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Spanning trees have been widely investigated in many aspects of mathematics: theoretical computer science, combinatorics, so on.
An important issue is to compute the number of these spanning trees. This number remains a challenge, particularly for large and
complex networks. As amodel of complex networks, we study two families of generalized small-world networks, namely, the Small-
World Exponential and the Koch networks, by changing the size and the dimension of the cyclic subgraphs. We introduce their
construction and their structural properties which are built in an iterative way. We propose a decomposition method for counting
their number of spanning trees and we obtain the exact formulas, which are then verified by numerical simulations. From this
number, we find their spanning tree entropy, which is lower than that of the other networks having the same average degree. This
entropy allows quantifying the robustness of the networks and characterizing their structures.

1. Introduction

Recently, the analysis of complex networks has received a
major boost caused by the huge network data resources and
many systems in the real world can be described and charac-
terized by complex networks [1]. Some scientific studies have
inspired researchers to construct network models to explain
the existing common characteristics in real-life systems.
Among the well-known models of the complex networks,
there is a small-world network. It displays rich behavior
as observed in a large variety of real systems including
Internet (websites with navigation menus), electric power
grids, networks of brain neurons, telephone call graphs, and
social networks. It is characterized by specific structural
features: large clustering coefficient and small average dis-
tance. To analyze this class of complex networks, theories are
needed to explain their inherent and emergent properties.
New formal models of these networks are needed to predict
accurately their performance, assert the guarantees of their
reliability, and quantify their robustness. The graph theory

has a powerful tool to simplify this theoretical study by
enumerating the spanning trees of a network𝐺 [2].The latter
are defined as a connected and acyclic subgraph of 𝐺 having
all vertices (nodes) of 𝐺 and some or all its edges. The goal
of this paper is to know how many spanning trees can have a
network.The enumeration of these spanning trees tends to be
one of the most important parameters that characterizes the
network reliability [3]. We denote the number of spanning
trees by 𝜏(𝐺), also known as the complexity of a network.
In general, it can be obtained by calculating the determinant
or the eigenvalues of the Laplacian matrix corresponding
to the network [4]. However, this general method is not
acceptable for large and complex networks due to its high
computing time complexity. Therefore, it is interesting to
develop techniques and methods to facilitate the calculation
of the number of spanning trees and find its exact formula for
special classes of networks. In this context, our work proposes
a combinatorial method for determining the spanning trees
number for some complex networks, which is the decompo-
sition method [5]. It relies on the principle of a process of
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“Divide andConquer” by dividing a problem in subproblems,
solving each of these subproblems and then incorporating the
partial results for a general solution.

As an application of the number of spanning trees of a
network, we use the entropy of spanning trees or what is
called the asymptotic complexity (see, e.g., Dehmer, Emmert-
Streib, Chen, Li, and Shi [2, 6]). By calculating this entropy,
we can estimate how the network will evolve to infinity.
This parameter permits us to quantify the robustness of
complex networks and to characterize their structures [7]. It is
related to the ability of the network to resist random changes
in its structures. Many researchers have used this measure
to estimate the robustness of some complex networks and
the heterogeneity of their structures such as the small-
world Farey graph [8], the two-tree network [9], the planar
unclustered networks [10], the prism and antiprism graphs
[11], and the lattices [12].

The novelty of our work is to analytically investigate
two generalized families of small-world networks, called
the Small-World Exponential network. See, e.g., Mokhlissi,
Lotfi, Debnath and El Marraki [13] and Liu, Dolgushev, Qi
and Zhang [14], and the Koch network. See, e.g., Zhang,
Zhou, Xie, Chen, Lin and Guan [15] and Zhang, Gao, Chen,
Zhou, Zhang, and Guan [16]. The first network is based on
complete graphs and the second network is based on the
classical fractal Koch curve [17], which has many important
properties observed in real networks. To generalize these two
networks, we add two important parameters related to the
size of the cyclic subgraphs and the dimension of the cyclic
subgraphs (the number of the cyclic subgraphs added). We
suggest two iterative algorithms generating their structures,
we determine their topological properties, and we calculate
their complexities. In the end, we evaluate and compare
their spanning trees entropy with other networks having
the same average degree as the Hanoi network, the Flower
network, the Honeycomb lattice. As a result, we conclude
that the generalized Small-World Exponential network and
the generalized Koch network have the same spanning tree
entropy, so the same robustness although their structures
and properties are totally different, and this entropy depends
just on the size of the cyclic subgraphs, which means the
articulation nodes degree of the first iteration increases
according to the dimension of the cyclic subgraphs; it does
not influence the spanning tee entropy.The scope of this study
is that the generalization of these two small-world networks
does not affect the concept of the small-world networks (large
clustering coefficient and small average distance).Thework of
this paper presents an alternative perspective in the analysis
of small-world networks that exhibit typical features of real-
world systems.

