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This paper deals with matrix transformations that preserve the (𝑝, 𝑞)-convexity of sequences. The main result gives the necessary
and sufficient conditions for a nonnegative infinitematrix𝐴 to preserve the (𝑝, 𝑞)-convexity of sequences. Further, we give examples
of such matrices for different values of 𝑝 and 𝑞.

1. Introduction

If 𝑝 > 0, 𝑞 > 0, then the sequence {𝑥𝑛} of real numbers is said
to be (𝑝, 𝑞)-convex if

Δ 𝑝,𝑞 (𝑥𝑛) = 𝑥𝑛 − (𝑝 + 𝑞) 𝑥𝑛−1 + 𝑝𝑞𝑥𝑛−2 ≥ 0 (1)

for 𝑛 ≥ 2. The operator Δ𝑝,𝑞 generates the second-order
difference Δ2 when 𝑝 = 𝑞 = 1. Several authors [1–3] have
proved various results on the convex sequences defined byΔ2𝑥𝑛 ≥ 0. Other authors [4, 5] have studied the classes
of sequences satisfying Δ 1,𝑞(𝑥𝑛) ≥ 0. Also, the necessary
and sufficient conditions for a sequence to be a (𝑝, 𝑞)-convex
sequence can be found in [6]. Moreover, some inequalities on(𝑝, 𝑞)-convex sequences are given in [7, 8].

In [9–11], the authors discuss the matrix transformations
that preserve (𝑝, 𝑞)-convexity of sequences in the case of
a lower triangular matrix with a particular type of matrix
transformation. But the question of a general infinite matrix
preserving (𝑝, 𝑞)-convexity has not been considered any-
where in the literature. This paper deals with the necessary
and sufficient conditions for a nonnegative infinite matrix to
preserve (𝑝, 𝑞)-convexity in both settings when 𝑝 ̸= 𝑞 and𝑝 = 𝑞.

2. Preliminaries

For any given sequence {𝑥𝑛}, we can find a corresponding
sequence {𝑐𝑘} such that

𝑐0 = 𝑥0,
𝑐1 = 𝑥1 − (𝑝 + 𝑞) 𝑐0 (2)

and, for 𝑘 ≥ 2,
𝑐𝑘 = 𝑥𝑘 − 𝑘−1∑

𝑖=0

(𝑝𝑘−𝑖 + 𝑝𝑘−𝑖−1𝑞 + ⋅ ⋅ ⋅ + 𝑝𝑞𝑘−𝑖−1 + 𝑞𝑘−𝑖) 𝑐𝑖, (3)

which implies that {𝑥𝑛} can be represented by

𝑥0 = 𝑐0,
𝑥1 = 𝑐1 + (𝑝 + 𝑞) 𝑐0, (4)

and, for 𝑛 ≥ 2,
𝑥𝑛 = 𝑐𝑛 + (𝑝 + 𝑞) 𝑐𝑛−1 + (𝑝2 + 𝑝𝑞 + 𝑞2) 𝑐𝑛−2 + ⋅ ⋅ ⋅

+ (𝑝𝑛 + 𝑝𝑛−1𝑞 + ⋅ ⋅ ⋅ + 𝑝𝑞𝑛−1 + 𝑞𝑛) 𝑐0
= 𝑐𝑛 + 𝑛∑

𝑖=1

(𝑝𝑖 + 𝑝𝑖−1𝑞 + ⋅ ⋅ ⋅ + 𝑝𝑞𝑛−𝑖 + 𝑞𝑖) 𝑐𝑛−𝑖.
(5)

As a consequence, we get the following lemma. A variation of
this lemma can be found in [6].
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Lemma 1. If the sequence {𝑥𝑛} is given by representation (5),
then Δ 𝑝,𝑞(𝑥𝑛) = 𝑐𝑛. Thus, the sequence {𝑥𝑛} is (𝑝, 𝑞)-convex if
and only if 𝑐𝑛 ≥ 0 for 𝑛 ≥ 2.
Proof. It suffices to show that Δ𝑝,𝑞(𝑥𝑛) = 𝑥𝑛 − (𝑝 + 𝑞)𝑥𝑛−1 +𝑝𝑞𝑥𝑛−2 = 𝑐𝑛 for 𝑛 ≥ 2. Using (5),

