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We establish some generalized Hölder’s and Minkowski’s inequalities for Jackson’s 𝑞-integral. As applications, we derive some
inequalities involving the incomplete 𝑞-Gamma function.

1. Introduction

The classical Hölder’s and Minkowski’s inequalities are usu-
ally defined as follows.

Definition 1. Let 𝛼 > 1 and 1/𝛼 + 1/𝛽 = 1. Then the discrete
and integral forms of Hölder’s inequality are given as

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖𝑏𝑖󵄨󵄨󵄨󵄨 ≤ ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨𝛼)
1/𝛼

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑏𝑖󵄨󵄨󵄨󵄨𝛽)
1/𝛽

(1)

for sequences 𝑎𝑖, 𝑏𝑖 and
∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑡) 𝑔 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
≤ (∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨𝛼 𝑑𝑡)
1/𝛼 (∫𝑏

𝑎

󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨𝛽 𝑑𝑡)
1/𝛽

(2)

for continuous function 𝑓 and 𝑔 on [𝑎, 𝑏].
Definition 2. Let 𝑢 > 1. Then the discrete and integral forms
of Minkowski’s inequality are given as

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖 + 𝑏𝑖󵄨󵄨󵄨󵄨𝑢)
1/𝑢

≤ ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨𝑢)
1/𝑢

+ ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑏𝑖󵄨󵄨󵄨󵄨𝑢)
1/𝑢

(3)

for sequences 𝑎𝑖, 𝑏𝑖 and
(∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑡) + 𝑔 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑡)
1/𝑢

≤ (∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑡)
1/𝑢 + (∫𝑏

𝑎

󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑡)
1/𝑢

(4)

for continuous function 𝑓 and 𝑔 on [𝑎, 𝑏].
These fundamental results arewell known in the literature

and have been studied intensively by several researchers.
Their role in mathematics and related disciplines is invalu-
able. For instance, they play a pivotal role in classical real
and complex analysis, probability theory, statistics, numerical
analysis, and so on. Over the past years, various refinements,
extensions, and applications have appeared in the literature.
In the present work, our objective is to provide some gener-
alized Hölder’s and Minkowski’s inequalities for Jackson’s 𝑞-
integral. As applications, we derive some inequalities involv-
ing the incomplete 𝑞-Gamma function. Let us begin with the
following auxiliary results.

2. Auxiliary Results

We begin with the following inequality which is well known
as Young’s inequality.
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Lemma 3. For 𝑥, 𝑦 ≥ 0, 𝑎 > 1, and 1/𝑎 + 1/𝑏 = 1, the ine-
quality

𝑥𝑦 ≤ 𝑥𝑎𝑎 + 𝑦𝑏𝑏 (5)

is satisfied.

Inequality (5) can be generalized as follows.

Lemma 4. For 𝑘 = 1, 2, . . . , 𝑛, let 𝑥𝑘 ≥ 0 and 𝛼𝑘 > 1 such that∑𝑛𝑘=1(1/𝛼𝑘) = 1. Then the inequality

𝑛∏
𝑘=1

𝑥𝑘 ≤ 𝑛∑
𝑘=1

𝑥𝛼𝑘𝑘𝛼𝑘 (6)

is valid.

Inequality (6) can be written in the following form which
is known as the weighted AM-GM inequality.

Lemma 5. For 𝑘 = 1, 2, . . . , 𝑛, let𝑄𝑘 ≥ 0 and 𝛼𝑘 > 1 such that∑𝑛𝑘=1(1/𝛼𝑘) = 1. Then the inequality

𝑛∏
𝑘=1

𝑄1/𝛼𝑘𝑘 ≤ 𝑛∑
𝑘=1

𝑄𝑘𝛼𝑘 (7)

is valid.

Lemma 6 (generalized Hölder’s inequality for sums). Let 𝑖 =1, 2, 3, . . . , 𝑛 and 𝑘 = 1, 2, 3, . . . , 𝑚 such that the sums exist.
Then the inequality

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑚∏
𝑘=1

𝑄𝑖,𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
𝑚∏
𝑘=1

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘)
1/𝛼𝑘

(8)

is valid for 𝛼𝑘 > 1 such that ∑𝑚𝑘=1(1/𝛼𝑘) = 1.
Proof. The inequality is obvious if∑𝑛𝑖=1 |𝑄𝑖,𝑘|𝛼𝑘 = 0 for each 𝑘.
So we assume ∑𝑛𝑖=1 |𝑄𝑖,𝑘|𝛼𝑘 ̸= 0 and let