The outline of this paper is organized as follows. In
Section 2, we present the preliminaries and the usedmethod-
ology. The construction, the properties, and the complexity
of the generalized Small-World Exponential network and the
generalized Koch network are provided in Sections 3 and
4. Then, the spanning trees entropy of these small-world
networks are presented in Section 5. Finally, the conclusion
is included in Section 6.

2. Preliminaries

In this section, we introduce some notations and the method
used to facilitate the calculation of the complexity of a
complex network. Let𝐺 = (𝑉(𝐺), 𝐸(𝐺), 𝐹(𝐺)) be a connected
planar graph with 𝑉(𝐺) being its number of vertices, 𝐸(𝐺)
being its number of edges, and𝐹(𝐺) being its number of faces;
it has no loops and no parallel edges. The number of vertices
of a graph refers to its order and its number of edges refers to
its size. The terms graph and network are used indistinctly. A
network is said to be a small-world network if the distance𝐿 between two random nodes grows proportionally to the
logarithm of the number of nodes in the network, that is,𝐿 ∝ log𝑁, while the clustering coefficient (measure of the
degree to which nodes in a network tend to cluster together)
is not small.

Euler’s formula [22]: Euler’s formula is a topological
invariant that characterized the topological properties related
to the number of vertices, edges, and faces.

�eorem 1. Let𝐺 be a connected planar graph with 𝑛 vertices,𝑚 edges, and 𝑓 faces.These numbers are connected by the well-
known Euler’s relation; then

|𝑛| − |𝑚| + 𝑓 = 2 (1)

The selection of the appropriate method for calculating
the spanning trees number is a key factor in a given network.
For this work, we put forward a decomposition method to
make the number of spanning trees easy for computation.
This method relies on the principle of Divide and Conquer;
we decompose the graph into different subgraphs according
certain constraints: by following one node, two nodes, an
edge, and a path. In this work, we study the case where
subgraphs are connected by one vertex (see Figure 1). To apply
this method, we follow this algorithm:

(1) We decompose the original graph into different sub-
graphs that are connected to one vertex.

(2) We calculate the number of spanning trees for each of
subgraph.

(3) We collect the results to obtain the complexity of the
original graph.

Let𝐺 be a chain of planar graphs defined by𝐺 = 𝐶1 ∙𝐶2 ∙. . . ∙ 𝐶𝑛 (see Figure 1). The number of spanning trees in 𝐺 is
given by the following formula:

𝜏 (𝐺) = 𝑛∏
𝑖=1

𝜏 (𝐶𝑖) . (2)

If the complexity of a network 𝜏(𝐺) grows exponentially
with the number of vertices 𝑉𝐺, then there exists a constant𝜌𝐺, called the entropy of spanning trees or the asymptotic
complexity [23], described by this relation:

𝜌𝐺 = lim
𝑉𝐺→∞

ln |𝜏 (𝐺)|𝑉𝐺 (3)

The entropy of spanning trees of a network 𝐺 is a
quantitative measure of the number of spanning trees to
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Figure 1: Star network and chain network.

evaluate the robustness of a network and to characterize
its structure. The most robust network with the stronger
heterogeneous topology is the network that has the highest
spanning tree entropy. According to the definition of the
entropy of spanning trees of a network, the bigger the entropy
value, the more the number of spanning trees, so there
are more possibilities of connections between two nodes
related to defective links that ensures a good reliability and
robustness.

3. A Generalized Small-World
Exponential Network 𝐺𝑘,𝑙,𝑛

In this section, we introduce a well-known family of small-
world network: the Small-World Exponential network [24]. It
has an exponential form of degree distribution and the same
number of nodes and edges as the dual Sierpinski gaskets [25].
It has been observed from some real-life systems as tensor
networks, social networks, quantum walks. We propose a
generalized Small-World Exponential network, where the
difference relies on the size of the cyclic subgraph and the
dimension of the cyclic subgraph (the number of the cyclic
subgraphs added). We also investigate its construction and
structural properties and calculate its complexity.

3.1. The Construction and the Properties of the Generalized
Small-World Exponential Network 𝐺𝑘,𝑙,𝑛. The generalized
Small-World Exponential network is denoted by 𝐺𝑘,𝑙,𝑛 with
two controllable parameters: 𝑙 is the size of the cyclic
subgraph and 𝑘 is the dimension of the cyclic subgraph, i.e.,
the number of the cyclic subgraphs added. The construction
of 𝐺𝑘,𝑙,𝑛 follows this algorithm: at 𝑛 = 0, we have a simple
node. At first generation, 𝐺𝑘,𝑙,1 is a cyclic graph with the
size 𝑙. For 𝑛 > 1, each node in the network of the previous
iteration is replaced by 𝑘 new cyclic subgraphs having the size𝑙. Thus, each of the newly appeared cyclic subgraphs contains
exactly one node of the network of the previous iteration and
the articulation nodes degree of the first iteration is 𝑑𝐺𝑘,𝑙,𝑛 =
2(𝑘𝑛−1)/(𝑘−1) (in Figure 2, the articulation nodes are colored
by the red). The same process is used for the other iterations.
In Figure 2, the first four iterations of the generalized Small-
World Exponential network 𝐺𝑘,𝑙,𝑛 are illustrated.