Δ𝑝,𝑞 (𝑥𝑛) = (𝑐𝑛 + (𝑝 + 𝑞) 𝑐𝑛−1 + (𝑝2 + 𝑝𝑞 + 𝑞2) 𝑐𝑛−2
+ ⋅ ⋅ ⋅ + ( 𝑛∑

0

𝑝𝑛−𝑘𝑞𝑘) 𝑐0) − (𝑝 + 𝑞)(𝑐𝑛−1
+ (𝑝 + 𝑞) 𝑐𝑛−2 + (𝑝2 + 𝑝𝑞 + 𝑞2) 𝑐𝑛−3 + ⋅ ⋅ ⋅
+ (𝑛−1∑
0

𝑝𝑛−𝑘−1𝑞𝑘)𝑐0) + 𝑝𝑞(𝑐𝑛−2 + (𝑝 + 𝑞) 𝑐𝑛−3
+ (𝑝2 + 𝑝𝑞 + 𝑞2) 𝑐𝑛−4 + ⋅ ⋅ ⋅ + (𝑛−2∑

0

𝑝𝑛−𝑘−2𝑞𝑘)𝑐0) .

(6)

On the right side, we see that the coefficient of 𝑐𝑛 = 1, and the
coefficient of 𝑐𝑛−𝑟 = 0 for 𝑟 = 1, 2, . . . , 𝑛. Thus,

Δ𝑝,𝑞 (𝑥𝑛) = 𝑐𝑛 for 𝑛 ≥ 2. (7)

Hence, we have the previous lemma.
Also, in (5), the representation of 𝑥𝑛 in terms of 𝑐𝑛 can be

written as follows:

𝑥𝑛 = 𝑐𝑛 + 𝑛−1∑
𝑖=0

(𝑝𝑛−𝑖 + 𝑝𝑛−𝑖−1𝑞 + ⋅ ⋅ ⋅ + 𝑞𝑛−𝑖) 𝑐𝑖

=
{{{{{{{{{{{

𝑐𝑛 + 𝑛−1∑
𝑖=0

(𝑝𝑛−𝑖+1 − 𝑞𝑛−𝑖+1𝑝 − 𝑞 ) 𝑐𝑖, if 𝑝 ̸= 𝑞
𝑐𝑛 + 𝑛−1∑
𝑖=0

(𝑛 − 𝑖 + 1) 𝑝𝑛−𝑖𝑐𝑖, if 𝑝 = 𝑞

=
{{{{{{{{{{{

𝑛∑
𝑖=0

(𝑝𝑛−𝑖+1 − 𝑞𝑛−𝑖+1𝑝 − 𝑞 ) 𝑐𝑖, if 𝑝 ̸= 𝑞
𝑛∑
𝑖=0

(𝑛 − 𝑖 + 1) 𝑝𝑛−𝑖𝑐𝑖 if 𝑝 = 𝑞.

(8)

Now, we give below some definitions. Let 𝐴 = [𝑎𝑛,𝑘] be a
nonnegative infinite matrix defining a sequence to sequence
transformation by

(𝐴𝑥)𝑛 = ∞∑
𝑘=0

𝑎𝑛,𝑘𝑥𝑘. (9)

Then, we define the matrices [𝛼𝑛,𝑘] and [𝛽𝑛,𝑘] as
𝛼𝑛,𝑘 = ∞∑

𝑗=𝑘

𝑝𝑗−𝑘𝑎𝑛,𝑗 = 𝑎𝑛,𝑘 + 𝑝𝑎𝑛,𝑘+1 + 𝑝2𝑎𝑛,𝑘+2 + ⋅ ⋅ ⋅ ,
𝛽𝑛,𝑖 = ∞∑

𝑘=𝑖

𝑞𝑘−𝑖𝛼𝑛,𝑘 = 𝛼𝑛,𝑖 + 𝑞𝛼𝑛,𝑖+1 + 𝑞2𝛼𝑛,𝑖+2 + ⋅ ⋅ ⋅

= ∞∑
𝑘=𝑖

𝑞𝑘−𝑖(∞∑
𝑗=𝑘

𝑝𝑗−𝑘𝑎𝑛,𝑗) .
(10)

Interchanging the order of summation, we get, for each 𝑛 =0, 1, 2, . . ., and 𝑖 = 0, 1, 2, . . .,
𝛽𝑛,𝑖 = ∞∑

𝑗=𝑖

( 𝑗∑
𝑘=𝑖

𝑞𝑘−𝑖𝑝𝑗−𝑘)𝑎𝑛,𝑗
= ∞∑
𝑗=𝑖

(𝑝𝑗−𝑖 + 𝑞𝑝𝑗−𝑖−1 + 𝑞2𝑝𝑗−𝑖−2 + ⋅ ⋅ ⋅ + 𝑞𝑗−𝑖) 𝑎𝑛,𝑗

=
{{{{{{{{{{{

∞∑
𝑗=𝑖

(𝑝𝑗−𝑖+1 − 𝑞𝑗−𝑖+1𝑝 − 𝑞 )𝑎𝑛,𝑗, if 𝑝 ̸= 𝑞
∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖𝑎𝑛,𝑗, if 𝑝 = 𝑞.

