 (𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 0) = 29 ,
𝑃 (𝑋1 = 0, 𝑋2 = 0, 𝑋3 = 1) = 19 ,
𝑃 (𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 1) = 19 ,
𝑃 (𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1) = 19 ;
𝑃 (𝑌1 = 1, 𝑌2 = 0, 𝑌3 = 0) = 13 ,

𝑃 (𝑌1 = 0, 𝑌2 = 1, 𝑌3 = 0) = 13 ,
𝑃 (𝑌1 = 0, 𝑌2 = 0, 𝑌3 = 1) = 13 .

(11)

For all 𝑡, 𝑠 ∈ R, 𝑘 = 1, 2, it is easy to get that
cov(𝐼{ 𝑘∑

𝑖=1

𝑌𝑖 > 𝑡} , 𝐼 {𝑌𝑘+1 > 𝑠})

≤ cov(𝐼{ 𝑘∑
𝑖=1

𝑋𝑖 > 𝑡} , 𝐼 {𝑋𝑘+1 > 𝑠}) ,

cov(𝐼 {𝑌𝑘 > 𝑡} , 𝐼 { 𝑛∑
𝑖=𝑘+1

𝑌𝑖 > 𝑠})

≤ cov(𝐼 {𝑋𝑘 > 𝑡} , 𝐼 { 𝑛∑
𝑖=𝑘+1

𝑋𝑖 > 𝑠}) .

(12)

However, for two nondecreasing functions 𝑓(𝑢1) = 𝑢1 and𝑔(𝑢2, 𝑢3) = 𝐼(𝑢2 ≥ 1, 𝑢3 ≥ 1), we have
cov (𝑓 (𝑌1) , 𝑔 (𝑌2, 𝑌3)) ≥ cov (𝑓 (𝑋1) , 𝑔 (𝑋2, 𝑋3)) . (13)

This is because
cov (𝑓 (𝑌1) , 𝑔 (𝑌2, 𝑌3))

= 𝐸 (𝑓 (𝑌1) ⋅ 𝑔 (𝑌2, 𝑌3)) − 𝐸 (𝑓 (𝑌1))
⋅ 𝐸 (𝑔 (𝑌2, 𝑌3))

= 𝐸 (𝑌1 ⋅ 𝐼 (𝑌2 ≥ 1, 𝑌3 ≥ 1)) − 𝐸 (𝑌1)
⋅ 𝑃 (𝑌2 ≥ 1, 𝑌3 ≥ 1) = 0 − 13𝑃 (𝑌2 ≥ 1, 𝑌3 ≥ 1)

= 0.

(14)

In the same way, we can get

cov (𝑓 (𝑋1) , 𝑔 (𝑋2, 𝑋3)) = − 127 . (15)

Then we obtain 𝑌≤wco-I𝑋 󴁁󴁙󴀡 𝑌 ≤𝑐𝑋 and 𝑌≤wco-II𝑋 󴁁󴁙󴀡𝑌 ≤𝑐𝑋.
Let 𝑓1(𝑢1, 𝑢2) = 𝐼(𝑢1 ≥ 1, 𝑢2 ≥ 1), so 𝑓1 is non-

decreasing; then we have

cov (𝐼 (𝑋1 ≥ 1) , 𝑓1 (𝑋2, 𝑋3))
= cov (𝐼 (𝑋1 ≥ 1) , 𝐼 (𝑋2 ≥ 1, 𝑋3 ≥ 1))
= 𝑃 (𝑋1 ≥ 1, 𝑋2 ≥ 1, 𝑋3 ≥ 1) − 𝑃 (𝑋1 ≥ 1)
⋅ 𝑃 (𝑋2 ≥ 1, 𝑋3 ≥ 1) = 0 − 13 ⋅ 19 = − 127 .

(16)

Similarly,

cov (𝐼 (𝑌1 ≥ 1) , 𝑓1 (𝑌2, 𝑌3))
= cov (𝐼 (𝑌1 ≥ 1) , 𝐼 (𝑌2 ≥ 1, 𝑌3 ≥ 1)) = 0, (17)

so 𝑌≤wco-II𝑋 cannot deduce 𝑌≤wcs𝑋.
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The next property is straightforward; we omitted all the
minor details.

Property 6. Let two random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛) and𝑌 = (𝑌1, . . . , 𝑌𝑛) be elements of R(𝐹1, . . . , 𝐹𝑛), for any
independent random vector 𝑍 = (𝑍1, . . . , 𝑍𝑚) which is
independent of𝑋 and 𝑌; if𝑋≤wco-I 𝑌, we have

(𝑋1, . . . , 𝑋𝑛, 𝑍1, . . . , 𝑍𝑚)
≤wco-I (𝑌1, . . . , 𝑌𝑛, 𝑍1, . . . , 𝑍𝑚) , (18)

and if𝑋≤wco-II 𝑌, we can get

(𝑍1, . . . , 𝑍𝑚, 𝑋1, . . . , 𝑋𝑛)
≤wco-II (𝑍1, . . . , 𝑍𝑚, 𝑌1, . . . , 𝑌𝑛) . (19)

3. Main Results and Proofs

In this section, wewill give themain results of this paper.That
the correlation order implies stop-loss order for portfolios of
multivariate dependent risks has been investigated by Lu and
Zhang [3] and Zhang and Weng [14]. In the next theorems,
we will show that the property still holds in weak correlation
orders.