Let us compute the order, the size, the number of faces,
the average degree, and the diameter of the generalized Small-
World Exponential network 𝐺𝑘,𝑙,𝑛. Let 𝑉𝐺𝑘,𝑙,𝑛 be the numbers
of nodes created at 𝑛. From Figure 2, we notice for 𝑖 from
1 to 𝑛: 𝑉𝐺𝑘,𝑙,𝑖 = 𝑙𝑘 × 𝑉𝐺𝑘,𝑙,𝑖−1 − (𝑘 − 1)𝑙. Then, we multiply
the equation of 𝑉𝐺𝑘,𝑙,𝑛−1 by (𝑙𝑘), the equation of 𝑉𝐺𝑘,𝑙,𝑛−2 by

G2,4,3

G2,4,0 G2,4,1 G2,4,2

Figure 2: The first four generations of the generalized Small-World
Exponential network 𝐺2,4,𝑛.

(𝑙𝑘)2, and so on until the last equation 𝑉𝐺𝑘,𝑙,1 which will be
multiplied by (𝑙𝑘)(𝑛−1). Summing all the obtained equations:
∑𝑛−1𝑖=0 (𝑙𝑘)𝑖𝑉𝐺𝑘,𝑙,𝑛−𝑖 = ∑𝑛−1𝑖=0 (𝑙𝑘)𝑖+1𝑉𝐺𝑘,𝑙,𝑛−𝑖−1 − (𝑘 − 1)𝑙 ∑𝑛−1𝑖=0 (𝑙𝑘)𝑖.We
find the following results:𝑉𝐺𝑘,𝑙,𝑛 = (𝑙𝑘)𝑛𝑉𝐺𝑘,𝑙,0−(𝑘−1)𝑙 ∑𝑛−1𝑖=0 (𝑙𝑘)𝑖
with 𝑉𝐺𝑘,𝑙,0 = 1. Thus, the number of nodes of 𝐺𝑘,𝑙,𝑛 is

𝑉𝐺𝑘,𝑙,𝑛 = (𝑙𝑘)𝑛 (𝑙 − 1) + (𝑘 − 1) 𝑙
𝑙𝑘 − 1 , 𝑛 ≥ 0. (4)

Let 𝐸𝐺𝑘,𝑙,𝑛 be the numbers of links created at iteration 𝑛.
By construction, for 𝑖 from 1 to 𝑛, we have 𝐸𝐺𝑘,𝑙,𝑖 = 𝑙𝑘 ×
𝐸𝐺𝑘,𝑙,𝑖−1+𝑙.Then,wemultiply the equation of𝐸𝐺𝑘,𝑙,𝑛−1 by (𝑙𝑘), the
equation of 𝐸𝐺𝑘,𝑙,𝑛−2 by (𝑙𝑘)2, and so on until the last equation
𝐸𝐺𝑘,𝑙,1 which will be multiplied by (𝑙𝑘)(𝑛−1). Summing all the
obtained equations: ∑𝑛−1𝑖=0 (𝑙𝑘)𝑖𝐸𝐺𝑘,𝑙,𝑛−𝑖 = ∑𝑛−1𝑖=0 (𝑙𝑘)𝑖+1𝐸𝐺𝑘,𝑙,𝑛−𝑖−1 +𝑙∑𝑛−1𝑖=0 (𝑙𝑘)𝑖. We find 𝐸𝐺𝑘,𝑙,𝑛 = (𝑙𝑘)𝑛𝐸𝐺𝑘,𝑙,0 + 𝑙∑𝑛−1𝑖=0 (𝑙𝑘)𝑖 with𝐸𝐺𝑘,𝑙,0 = 0. Thus, the number of links of 𝐺𝑘,𝑙,𝑛 is
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𝐸𝐺𝑘,𝑙,𝑛 = 𝑙 × (𝑙𝑘)𝑛 − 1
(𝑙𝑘) − 1 , 𝑛 ≥ 0. (5)

Let 𝐹𝐺𝑘,𝑙,𝑛 be the numbers of faces created at generation 𝑛.
We apply Theorem 1; we obtain that the number of faces of𝐺𝑘,𝑙,𝑛 is

𝐹𝐺𝑘,𝑙,𝑛 = (𝑙𝑘)𝑛 + (𝑙𝑘 − 2)
𝑙𝑘 − 1 , 𝑛 ≥ 0. (6)

�e average degree of 𝐺𝑘,𝑙,𝑛 is (which is approximately 3
for large 𝑛)

⟨𝑧⟩𝐺𝑘,𝑙,𝑛 =
2𝐸𝐺𝑘,𝑙,𝑛𝑉𝐺𝑘,𝑙,n = 2𝑙 × ((𝑙𝑘)𝑛 − 1)