(11)

Furthermore, for 𝑛 ≥ 2,
Δ 𝑝,𝑞 (𝛽𝑛,𝑖) = 𝛽𝑛,𝑖 − (𝑝 + 𝑞) 𝛽𝑛−1,𝑖 + 𝑝𝑞𝛽𝑛−2,𝑖

=
{{{{{{{{{{{

∞∑
𝑗=𝑖

(𝑝𝑗−𝑖+1 − 𝑞𝑗−𝑖+1𝑝 − 𝑞 )Δ 𝑝,𝑞 (𝑎𝑛,𝑗) , if 𝑝 ̸= 𝑞
∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖Δ𝑝,𝑞 (𝑎𝑛,𝑗) , if 𝑝 = 𝑞.
(12)

In order for the matrix [𝛽𝑛,𝑖] to be well-defined, we need the
matrix [𝑎𝑛,𝑘] to satisfy certain conditions which will depend
on the values of 𝑝 and 𝑞.
(I) When 𝑝 ̸= 𝑞, due to symmetry of 𝑝 and 𝑞 in the definition
of 𝛽𝑛,𝑖, it is sufficient to consider the following cases:

(a) 0 < 𝑝, 𝑞 < 1
(b) 0 < 𝑝 < 1, 𝑞 = 1
(c) 𝑝 > 1, 𝑞 = 1
(d) 𝑝 > 1, 0 < 𝑞 < 1
(e) 𝑝, 𝑞 > 1

(13)

Case (a). For 0 < 𝑝, 𝑞 < 1, we require the matrix 𝐴 to satisfy
that, for each 𝑛,

∞∑
𝑘=1

𝑘𝑎𝑛,𝑘 < ∞. (14)
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Thus, using (11) and 𝑝, 𝑞 < 1, we have
𝛽𝑛,𝑖 = ∞∑

𝑗=𝑖

(𝑝𝑗−𝑖 + 𝑞𝑝𝑗−𝑖−1 + ⋅ ⋅ ⋅ + 𝑞𝑗−𝑖) 𝑎𝑛,𝑗
< ∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑎𝑛,𝑗 = ∞∑
𝑗=𝑖

(𝑗 − 𝑖) 𝑎𝑛,𝑗 + ∞∑
𝑗=𝑖

𝑎𝑛,𝑗 < ∞
by (14) .

(15)

Thus, 𝛽𝑛,𝑖 is well-defined.
Case (b). For 0 < 𝑝 < 1, 𝑞 = 1, we require the matrix 𝐴 to
satisfy that, for each 𝑛,

∞∑
𝑘=0

𝑎𝑛,𝑘 < ∞. (16)

Then using (11), we have

𝛽𝑛,𝑖 = ∞∑
𝑗=𝑖

(1 − 𝑝𝑗−𝑖+11 − 𝑝 )𝑎𝑛,𝑗
= 11 − 𝑝 ((1 − 𝑝) 𝑎𝑛,𝑖 + (1 − 𝑝2) 𝑎𝑛,𝑖+1 + ⋅ ⋅ ⋅)
< 11 − 𝑝 (𝑎𝑛,𝑖 + 𝑎𝑛,𝑖+1 + ⋅ ⋅ ⋅) , since 0 < 𝑝 < 1
< ∞ by (16) .