Theorem 7. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑛) be
elements ofR(𝐹1, . . . , 𝐹𝑛), and if𝑋≤wco-I 𝑌, then

𝑛∑
𝑖=1

𝑋𝑖 ≤sl

𝑛∑
𝑖=1

𝑌𝑖. (20)

To prove Theorem 7, we need the following two lemmas.
For simplicity, let random variables marked with asterisks
be independent, and every random variable marked with
asterisk has the same distribution with its original.

Lemma 8. For any random vector (𝑋1, 𝑋2) and for all 𝑑 ∈ R,
the following equality holds:

𝐸 (𝑋1 + 𝑋2 − 𝑑)+ − 𝐸 (𝑋∗1 + 𝑋∗2 − 𝑑)+
= ∫∞
−∞

cov (𝐼 {𝑋1 > 𝑥} , 𝐼 {𝑋2 > 𝑑 − 𝑥}) 𝑑𝑥. (21)

Proof. For any 𝑥1, 𝑥2 ∈ R, we have

(𝑥1 + 𝑥2 − 𝑑)+ = ∫∞
−∞

𝐼 {𝑥1 > 𝑥, 𝑥2 > 𝑑 − 𝑥} 𝑑𝑥, (22)

so that

𝐸 (𝑋1 + 𝑋2 − 𝑑)+ − 𝐸 (𝑋∗1 + 𝑋∗2 − 𝑑)+
= ∫∞
−∞

[𝐸 (𝐼 {𝑋1 > 𝑥, 𝑋2 > 𝑑 − 𝑥})
− 𝐸 (𝐼 {𝑋∗1 > 𝑥, 𝑋∗2 > 𝑑 − 𝑥})] 𝑑𝑥
= ∫∞
−∞

[𝑃 (𝑋1 > 𝑥,𝑋2 > 𝑑 − 𝑥)
− 𝑃 (𝑋∗1 > 𝑥, 𝑋∗2 > 𝑑 − 𝑥)] 𝑑𝑥

= ∫∞
−∞

[𝐸 (𝐼 {𝑋1 > 𝑥} 𝐼 {𝑋2 > 𝑑 − 𝑥})
− 𝐸 (𝐼 {𝑋1 > 𝑥}) 𝐸 (𝐼 {𝑋2 > 𝑑 − 𝑥})] 𝑑𝑥
= ∫∞
−∞

cov (𝐼 {𝑋1 > 𝑥} , 𝐼 {𝑋2 > 𝑑 − 𝑥}) 𝑑𝑥.
(23)

Lemma 9 (Shaked and Shanthikumar [7]). If random vari-
ables 𝑋1, 𝑌1 satisfy that 𝑋1 ≤sl 𝑌1, 𝑍1 and 𝑍2 have the same
distribution and are independent of 𝑋1 and 𝑌1, then 𝑋1 +𝑍1 ≤sl 𝑌1 + 𝑍2.
Proof of Theorem 7. For bivariate case, by Lemma 8 we have

𝐸 (𝑋1 + 𝑋2 − 𝑑)+ − 𝐸 (𝑌1 + 𝑌2 − 𝑑)+
= ∫∞
−∞

[cov (𝐼 {𝑋1 > 𝑥} , 𝐼 {𝑋2 > 𝑑 − 𝑥})
− cov (𝐼 {𝑌1 > 𝑥} , 𝐼 {𝑌2 > 𝑑 − 𝑥})] 𝑑𝑥 ≤ 0.

(24)

Assume that it is true for 𝑛 − 1 that we will prove that it is
also true for 𝑛 in the following. Define symbols𝑋(𝑛−1) = 𝑋1 +𝑋2 + ⋅ ⋅ ⋅ + 𝑋𝑛−1, 𝑌(𝑛−1) = 𝑌1 + 𝑌2 + ⋅ ⋅ ⋅ + 𝑌𝑛−1 and 𝑋∗(𝑛−1) =(𝑋1 + 𝑋2 + ⋅ ⋅ ⋅ + 𝑋𝑛−1)∗, 𝑌∗(𝑛−1) = (𝑌1 + 𝑌2 + ⋅ ⋅ ⋅ + 𝑌𝑛−1)∗, and
from Lemma 8, we have