(𝑙𝑘)𝑛 (𝑙 − 1) + (𝑘 − 1) 𝑙 , 𝑛 ≥ 0. (7)

The diameter 𝐷 is the maximum of the shortest distance
between any twonodes (𝑢, V)of a network:𝐷 = max𝑢,V𝑑(𝑢, V).
Let𝐷𝐺𝑘,𝑙,𝑛 be the diameter of𝐺𝑘,𝑙,𝑛 created at generation 𝑛.This
diameter can be calculated in two cases:

(i) If the size of cyclic subgraphs 𝑙 is pair, we can calculate
the diameter as follows: at iteration 𝑛 = 1, the
diameter𝐷𝐺𝑘,𝑙,1 = 𝑙/2. For 𝑛 > 1, the diameter of 𝐺𝑘,𝑙,𝑛
increases by 𝑙 at most.

(ii) If the size of cyclic subgraphs 𝑙 is odd, we can calculate
the diameter as follows: at iteration 𝑛 = 1, the
diameter 𝐷𝐺𝑘,𝑙,1 = ⌊𝑙/2⌋. For 𝑛 > 1, the diameter of
𝐺𝑘,𝑙,𝑛 increases by (𝑙 − 1) at most.

So the diameter of 𝐺𝑘,𝑙,𝑛 is
𝐷𝐺𝑘,𝑙,𝑛 = 𝑙 − 𝜖

2 + (𝑙 − 𝜖) (𝑛 − 1)

with
{{{

𝜖 = 0, if 𝑙 is even,
𝜖 = 1, if 𝑙 is odd

(8)

This diameter can be presented by another formula which
grows logarithmically with the number of vertices of the
network indicating that 𝐺𝑘,𝑙,𝑛 is a small-world network.

𝐷𝐺𝑘,𝑙,𝑛
= 𝑙 − 𝜖

2
+ (𝑙 − 𝜖) [log𝑙𝑘 (𝑉𝐺𝑘,𝑙,𝑛 (𝑙𝑘 − 1) − (𝑘 − 1) 𝑙

𝑙 − 1 ) − 1]

with
{{{

𝜖 = 0, if 𝑙 is even,
𝜖 = 1, if 𝑙 is odd

(9)

3.2. The Number of Spanning Trees of the Generalized Small-
World Exponential Network 𝐺𝑘,𝑙,𝑛. The enumeration of span-
ning trees is a fundamental issue in many problems encoun-
tered in network analysis. However, explicitly determining
this interesting quantity in networks is a theoretical challenge

specially for the complex networks. Fortunately, the construc-
tion of the generalized Small-World Exponential network𝐺𝑘,𝑙,𝑛 makes it possible to derive the exact formula of this
number using the decomposition method.

�eorem 2. Let 𝐺𝑘,𝑙,𝑛 denote the generalized Small-World
Exponential networks. The complexity of 𝐺𝑘,𝑙,𝑛 is given by the
following formula:

𝜏 (𝐺𝑘,𝑙,𝑛) = 𝑙((𝑙𝑘)𝑛−1)/(𝑙𝑘−1), 𝑛 ≥ 1. (10)

Proof. From Figure 2, we see that 𝐺𝑘,𝑙,𝑛 contains several
cyclic subgraphs 𝑌𝑘,𝑙,𝑛. Using (2) we obtain 𝜏(𝐺𝑘,𝑙,𝑛) =
∏𝛿𝑌𝑘,𝑙,𝑛 𝜏(𝑌𝑘,𝑙,𝑛) = 𝜏(𝑌𝑘,𝑙,𝑛)𝛿𝑌𝑘,𝑙,𝑛 , where 𝛿𝑌𝑘,𝑙,𝑛 is the number of
cyclic subgraphs in 𝐺𝑘,𝑙,𝑛. In order to calculate the number of
spanning trees of 𝐺𝑘,𝑙,𝑛, we need to find firstly the number
of cyclic subgraphs in 𝐺𝑘,𝑙,𝑛. From our network, for 𝑖 from
1 to 𝑛, we see 𝛿𝑌𝑘,𝑙,𝑖 = 𝑙𝑘 × 𝛿𝑌𝑘,𝑙,𝑖−1 + 1. Then, we multiply
the equation of 𝛿𝑌𝑘,𝑙,𝑛−1 by (𝑙𝑘), the equation of 𝛿𝑌𝑘,𝑙,𝑛−2 by(𝑙𝑘)2, and so on until the last equation 𝛿𝑌𝑘,𝑙,1 which will be
multiplied by (𝑙𝑘)𝑛−1. Summing all the obtained equations:
∑𝑛−1𝑖=0 (𝑙𝑘)𝑖𝛿𝑌𝑘,𝑙,𝑛−𝑖 = ∑𝑛−1𝑖=0 (𝑙𝑘)𝑖+1𝛿𝑌𝑘,𝑙,𝑛−𝑖−1 + ∑𝑛−1𝑖=0 (𝑙𝑘)𝑖. We find
the number of cycles in 𝐺𝑘,𝑙,𝑛: 𝛿𝑌𝑘,𝑙,𝑛 = ((𝑙𝑘)𝑛 − 1)/((𝑙𝑘) − 1).
We replace it in the equation of 𝜏(𝐺𝑘,𝑙,𝑛); hence, we obtain
𝜏(𝐺𝑘,𝑙,𝑛) = 𝑙((𝑙𝑘)𝑛−1)/(𝑙𝑘−1).