(17)

Thus, 𝛽𝑛,𝑖 is well-defined.
For the cases (c), (d), and (e), we require the matrix 𝐴 to

satisfy that, for each 𝑛,
∞∑
𝑘=0

𝑝𝑘𝑎𝑛,𝑘 < ∞. (18)

Case (c). When 𝑝 > 1, 𝑞 = 1, we have, as in the case (b),

𝛽𝑛,𝑖 = ∞∑
𝑗=𝑖

(𝑝𝑗−𝑖+1 − 1𝑝 − 1 ) 𝑎𝑛,𝑗
= 𝑝𝑝 − 1

∞∑
𝑗=𝑖

(𝑝𝑗−𝑖 − 1𝑝) 𝑎𝑛,𝑗 < 𝑝𝑝 − 1
∞∑
𝑗=𝑖

𝑝𝑗−𝑖𝑎𝑛,𝑗
≤ 𝑝𝑝 − 1

∞∑
𝑗=𝑖

𝑝𝑗𝑎𝑛,𝑗 < ∞ by (18) .
(19)

Thus, 𝛽𝑛,𝑖 is well-defined.
Case (d). When 𝑝 > 1, 0 < 𝑞 < 1, from (11),

𝛽𝑛,𝑖 = 1𝑝 − 𝑞
∞∑
𝑗=𝑖

(𝑝𝑗−𝑖+1 − 𝑞𝑗−𝑖+1) 𝑎𝑛,𝑗. (20)

Since 𝑞 < 𝑝, using (18), we have∑∞𝑗=𝑖 𝑞𝑗−𝑖𝑎𝑛,𝑗 < ∑∞𝑗=𝑖 𝑝𝑗−𝑖𝑎𝑛,𝑗 <∞. Therefore,

𝛽𝑛,𝑖 = 𝑝𝑝 − 𝑞
∞∑
𝑗=𝑖

𝑝𝑗−𝑖𝑎𝑛,𝑗 − 𝑞𝑝 − 𝑞
∞∑
𝑗=𝑖

𝑞𝑗−𝑖𝑎𝑛,𝑗 < ∞. (21)

Thus 𝛽𝑛,𝑖 is well-defined.
Case (e). When 𝑝, 𝑞 > 1, we can assume without loss of
generality that 𝑝 > 𝑞.

Proceeding as in case (d), we see that 𝛽𝑛,𝑖 is well-defined
in this case also.

(II) When 𝑝 = 𝑞, we consider the following cases:
(f) 0 < 𝑝 < 1
(g) 𝑝 = 1
(h) 𝑝 > 1.

(22)

Case (f). For 0 < 𝑝 < 1, we require the matrix 𝐴 to satisfy
that, for each 𝑛,

∞∑
𝑘=1

𝑘𝑎𝑛,𝑘 < ∞. (23)

Then, using (11), we have

𝛽𝑛,𝑖 = ∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖𝑎𝑛,𝑗 < ∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑎𝑛,𝑗
= ∞∑
𝑗=𝑖

(𝑗 − 𝑖) 𝑎𝑛,𝑗 + ∞∑
𝑗=𝑖

𝑎𝑛,𝑗 < ∞ by (23) .
(24)

Thus, 𝛽𝑛,𝑖 is well-defined.
Case (g). When 𝑝 = 1, Δ𝑝,𝑞-convexity reduces to the
well-known second-order convexity Δ2, which has been
investigated in detail in [3].

Case (h). For 𝑝 > 1, we require the matrix 𝐴 to satisfy that,
for each 𝑛,

∞∑
𝑘=1

𝑘𝑝𝑘𝑎𝑛,𝑘 < ∞. (25)

Then, using (11), we have

𝛽𝑛,𝑖 = ∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖𝑎𝑛,𝑗
≤ ∞∑
𝑗=𝑖

(𝑗 − 𝑖) 𝑝𝑗−𝑖𝑎𝑛,𝑗 + ∞∑
𝑗=𝑖

𝑝𝑗𝑎𝑛,𝑗 < ∞ by (25) .
(26)

Thus, 𝛽𝑛,𝑖 is well-defined.
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3. Main Results

In this section, we prove the necessary and sufficient condi-
tions for a nonnegative infinitematrix𝐴 to transform a (𝑝, 𝑞)-
convex sequence into a (𝑝, 𝑞)-convex sequence showing that
each column of the corresponding matrix [𝛽𝑛,𝑘] is a (𝑝, 𝑞)-
convex sequence.

First, we consider the values of 𝑝 and 𝑞, where 𝑝 ̸= 𝑞
results in the cases listed in (13).