𝑥𝑖,𝑘 =
󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨

(∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘)1/𝛼𝑘
. (9)

Then by the generalized Young’s inequality (6), we obtain

∏𝑚𝑘=1 󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨
∏𝑚𝑘=1 (∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘)1/𝛼𝑘

≤ 𝑚∑
𝑘=1

1𝛼𝑘
󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘 . (10)

By adding these 𝑛 inequalities, we obtain
∑𝑛𝑖=1 󵄨󵄨󵄨󵄨∏𝑚𝑘=1𝑄𝑖,𝑘󵄨󵄨󵄨󵄨

∏𝑚𝑘=1 (∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘)1/𝛼𝑘
≤ 𝑚∑
𝑘=1

1𝛼𝑘
∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝛼𝑘

= 𝑚∑
𝑘=1

1𝛼𝑘 = 1
(11)

which gives inequality (8).

Lemma 7 (generalizedMinkowski’s inequality for sums). Let𝑖 = 1, 2, 3, . . . , 𝑛 and 𝑘 = 1, 2, 3, . . . , 𝑚 such that the sums exist.
Then the inequality

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑚∑
𝑘=1

𝑄𝑖,𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢)
1/𝑢

≤ 𝑚∑
𝑘=1

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝑢)
1/𝑢

(12)

is valid for 𝑢 > 1.
Proof. We prove this by mathematical induction on𝑚. If𝑚 =2, then (12) reduces to the classicalMinkowski’s inequality (3).
Thus (12) is valid for 𝑚 = 2. Next, assume that (12) holds for
some𝑚 ≥ 2. Based on this assumption, we want to show that
(12) holds for𝑚 + 1. We proceed as follows:

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑚+1∑
𝑘=1

𝑄𝑖,𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢

)
1/𝑢

= ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑚∑
𝑘=1

𝑄𝑖,𝑘 + 𝑄𝑖,𝑚+1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢)
1/𝑢

≤ ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑚∑
𝑘=1

𝑄𝑖,𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢)
1/𝑢

+ ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑄𝑖,𝑚+1󵄨󵄨󵄨󵄨𝑢)
1/𝑢

≤ 𝑚∑
𝑘=1

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝑢)
1/𝑢

+ ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑄𝑖,𝑚+1󵄨󵄨󵄨󵄨𝑢)
1/𝑢

= 𝑚+1∑
𝑘=1

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑄𝑖,𝑘󵄨󵄨󵄨󵄨𝑢)
1/𝑢

.

(13)

Thus (12) holds for𝑚 + 1 and this completes the proof.

Remark 8. Inequalities (8) and (12) are already known in the
literature. See, for instance, [1–3]. Here we offer simple proofs
of the results.

3. Generalized 𝑞-Hölder’s and𝑞-Minkowski’s Inequalities

Jackson’s 𝑞-integral from 0 to 𝑎 and that from 0 to ∞ are,
respectively, defined as

∫𝑎
0
𝑓 (𝑡) 𝑑𝑞𝑡 = (1 − 𝑞) 𝑎∞∑

𝑘=0

𝑓 (𝑎𝑞𝑘) 𝑞𝑘, (14)

∫∞
0

𝑓 (𝑡) 𝑑𝑞𝑡 = (1 − 𝑞) ∞∑
−∞

𝑓 (𝑞𝑘) 𝑞𝑘 (15)
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provided that the sums in (14) and (15) converge absolutely
[4]. In a generic interval [𝑎, 𝑏], the 𝑞-integral takes the
following form:

∫𝑏
𝑎
𝑓 (𝑡) 𝑑𝑞𝑡 = ∫𝑏

0
𝑓 (𝑡) 𝑑𝑞𝑡 − ∫𝑎

0
𝑓 (𝑡) 𝑑𝑞𝑡. (16)

Theorem 9 (generalized 𝑞-Hölder’s inequality). Let 𝑓1, 𝑓2,. . . , 𝑓𝑛 be functions such that the integrals exist. Then the
inequality

∫𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∏
𝑖=1

𝑓𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑞𝑡 ≤

𝑛∏
𝑖=1

(∫𝑎
0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡)󵄨󵄨󵄨󵄨𝛼𝑖 𝑑𝑞𝑡)
1/𝛼𝑖

(17)

holds for 𝛼𝑖 > 1 such that ∑𝑛𝑖=1(1/𝛼𝑖) = 1.
Proof. Let 𝛼𝑖 > 1 such that ∑𝑛𝑖=1(1/𝛼𝑖) = 1. Then by relation
(14) and inequality (8), we obtain