For 𝑘 = 1 and 𝑙 = 3, the network 𝐺1,3,𝑛 is the Small-World
Exponential network. Its number of spanning trees is given
by the following formula [26]:

𝜏 (𝐺1,3,𝑛) = 3(3𝑛−1)/2, 𝑛 ≥ 1. (11)

4. A Generalized Koch Network 𝐶𝑘,𝑙,𝑛
In this section, another class of small-world networks called
the Koch network 𝐶𝑛 is studied analytically. This network is
derived from the class of Koch curves. They are one of the
interesting families of fractals. We use them to understand
the geometric fractals in real systems. This Koch network
incorporates some properties characterizing a majority of
real-life network systems: a high clustering coefficient and
a small diameter, indicating that the Koch network is a
small-world network. We put forward a family of generalized
Koch network 𝐶𝑘,𝑙,𝑛, where the difference relies on the
size of the cyclic subgraphs and the number of the cyclic
subgraphs added in each node change according to two
parameters 𝑘 and 𝑙. We propose analytically an algorithm
of the construction of the generalized Koch network, we
determine its properties and we calculate its complexity.

4.1. The Construction and the Properties of the Generalized
Koch Network 𝐶𝑘,𝑙,𝑛. Inspired by the algorithm of the Koch
network, we propose a family of generalized Koch network
as 𝐶𝑘,𝑙,𝑛 with two integer parameters 𝑙 (the size of the cyclic
subgraph) and 𝑘 (the dimension of the cyclic subgraph). The
algorithm of its construction is as follows: initially (𝑛 = 0),𝐶𝑘,𝑙,0 is a cyclic graph with the size 𝑙. For 𝑛 ≥ 1, 𝐶𝑘,𝑙,𝑛
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Figure 3: The first three generations of the generalized Koch
network 𝐶2,4,𝑛.

is obtained from 𝐶𝑘,𝑙,𝑛−1 by adding 𝑘 new cyclic subgraphs
having the size 𝑙 for each of the nodes of every existing cyclic
subgraph in 𝐶𝑘,𝑙,𝑛−1. The growth process of the generalized
Koch network to the next generation keeps on in a similar
way. The articulation nodes degree of the first iteration is𝑑𝐶𝑘,𝑙,𝑛 = 2(𝑘 + 1)𝑛 (in Figure 3, the articulation nodes are
colored by the green). Figure 3 illustrates the growing process
of the networks for the first three generations of 𝐶𝑘,𝑙,𝑛.

In this section, exact expressions for the properties of the
generalized Koch Network 𝐶𝑘,𝑙,𝑛 are given. Then the explicit
results for its number of nodes, number of edges, number of
faces, average degree, and diameter are stated.

The structural properties of the generalized Koch Net-
work 𝐶𝑘,𝑙,𝑛 are presented as follows: the number of nodes of𝐶𝑘,𝑙,𝑛 is calculated as follows. From Figure 3, we notice for 𝑖
from 1 to 𝑛: 𝑉𝐶𝑘,𝑙,𝑖 = (𝑙𝑘 + 1) × 𝑉𝐶𝑘,𝑙,𝑖−1 − 𝑙𝑘. Then, we multiply
the equation of 𝑉𝐶𝑘,𝑙,𝑛−1 by (𝑙𝑘 + 1), the equation of 𝑉𝐶𝑘,𝑙,𝑛−2
by (𝑙𝑘 + 1)2, and so on until the last equation 𝑉𝐶𝑘,𝑙,1 which
will be multiplied by (𝑙𝑘 + 1)(𝑛−1). Summing all the obtained
equations: ∑𝑛−1𝑖=0 (𝑙𝑘 + 1)𝑖𝑉𝐶𝑘,𝑙,𝑛−𝑖 = ∑𝑛−1𝑖=0 (𝑙𝑘 + 1)𝑖+1𝑉𝐶𝑘,𝑙,𝑛−𝑖−1 −

𝑙𝑘∑𝑛−1𝑖=0 (𝑙𝑘+1)𝑖.Wefind𝑉𝐶𝑘,𝑙,𝑛 = (𝑙𝑘+1)𝑛𝑉𝐶𝑘,𝑙,0−𝑙𝑘∑𝑛−1𝑖=0 (𝑙𝑘+1)𝑖
with 𝑉𝐶𝑘,𝑙,0 = 𝑙. So the number of nodes of 𝐶𝑘,𝑙,𝑛 is