Theorem 2. For 𝑝 ̸= 𝑞, a nonnegative infinite matrix 𝐴
satisfying (14), (16), or (18), corresponding to the cases listed in
(13), preserves (𝑝, 𝑞)-convexity of sequences if and only if, for𝑛 = 2, 3, 4, . . .,

(i) Δ𝑝,𝑞(𝛽𝑛,0) = 0
(ii) Δ 𝑝,𝑞(𝛽𝑛,1) = 0
(iii) Δ𝑝,𝑞(𝛽𝑛,𝑖) ≥ 0 for 𝑖 ≥ 2

where the matrix [𝛽𝑛,𝑖] is defined by
𝛽𝑛,𝑖 = ∞∑

𝑗=𝑖

(𝑝𝑗−𝑖+1 − 𝑞𝑗−𝑖+1𝑝 − 𝑞 )𝑎𝑛,𝑗. (27)

Proof. First, we prove a result on the transformed sequence
of any (𝑝, 𝑞)-convex sequence {𝑥𝑛}. Now, we have, from (8),

𝑥𝑛 = 𝑛∑
𝑖=0

(𝑝𝑛−𝑖+1 − 𝑞𝑛−𝑖+1𝑝 − 𝑞 ) 𝑐𝑖, (28)

where 𝑐𝑖 ≥ 0 for 𝑖 ≥ 2 by Lemma 1. Then, the 𝑛th term of the
transformed sequence is

(𝐴𝑥)𝑛 = ∞∑
𝑘=0

𝑎𝑛,𝑘𝑥𝑘 = ∞∑
𝑘=0

𝑎𝑛,𝑘 𝑘∑
𝑖=0

(𝑝𝑘−𝑖+1 − 𝑞𝑘−𝑖+1𝑝 − 𝑞 ) 𝑐𝑖. (29)

Interchanging the order of summation,

(𝐴𝑥)𝑛 = ∞∑
𝑖=0

𝑐𝑖 ∞∑
𝑘=𝑖

𝑝𝑘−𝑖+1 − 𝑞𝑘−𝑖+1𝑝 − 𝑞 𝑎𝑛,𝑘
= 𝑐0 ∞∑
𝑘=0

𝑝𝑘+1 − 𝑞𝑘+1𝑝 − 𝑞 𝑎𝑛,𝑘 + 𝑐1 ∞∑
𝑘=1

𝑝𝑘 − 𝑞𝑘𝑝 − 𝑞 𝑎𝑛,𝑘
+ ∞∑
𝑖=2

𝑐𝑖 ∞∑
𝑘=𝑖

𝑝𝑘−𝑖+1 − 𝑞𝑘−𝑖+1𝑝 − 𝑞 𝑎𝑛,𝑘.
(30)

From (11), we have

(𝐴𝑥)𝑛 = 𝑐0𝛽𝑛,0 + 𝑐1𝛽𝑛,1 + ∞∑
𝑖=2

𝑐𝑖𝛽𝑛,𝑖. (31)

Then, for 𝑛 ≥ 2,
Δ𝑝,𝑞 (𝐴𝑥)𝑛 = (𝐴𝑥)𝑛 − (𝑝 + 𝑞) (𝐴𝑥)𝑛−1 + 𝑝𝑞 (𝐴𝑥)𝑛−2
= (𝑐0𝛽𝑛,0 + 𝑐1𝛽𝑛,1 + ∞∑

𝑖=2

𝑐𝑖𝛽𝑛,𝑖)
− (𝑝 + 𝑞)(𝑐0𝛽𝑛−1,0 + 𝑐1𝛽𝑛−1,1 + ∞∑

𝑖=2

𝑐𝑖𝛽𝑛−1,𝑖)
+ 𝑝𝑞(𝑐0𝛽𝑛−2,0 + 𝑐1𝛽𝑛−2,1 + ∞∑

𝑖=2

𝑐𝑖𝛽𝑛−2,𝑖)
= 𝑐0 [𝛽𝑛,0 − (𝑝 + 𝑞) 𝛽𝑛−1,0 + 𝑝𝑞𝛽𝑛−2,0]
+ 𝑐1 [𝛽𝑛,1 − (𝑝 + 𝑞) 𝛽𝑛−1,1 + 𝑝𝑞𝛽𝑛−2,1]
+ ∞∑
𝑖=2

𝑐𝑖 [𝛽𝑛,𝑖 − (𝑝 + 𝑞) 𝛽𝑛−1,𝑖 + 𝑝𝑞𝛽𝑛−2,𝑖] .