∫𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∏
𝑖=1

𝑓𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑞𝑡 = (1 − 𝑞) 𝑎∞∑

𝑘=0

𝑛∏
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑎𝑞𝑘)󵄨󵄨󵄨󵄨󵄨 𝑞𝑘

≤ (1 − 𝑞) 𝑎 𝑛∏
𝑖=1

(∞∑
𝑘=0

󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑎𝑞𝑘)󵄨󵄨󵄨󵄨󵄨𝛼𝑖 𝑞𝑘)
1/𝛼𝑖

= [(1 − 𝑞) 𝑎]∑𝑛𝑖=1(1/𝛼𝑖) 𝑛∏
𝑖=1

(∞∑
𝑘=0

󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑎𝑞𝑘)󵄨󵄨󵄨󵄨󵄨𝛼𝑖 𝑞𝑘)
1/𝛼𝑖

= 𝑛∏
𝑖=1

[(1 − 𝑞) 𝑎]1/𝛼𝑖 𝑛∏
𝑖=1

(∞∑
𝑘=0

󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑎𝑞𝑘)󵄨󵄨󵄨󵄨󵄨𝛼𝑖 𝑞𝑘)
1/𝛼𝑖

= 𝑛∏
𝑖=1

((1 − 𝑞) 𝑎∞∑
𝑘=0

󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑎𝑞𝑘)󵄨󵄨󵄨󵄨󵄨𝛼𝑖 𝑞𝑘)
1/𝛼𝑖

= 𝑛∏
𝑖=1

(∫𝑎
0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡)󵄨󵄨󵄨󵄨𝛼𝑖 𝑑𝑞𝑡)
1/𝛼𝑖

(18)

which concludes the proof.

Remark 10. Let 𝑛 = 2, 𝛼1 = 𝑝, 𝛼2 = 𝑡, 𝑓1 = 𝑓, and 𝑓2 = 𝑔 in
Theorem 9. Then we obtain the result of Lemma 2.1 of [5].

Theorem 11 (generalized 𝑞-Minkowski’s inequality). Let𝑓1, 𝑓2, . . . , 𝑓𝑛 be functions such that the integrals exist. Then
the inequality

(∫𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑖=1

𝑓𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 𝑑𝑞𝑡)

1/𝑢

≤ 𝑛∑
𝑖=1

(∫𝑎
0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑞𝑡)
1/𝑢

(19)

holds for 𝑢 > 1.

Proof. Similarly we apply the principle of mathematical in-
duction. For 𝑛 = 2, inequality (19) reduces to 𝑞-Minkowski’s
inequality obtained in Remark 4 of [6]. Assume that (19)
holds for 𝑛 ≥ 2. Based on this assumption, we show that (19)
holds for 𝑛 + 1. That is,

(∫𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛+1∑
𝑖=1

𝑓𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢

𝑑𝑞𝑡)
1/𝑢

= (∫𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑖=1

𝑓𝑖 (𝑡) + 𝑓𝑛+1 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 𝑑𝑞𝑡)

1/𝑢

≤ (∫𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑖=1

𝑓𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 𝑑𝑞𝑡)

1/𝑢

+ (∫𝑎
0

󵄨󵄨󵄨󵄨𝑓𝑛+1 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑞𝑡)
1/𝑢

≤ 𝑛∑
𝑖=1

(∫𝑎
0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑞𝑡)
1/𝑢

+ (∫𝑎
0

󵄨󵄨󵄨󵄨𝑓𝑛+1 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑞𝑡)
1/𝑢

= 𝑛+1∑
𝑖=1

(∫𝑎
0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡)󵄨󵄨󵄨󵄨𝑢 𝑑𝑞𝑡)
1/𝑢 .

(20)

Thus (19) holds for 𝑛 + 1. This completes the proof.

4. Some Applications to the
Incomplete 𝑞-Gamma Function

In this section, we derive some inequalities involving the
incomplete 𝑞-Gamma function. We shall use the notations
N0 = {0, 1, 2, 3, . . .} and ℵ = {0, 2, 4, 6, . . .} subsequently.