𝑉𝐶𝑘,𝑙,𝑛 = (𝑙 − 1) (𝑙𝑘 + 1)𝑛 + 1, 𝑛 ≥ 0. (12)

Thenumber of edges of𝐶𝑘,𝑙,𝑛 is calculated as follows: from
Figure 3, we notice for 𝑖 from 1 to 𝑛: 𝐸𝐶𝑘,𝑙,𝑖 = (𝑙𝑘 + 1)𝐸𝐶𝑘,𝑙,𝑖−1 (a
geometric suite). So the number of edges of 𝐶𝑘,𝑙,𝑛 is

𝐸𝐶𝑘,𝑙,𝑛 = 𝑙 (𝑙𝑘 + 1)𝑛 , 𝑛 ≥ 0. (13)

The number of faces of𝐶𝑘,𝑙,𝑛 is calculated as follows: from
Figure 3, we notice for 𝑖 from 1 to 𝑛: 𝐹𝐶𝑘,𝑙,𝑖 = (𝑙𝑘 + 1) ×
𝐹𝐶𝑘,𝑙,𝑖−1 − 𝑙𝑘. Then, the equation of 𝐹𝐶𝑘,𝑙,𝑛−1 is multiplied by
(𝑙𝑘 + 1), the equation of 𝐹𝐶𝑘,𝑙,𝑛−2 by (𝑙𝑘 + 1)2, and so on until
the last equation 𝐹𝐶𝑘,𝑙,1 which is multiplied by (𝑙𝑘 + 1)𝑛−1.
Summing all the obtained equations: ∑𝑛−1𝑖=0 (𝑙𝑘 + 1)𝑖𝐹𝐶𝑘,𝑙,𝑛−𝑖 =
∑𝑛−1𝑖=0 (𝑙𝑘 + 1)𝑖+1𝐹𝐶𝑘,𝑙,𝑛−𝑖−1 − 𝑙𝑘∑𝑛−1𝑖=0 (𝑙𝑘 + 1)𝑖. We find 𝐹𝐶𝑘,𝑙,𝑛 =
(𝑙𝑘+1)𝑛𝐹𝐶𝑘,𝑙,0 −𝑙𝑘∑𝑛−1𝑖=0 (𝑙𝑘+1)𝑖 with 𝐹𝐶𝑘,𝑙,0 = 2. So the number
of faces of 𝐶𝑘,𝑙,𝑛 is

𝐹𝐶𝑘,𝑙,𝑛 = (𝑙𝑘 + 1)𝑛 + 1, 𝑛 ≥ 0. (14)

We can obtain the number of faces of 𝐶𝑘,𝑙,𝑛 also by using
Theorem 1.

�e average degree of 𝐶𝑘,𝑙,𝑛 is (which is approximately 3
for large 𝑛)

⟨𝑧⟩𝐶𝑘,𝑙,𝑛 =
2𝐸𝐶𝑘,𝑙,𝑛𝑉𝐶𝑘,𝑙,𝑛 = 2𝑙 (𝑙𝑘 + 1)𝑛

(𝑙 − 1) (𝑙𝑘 + 1)𝑛 + 1 , 𝑛 ≥ 0 (15)

Let𝐷𝐶𝑘,𝑙,𝑛 be the diameter of𝐶𝑘,𝑙,𝑛 created at generation 𝑛.
�is diameter can be presented by the following formula for𝑛 ≥ 0:
𝐷𝐶𝑘,𝑙,𝑛 = 𝑙 − 𝜖

2 + 𝑛 (𝑙 − 𝜖)

with
{{{

𝜖 = 0, if 𝑙 is even,
𝜖 = 1, if 𝑙 is odd

(16)

We can present it by another formula which grows
logarithmically with the number of vertices of the network
indicating that 𝐶𝑘,𝑙,𝑛 is a small-world network.

𝐷𝐶𝑘,𝑙,𝑛 = 𝑙 − 𝜖
2 + (𝑙 − 𝜖) [log𝑙𝑘+1 (𝑉𝐶𝑘,𝑙,𝑛 − 1

𝑙 − 1 )]

with
{{{

𝜖 = 0, if 𝑙 is even,
𝜖 = 1, if 𝑙 is odd

(17)

4.2. The Number of Spanning Trees of the Generalized Koch
Network 𝐶𝑘,𝑙,𝑛. In order to calculate the number of spanning
trees of the generalized Koch Network 𝐶𝑘,𝑙,𝑛, we use the
same method as the other networks studied before: the
decomposition method.
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�eorem 3. Let 𝐶𝑘,𝑙,𝑛 denote the generalized Koch network.
The complexity of 𝐶𝑘,𝑙,𝑛 is given by the following formula:

𝜏 (𝐶𝑘,𝑙,𝑛) = 𝑙(𝑙𝑘+1)𝑛 , 𝑛 ≥ 0 (18)

Proof. From Figure 3, we see that𝐶𝑘,𝑙,𝑛 contains several cyclic
subgraphs 𝑋𝑘,𝑙,𝑛. Using (2) 𝜏(𝐶𝑘,𝑙,𝑛) = ∏𝛿𝑋𝑘,𝑙,𝑛 𝜏(𝑋𝑘,𝑙,𝑛) =
𝜏(𝑋𝑘,𝑙,𝑛)𝛿𝑋𝑘,𝑙,𝑛 with 𝛿𝑋𝑘,𝑙,𝑛 as the number of the cyclic subgraphs
in 𝐶𝑘,𝑙,𝑛. From Figure 3, we see for 𝑖 from 1 to 𝑛: 𝛿𝑋𝑘,𝑙,𝑖 =
(𝑙𝑘 + 1)𝛿𝑋𝑘,𝑙,𝑖−1(a geometric suite). So the number of cyclic
subgraphs in 𝐶𝑘,𝑙,𝑛 is 𝛿𝑋𝑘,𝑙,𝑛 = (𝑙𝑘 + 1)𝑛. Replacing this result
in the equation of 𝜏(𝐶𝑘,𝑙,𝑛) with 𝜏(𝑋𝑘,𝑙,𝑛) = 𝑙, hence we obtain
𝜏(𝐶𝑘,𝑙,𝑛) = 𝑙(𝑙𝑘+1)𝑛 , 𝑛 ≥ 0. For 𝑘 = 1 and 𝑙 = 3, the network𝐶1,3,𝑛 is the Koch network. Its number of spanning trees is
given by the following formula [16]:

𝜏 (𝐶1,3,𝑛) = 34𝑛 , 𝑛 ≥ 0. (19)

5. The Spanning Tree Entropy of the
Generalized Small-World Exponential
Network and the Generalized Koch Network

The spanning tree number of the generalized small-world
networks grows exponentially, so we can calculate their
spanning trees entropy according to the definition of the
entropy in Section 2. Let 𝜌𝐺𝑘,𝑙,𝑛 be the entropy of spanning
trees for the generalized Small-World Exponential network
and 𝜌𝐶𝑘,𝑙,𝑛 be the entropy of spanning trees for the generalized
Koch network.

Corollary 4. The entropy of spanning trees of the generalized
Small-World Exponential network 𝐺𝑘,𝑙,𝑛 is

𝜌𝐺𝑘,𝑙,𝑛 = ln (𝑙)
(𝑙 − 1) (20)

The entropy of spanning trees of the generalized Koch
network 𝐶𝑘,𝑙,𝑛 is

𝜌𝐶𝑘,𝑙,𝑛 = ln (𝑙)
(𝑙 − 1) (21)

From the results, we find that the generalized Small-
World Exponential network and the generalized Koch net-
work have the same entropy even if their complexities are
different. The entropy depends just on the size of the cyclic
subgraphs 𝑙 and not on the dimension of the cyclic sub-
graphs 𝑘. It means that generalized Small-World Exponential
network and the generalized Koch network have the same
robustness despite the fact that their structures and properties
are different. Notice that the degree of the articulation nodes
of the first iteration increases according to the value of 𝑘, and
it does not influence the spanning tree entropy and, therefore,
does not influence the robustness of these two small-world
networks.

Figure 4 shows that increasing the size of the cyclic
subgraphs 𝑙 leads to the decreasing of the entropy of spanning

Table 1: T: The spanning trees entropy of several networks having
the same average degree.

Type of network ⟨𝑧⟩ 𝜌
Koch network 𝐶1,3,𝑛 3 0.549
Small-World Exponential network 𝐺1,3,𝑛 3 0.549
TheHanoi network [18] 3 0.677
The 2-Flower network [19] 3 0.6931
The 3-2-12 lattices [20] 3 0.721
The 4-8-8 bathroom tile [20] 3 0.787
Honeycomb lattice [21] 3 0.807
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Figure 4:The spanning tree entropy of the generalized Small-World
Exponential network and the generalized Koch network.

trees of𝐺𝑘,𝑙,𝑛 and𝐶𝑘,𝑙,𝑛.This result proves that these networks
having low value of 𝑙 are more robust than those having high
value of 𝑙.

From Table 1, we compare the spanning trees entropy of
the Small-World Exponential network 𝐺1,3,𝑛 and the Koch
network 𝐶1,3,𝑛 (0.549) with those of other networks having
the same average degree 3. We notice that the value of their
spanning trees entropy is the smallest known for networks
with average degree 3. This reflects the fact that the Koch
network and the Small-World Exponential network are less
robust and their topology is less heterogeneous than other
networks having the same average degree.