𝐸 (𝑋(𝑛−1) + 𝑋𝑛 − 𝑑)+ − 𝐸 (𝑋∗(𝑛−1) + 𝑋∗𝑛 − 𝑑)+
= ∫∞
−∞

cov (𝐼 {𝑋(𝑛−1) > 𝑥} , 𝐼 {𝑋𝑛 > 𝑑 − 𝑥}) 𝑑𝑥
≤ ∫∞
−∞

cov (𝐼 {𝑌(𝑛−1) > 𝑥} , 𝐼 {𝑌𝑛 > 𝑑 − 𝑥}) 𝑑𝑥
= 𝐸 (𝑌(𝑛−1) + 𝑌𝑛 − 𝑑)+ − 𝐸 (𝑌∗(𝑛−1) + 𝑌∗𝑛 − 𝑑)+ ,

(25)

so that

𝐸 (𝑋(𝑛−1) + 𝑋𝑛 − 𝑑)+ − 𝐸 (𝑌(𝑛−1) + 𝑌𝑛 − 𝑑)+
≤ 𝐸 (𝑋∗(𝑛−1) + 𝑋∗𝑛 − 𝑑)+ − 𝐸 (𝑌∗(𝑛−1) + 𝑌∗𝑛 − 𝑑)+ .

(26)

Since𝑋∗𝑛 and𝑌∗𝑛 have the same distribution, by induction and
Lemma 9, we obtain𝐸(𝑋∗(𝑛−1)+𝑋∗𝑛−𝑑)+−𝐸(𝑌∗(𝑛−1)+𝑌∗𝑛 −𝑑)+ ≤0.Hence, we finish the proof.

Thenext theorem shows that∑𝑛𝑖=1𝑋𝑖 ≤sl ∑𝑛𝑖=1 𝑌𝑖 still holds
in wco-II order.

Theorem 10. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑛) be
elements ofR(𝐹1, . . . , 𝐹𝑛); if𝑋≤wco-II 𝑌, then

𝑛∑
𝑖=1

𝑋𝑖 ≤sl

𝑛∑
𝑖=1

𝑌𝑖. (27)

Proof. The proof follows immediately by the same method as
Theorem 7 and Lemmas 8 and 9.
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Remark 11. In fact, since𝑋≤wco-II𝑌, it follows fromTheorem 7
that

𝑛∑
𝑖=1

𝑋𝑛−𝑖+1≤sl

𝑛∑
𝑖=1

𝑌𝑛−𝑖+1. (28)

Remark 12. If 𝑌 = (𝑌1, . . . , 𝑌𝑛) is a random vector in
R(𝐹1, . . . , 𝐹𝑛), such that 𝑋≤wco-I 𝑌 or 𝑋≤wco-II 𝑌 for all 𝑋 =(𝑋1, . . . , 𝑋𝑛) ∈ R(𝐹1, . . . , 𝐹𝑛), then 𝑌 is comonotonic. Recall
the definition of comonotonic: 𝑌 is said to be comonotonic,
if 𝐹𝑌(𝑥) = min1≤𝑘≤𝑛𝐹𝑘(𝑥𝑘) for any 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑅𝑛. So𝐹𝑌(𝑥) = 𝑊𝑛(𝑥) is reachable inR(𝐹1, . . . , 𝐹𝑛).
Remark 13. Let 𝑙𝑖 and 𝜇𝑖 be the essential infimum and essen-
tial supremum of a random variable𝑋𝑖,𝑋 = (𝑋1, . . . , 𝑋𝑛) is a
fixed random vector inR(𝐹1, . . . , 𝐹𝑛)which satisfies∑𝑛𝑖=1(1 −𝐹𝑖(𝑙𝑖)) ≤ 1 or∑𝑛𝑖=1 𝐹𝑖(𝜇𝑖−) ≤ 1, and if𝑋≤wco-I 𝑌 or𝑋≤wco-II 𝑌
for all 𝑌 = (𝑌1, . . . , 𝑌𝑛) ∈ R(𝐹1, . . . , 𝐹𝑛), then 𝑋 is mutually
exclusive.

More details about comonotonicity and mutual exclusiv-
ity can be found in Dhaene and Denuit [10], Cheung and Lo
[15, 16],Mesfioui andDenuit [17], andPuccetti andWang [18].

Corollary 14. Let random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 =(𝑌1, . . . , 𝑌𝑛) be elements of R(𝐹1, . . . , 𝐹𝑛), random variable 𝑍
is independent of ∑𝑛𝑖=1𝑋𝑖 and ∑𝑛𝑖=1 𝑌𝑖, and if 𝑋≤wco-I 𝑌 or𝑋≤wco-II 𝑌 holds, then

𝑛∑
𝑖=1

𝑋𝑖 + 𝑍≤sl

𝑛∑
𝑖=1

𝑌𝑖 + 𝑍. (29)

Proof. The proof can be obtained immediately by Lemma 9
andTheorems 7 and 10.
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