El-Shahed and Salem [7] defined the incomplete 𝑞-
Gamma function for 𝑞 ∈ (0, 1) as

𝛾𝑞 (𝑥, 𝑧) = ∫𝑧
0
𝑡𝑥−1𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡, 𝑥 > 0, 𝑧 > 0 (21)

and the complementary incomplete 𝑞-Gamma function as

Γ𝑞 (𝑥, 𝑧) = ∫1/(1−𝑞)
𝑧

𝑡𝑥−1𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡, 𝑥 > 0, 𝑧 ≥ 0, (22)

where 𝐸𝑡𝑞 = ∑∞𝑛=0 𝑞𝑛(𝑛−1)/2(𝑡𝑛/[𝑛]𝑞) is a 𝑞-analogue of the clas-
sical exponential function, [𝑢]𝑞 = (1−𝑞𝑢)/(1−𝑞), and [𝑛]𝑞! =[𝑛]𝑞[𝑛 − 1]𝑞 ⋅ ⋅ ⋅ [2]𝑞[1]𝑞. One can easily see that

Γ𝑞 (𝑥, 0) = Γ𝑞 (𝑥) ,
𝛾𝑞 (𝑥, 𝑧) + Γ𝑞 (𝑥, 𝑧) = Γ𝑞 (𝑥) , (23)
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where Γ𝑞(𝑥) is the 𝑞-Gamma function. Also, the following
identities are satisfied:

Γ𝑞 (1, 𝑧) = 𝐸−𝑧𝑞 ,
Γ𝑞 (𝑥 + 1, 𝑧) = [𝑥]𝑞 Γ𝑞 (𝑥, 𝑧) + 𝑧𝑥𝐸−𝑧𝑞 ,

𝛾𝑞 (1, 𝑧) = 1 − 𝐸−𝑧𝑞 ,
𝛾𝑞 (𝑥 + 1, 𝑧) = [𝑥]𝑞 𝛾𝑞 (𝑥, 𝑧) − 𝑧𝑥𝐸−𝑧𝑞 .

(24)

Moreover,

Γ𝑞 (0, 𝑧) = ∫1/(1−𝑞)
𝑧

𝑡−1𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡 = 𝐸1 (𝑧, 𝑞) , (25)

where 𝐸1(𝑧, 𝑞) is the 𝑞-exponential integral [8].
Remark 12. The functions 𝛾𝑞(𝑥, 𝑧) and Γ𝑞(𝑥, 𝑧) can be viewed
as both functions of 𝑥 (for fixed 𝑧) and functions of 𝑧 (for
fixed 𝑥). For the purpose of this paper, we shall concentrate
on 𝛾𝑞(𝑥, 𝑧) as functions of 𝑥.

By differentiating (21)𝑚 times, we obtain

𝛾(𝑚)𝑞 (𝑥, 𝑧) = ∫𝑧
0
𝑡𝑥−1 (ln 𝑡)𝑚 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡, 𝑚 ∈ N0, (26)

where 𝛾(0)𝑞 (𝑥, 𝑧) = 𝛾𝑞(𝑥, 𝑧).
Theorem 13. For 𝑖 = 1, 2, . . . , 𝑛, let 𝛼𝑖 > 1, ∑𝑛𝑖=1(1/𝛼𝑖) = 1,𝑚𝑖 ∈ ℵ, and ∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖) ∈ ℵ. Then the inequality

𝛾(∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖))𝑞 ( 𝑛∑
𝑖=1

𝑥𝑖𝛼𝑖 , 𝑧) ≤ 𝑛∏
𝑖=1

(𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧))1/𝛼𝑖 (27)

holds for 𝑥𝑖 > 0.
Proof. By (26) and the generalized 𝑞-Hölder’s inequality (17),
we obtain

𝛾(∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖))𝑞 ( 𝑛∑
𝑖=1

𝑥𝑖𝛼𝑖 , 𝑧)

= ∫𝑧
0
𝑡∑𝑛𝑖=1(𝑥𝑖/𝛼𝑖)−1 (ln 𝑡)∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖) 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡

= ∫𝑧
0
𝑡∑𝑛𝑖=1((𝑥𝑖−1)/𝛼𝑖) (ln 𝑡)∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖) 𝐸−𝑞𝑡∑𝑛𝑖=1(1/𝛼𝑖)𝑞 𝑑𝑞𝑡

= ∫𝑧
0

𝑛∏
𝑖=1

(𝑡(𝑥𝑖−1)/𝛼𝑖 (ln 𝑡)𝑚𝑖/𝛼𝑖 𝐸−𝑞𝑡(1/𝛼𝑖)𝑞 ) 𝑑𝑞𝑡

≤ 𝑛∏
𝑖=1

[∫𝑧
0
𝑡𝑥𝑖−1 (ln 𝑡)𝑚𝑖 𝐸−𝑞𝑡𝑞 ]1/𝛼𝑖 𝑑𝑞𝑡

= 𝑛∏
𝑖=1

(𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧))1/𝛼𝑖
(28)

which completes the proof.