6. Conclusion

In this paper, we have studied the problem of efficiently
computing the number of spanning trees in two well-known
small-world networks: Generalized Small-World Exponen-
tial network and the generalized Koch network. We have
examined their construction and determined a detailed
analysis of their topological properties. We have obtained
the exact solutions for their number of spanning trees using
the decomposition method. We have further calculated and
compared their entropy of spanning trees. The result shows
that these two generalized small-world networks have the
same entropy of the spanning trees although they do not
have the same complexity. As a future work, we intend to
analyse another type of complex networks and to use a new
combinatorial method that facilitates the calculation of its
number of spanning trees.



Journal of Applied Mathematics 7

Data Availability

This work does not need a data to obtain the results;
we developed this scientific research using mathematical
calculations.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] X. F. Wang and G. Chen, “Complex networks: small-world,
scale-free and beyond,” IEEE Circuits and Systems Magazine,
vol. 3, no. 1, pp. 6–20, 2003.

[2] A. Mowshowitz and M. Dehmer, “Entropy and the complexity
of graphs revisited,” Entropy. An International and Interdisci-
plinary Journal of Entropy and Information Studies, vol. 14, no.
3, pp. 559–570, 2012.

[3] C. J. Colbourn,The combinatorics of network reliability, Oxford
University Press, 1987.

[4] S. Chaiken andD. J. Kleitman, “Matrix tree theorems,” Journal of
Combinatorial Theory, Series A, vol. 24, no. 3, pp. 377–381, 1978.

[5] A. Modabish, D. Lotfi, and M. El Marraki, “The number of
spanning trees of planar maps: theory and applications,” in
Proceedings of the 2011 International Conference on Multimedia
Computing and Systems (ICMCS), vol. 5, pp. 1–16, IEEE.

[6] M. Dehmer, F. Emmert-Streib, Z. Chen, X. Li, and Y. Shi,
Mathematical foundations and applications of graph entropy, vol.
6, John Wiley & Sons, 2017.

[7] L.Demetrius andT.Manke, “Robustness andnetwork evolution
- An entropic principle,” Physica A: Statistical Mechanics and its
Applications, vol. 346, no. 3-4, pp. 682–696, 2005.

[8] Z. Zhang, B. Wu, and Y. Lin, “Counting spanning trees in a
small-world Farey graph,” Physica A: Statistical Mechanics and
its Applications, vol. 391, no. 11, pp. 3342–3349, 2012.

[9] Y. Xiao and H. Zhao, “New method for counting the number
of spanning trees in a two-tree network,” Physica A: Statistical
Mechanics and its Applications, vol. 392, no. 19, pp. 4576–4583,
2013.

[10] Y. Xiao, H. Zhao, G. Hu, and X. Ma, “Enumeration of spanning
trees in planar unclustered networks,” Physica A: Statistical
Mechanics and its Applications, vol. 406, pp. 236–243, 2014.

[11] W. Sun, S. Wang, and J. Zhang, “Counting spanning trees in
prism and anti-prism graphs,” Journal of Applied Analysis and
Computation, vol. 6, no. 1, pp. 65–75, 2016.

[12] J. L. Felker and R. Lyons, “High-precision entropy values for
spanning trees in lattices,” Journal of Physics A: Mathematical
and General, vol. 36, no. 31, pp. 8361–8365, 2003.

[13] R. Mokhlissi, D. Lotfi, J. Debnath, and M. E. Marraki, “Com-
plexity Analysis of “Small-World Networks” and Spanning Tree
Entropy,” in International Workshop on Complex Networks and
their Applications, pp. 197–208, Springer, 2016.

[14] H. Liu,M.Dolgushev, Y. Qi, and Z. Zhang, “Laplacian spectra of
a class of small-world networks and their applications,” Scientific
Reports, vol. 5, article 9024, 2015.

[15] Z. Zhang, S. Zhou, W. Xie, L. Chen, Y. Lin, and J. Guan, “Stan-
dard random walks and trapping on the Koch network with
scale-free behavior and small-world effect,” Physical Review E:
Statistical, Nonlinear, and Soft Matter Physics, vol. 79, no. 6,
061113, 11 pages, 2009.

[16] Z. Zhang, S. Gao, L. Chen, S. Zhou, H. Zhang, and J. Guan,
“Mapping Koch curves into scale-free small-world networks,”
Journal of Physics A: Mathematical and General, vol. 43, no. 39,
Article ID 395101, 2010.
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hierarchical product of graphs,” Discrete Applied Mathematics,
vol. 157, no. 1, pp. 36–48, 2009.

[25] S. Wu, Z. Zhang, and G. Chen, “Random walks on dual
Sierpinski gaskets,”The European Physical Journal B, vol. 82, no.
1, pp. 91–96, 2011.

[26] Y. Lin, B.Wu, Z. Zhang, andG. Chen, “Counting spanning trees
in self-similar networks by evaluating determinants,” Journal of
Mathematical Physics, vol. 52, no. 11, article 113303, 2011.