Remark 14. Let 𝑛 = 2, 𝛼1 = 𝑎, 𝛼2 = 𝑏, 𝑥1 = 𝑥, and 𝑥2 = 𝑦 in
Theorem 13. Then, we obtain

𝛾(𝑚1/𝑎+𝑚2/𝑏)𝑞 (𝑥𝑎 + 𝑦𝑏 , 𝑧)
≤ (𝛾(𝑚1)𝑞 (𝑥, 𝑧))1/𝑎 (𝛾(𝑚2)𝑞 (𝑦, 𝑧))1/𝑏 .

(29)

Remark 15. Let𝑚1 = 𝑚2 = 𝑚 in (29). Then we obtain

𝛾(𝑚)𝑞 (𝑥𝑎 + 𝑦𝑏 , 𝑧) ≤ (𝛾(𝑚)𝑞 (𝑥, 𝑧))1/𝑎 (𝛾(𝑚)𝑞 (𝑦, 𝑧))1/𝑏 (30)

which implies that the function 𝛾(𝑚)𝑞 (𝑥, 𝑧) is logarithmically
convex. Also, since 𝛾(0)𝑞 (𝑥, 𝑧) = 𝛾𝑞(𝑥, 𝑧), then it follows that𝛾𝑞(𝑥, 𝑧) is also logarithmically convex.

Remark 16. Let 𝑎 = 𝑏 = 2 and 𝑥 = 𝑦 in (29). Then we obtain
the Turan-type inequality

𝛾(𝑚1)𝑞 (𝑥, 𝑧) 𝛾(𝑚2)𝑞 (𝑥, 𝑧) ≥ (𝛾((𝑚1+𝑚2)/2)𝑞 (𝑥, 𝑧))2 . (31)

Corollary 17. Let𝑚 ∈ ℵ. Then the inequality

𝛾(𝑚)𝑞 (𝑥 + 𝑦2 , 𝑧) ≤ 𝛾(𝑚)𝑞 (𝑥, 𝑧) + 𝛾(𝑚)𝑞 (𝑦, 𝑧)
2 (32)

holds for 𝑥, 𝑦 > 0.
Proof. Let 𝑎 = 𝑏 = 2 in (30).Then, by the AM-GM inequality,
we have

𝛾(𝑚)𝑞 (𝑥 + 𝑦2 , 𝑧) ≤ √𝛾(𝑚)𝑞 (𝑥, 𝑧) 𝛾(𝑚)𝑞 (𝑦, 𝑧)
≤ 𝛾(𝑚)𝑞 (𝑥, 𝑧) + 𝛾(𝑚)𝑞 (𝑦, 𝑧)

2 .
(33)

Theorem 18. For 𝑖 = 1, 2, . . . , 𝑛, let 𝑚𝑖 ∈ ℵ. Then the
inequality

( 𝑛∑
𝑖=1

𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧))
1/𝑢

≤ 𝑛∑
𝑖=1

(𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧))1/𝑢 (34)

holds for 𝑥𝑖 > 0 and 𝑢 ≥ 1.
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Proof. Note that ∑𝑛𝑖=1 𝑎𝑢𝑖 ≤ (∑𝑛𝑖=1 𝑎𝑖)𝑢 for 𝑎𝑖 ≥ 0 and 𝑢 ≥ 1.
Then by the generalized 𝑞-Minkowski’s inequality (19), we
obtain

( 𝑛∑
𝑖=1

𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧))
1/𝑢

= ( 𝑛∑
𝑖=1

∫𝑧
0
𝑡𝑥𝑖−1 (ln 𝑡)𝑚𝑖 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡)

1/𝑢

= (∫𝑧
0
[ 𝑛∑
𝑖=1

(𝑡(𝑥𝑖−1)/𝑢 (ln 𝑡)𝑚𝑖/𝑢 𝐸−𝑞𝑡/𝑢𝑞 )𝑢]𝑑𝑞𝑡)
1/𝑢

≤ (∫𝑧
0
[ 𝑛∑
𝑖=1

(𝑡(𝑥𝑖−1)/𝑢 (ln 𝑡)𝑚𝑖/𝑢 𝐸−𝑞𝑡/𝑢𝑞 )]
𝑢

𝑑𝑞𝑡)
1/𝑢

≤ 𝑛∑
𝑖=1

(∫𝑧
0
(𝑡(𝑥𝑖−1)/𝑢 (ln 𝑡)𝑚𝑖/𝑢 𝐸−𝑞𝑡/𝑢𝑞 )𝑢 𝑑𝑞𝑡)1/𝑢

= 𝑛∑
𝑖=1

(∫𝑧
0
𝑡𝑥𝑖−1 (ln 𝑡)𝑚𝑖 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡)1/𝑢

= 𝑛∑
𝑖=1

(𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧))1/𝑢

(35)

which completes the proof.

Remark 19. In particular, let 𝑛 = 2, 𝑚1 = 𝑚, 𝑚2 = 𝑛, 𝑥1 = 𝑥,
and 𝑥2 = 𝑦 in Theorem 18. Then we obtain

(𝛾(𝑚)𝑞 (𝑥, 𝑧) + 𝛾(𝑛)𝑞 (𝑦, 𝑧))1/𝑢
≤ (𝛾(𝑚)𝑞 (𝑥, 𝑧))1/𝑢 + (𝛾(𝑛)𝑞 (𝑦, 𝑧))1/𝑢 .

(36)

Theorem 20. For 𝑖 = 1, 2, . . . , 𝑛, let 𝛼𝑖 > 1, ∑𝑛𝑖=1(1/𝛼𝑖) = 1,𝑚𝑖 ∈ ℵ, and ∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖) ∈ ℵ. Then the inequality

exp{𝛾(∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖))𝑞 ( 𝑛∑
𝑖=1

𝑥𝑖𝛼𝑖 , 𝑧)}

≤ 𝑛∏
𝑖=1

(exp {𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧)})1/𝛼𝑖
(37)

is satisfied for 𝑥𝑖 > 0.
Proof. By (26) we obtain

𝛾(∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖))𝑞 ( 𝑛∑
𝑖=1

𝑥𝑖𝛼𝑖 , 𝑧) − 𝑛∑
𝑖=1

𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧)𝛼𝑖
= ∫𝑧
0
𝑡∑𝑛𝑖=1(𝑥𝑖/𝛼𝑖)−1 (ln 𝑡)∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖) 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡 − 𝑛∑

𝑖=1

1𝛼𝑖

⋅ ∫𝑧
0
𝑡𝑥𝑖−1 (ln 𝑡)𝑚𝑖 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡

= ∫𝑧
0

𝑛∏
𝑖=1

𝑡(𝑥𝑖−1)/𝛼𝑖 (ln 𝑡)𝑚𝑖/𝛼𝑖 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡 − 𝑛∑
𝑖=1

1𝛼𝑖
⋅ ∫𝑧
0
𝑡𝑥𝑖−1 (ln 𝑡)𝑚𝑖 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡

= ∫𝑧
0
[ 𝑛∏
𝑖=1

(𝑡𝑥𝑖−1 (ln 𝑡)𝑚𝑖)1/𝛼𝑖 − 𝑛∑
𝑖=1

1𝛼𝑖 𝑡
𝑥𝑖−1 (ln 𝑡)𝑚𝑖]

⋅ 𝐸−𝑞𝑡𝑞 𝑑𝑞𝑡 ≤ 0
(38)

which results from the weighted AM-GM inequality (7).
Hence

𝛾(∑𝑛𝑖=1(𝑚𝑖/𝛼𝑖))𝑞 ( 𝑛∑
𝑖=1

𝑥𝑖𝛼𝑖 , 𝑧) ≤ 𝑛∑
𝑖=1

𝛾(𝑚𝑖)𝑞 (𝑥𝑖, 𝑧)𝛼𝑖 . (39)

Then, by exponentiating (39), we obtain the required result
(37).

Remark 21. Results of types (27), (34), and (37) which deal
with the (𝑞 ⋅ 𝑘)-Gamma function can also be found in [9].

5. Conclusion

In this study, we provided simple proofs of the discrete forms
of some generalized Hölder’s and Minkowski’s inequalities.
Based on these results, we established some generalized
Hölder’s andMinkowski’s inequalities for Jackson’s 𝑞-integral.
Furthermore, by using the established results, we derived
some new inequalities involving the incomplete 𝑞-Gamma
function.We anticipate that the present results will find some
applications in 𝑞-Calculus as well as other related disciplines.
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