(32)

Thus, for any (𝑝, 𝑞)-convex sequence {𝑥𝑛},
Δ𝑝,𝑞 (𝐴𝑥)𝑛 = 𝑐0Δ𝑝,𝑞 (𝛽𝑛,0) + 𝑐1Δ𝑝,𝑞 (𝛽𝑛,1)

+ ∞∑
𝑖=2

𝑐𝑖Δ𝑝,𝑞 (𝛽𝑛,𝑖) . (33)

Now, to prove the sufficiency of the conditions given in the
theorem, assume that (i), (ii), and (iii) are true.Then, by (33),

Δ𝑝,𝑞 (𝐴𝑥)𝑛 ≥ 0. (34)

Thus, the sequence (𝐴𝑥)𝑛 is also (𝑝, 𝑞)-convex.
Conversely, assume that the matrix 𝐴 preserves (𝑝, 𝑞)-

convexity of the sequences. Suppose that the condition (i)
fails to hold. Then there exists an integer𝑁 ≥ 2 such that

Δ 𝑝,𝑞 (𝛽𝑁,0) = 𝐿 ̸= 0. (35)

Consider the following sequence:

𝑢 = {−𝐿, − (𝑝2 − 𝑞2)𝑝 − 𝑞 𝐿, − (𝑝3 − 𝑞3)𝑝 − 𝑞 𝐿, . . .} . (36)

Then {𝑢𝑛} is a (𝑝, 𝑞)-convex sequence because, using (2) and
Lemma 1,

𝑐0 = 𝑢0 = −𝐿,
𝑐1 = 𝑢1 − (𝑝 + 𝑞) 𝑐0 = 0 (37)

and, for 𝑖 ≥ 2,
𝑐𝑖 = Δ𝑝,𝑞 (𝑢𝑖) = 𝑢𝑖 − (𝑝 + 𝑞) 𝑢𝑖−1 + 𝑝𝑞𝑢𝑖−2
= − (𝑝𝑖+1 − 𝑞𝑖+1)𝑝 − 𝑞 𝐿 + (𝑝 + 𝑞) (𝑝𝑖 − 𝑞𝑖)𝑝 − 𝑞 𝐿
− 𝑝𝑞(𝑝𝑖−1 − 𝑞𝑖−1)𝑝 − 𝑞 𝐿 = 0.

(38)
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Thus, from (33), for the transformed sequence {(𝐴𝑢)𝑛},
Δ𝑝,𝑞 (𝐴𝑢)𝑁 = 𝑐0Δ𝑝,𝑞 (𝛽𝑁,0) + 𝑐1Δ𝑝,𝑞 (𝛽𝑁,1)

+ ∞∑
𝑖=2

𝑐𝑖Δ𝑝,𝑞 (𝛽𝑁,𝑖) = −𝐿2 < 0, (39)

which contradicts that the transformed sequence {(𝐴𝑢)𝑛}
must be (𝑝, 𝑞)-convex.

Next, suppose that the condition (ii) is not true. This
case can be settled by a similar argument by considering the
following sequence:

V = {0, −𝐿, − (𝑝2 − 𝑞2)𝑝 − 𝑞 𝐿, − (𝑝3 − 𝑞3)𝑝 − 𝑞 𝐿, . . .} , (40)

which implies that

𝑐0 = 0,
𝑐1 = −𝐿,
𝑐𝑖 = 0 for 𝑖 ≥ 2.

(41)

Now, suppose that the condition (iii) is not true. Then there
exists an integer 𝑗 ≥ 2 such that the 𝑗th column-sequence of
thematrix [𝛽𝑛,𝑘] is not (𝑝, 𝑞)-convex.That is, for some𝑁 ≥ 2,

Δ𝑝,𝑞 (𝛽𝑁,𝑗) = 𝐿 < 0. (42)

Now, consider the following sequence:

𝑥 = {0, . . . , 0, 1, 𝑝2 − 𝑞2𝑝 − 𝑞 , 𝑝
3 − 𝑞3𝑝 − 𝑞 , . . .} .↓

𝑥0

↓
𝑥𝑗−1

↓
𝑥𝑗

↓
𝑥𝑗+1

(43)

Then, {𝑥𝑛} is a (𝑝, 𝑞)-convex sequence, because, using (2) and
Lemma 1, we get

𝑐𝑖 = 0 for 0 ≤ 𝑖 ≤ 𝑗 − 1;
𝑐𝑗 = 1;
𝑐𝑗+1 = 𝑥𝑗+1 − (𝑝 + 𝑞) 𝑥𝑗 + 𝑝𝑞𝑥𝑗−1 = 0;

(44)

and, for 𝑖 ≥ 𝑗 + 2,
𝑐𝑖 = Δ𝑝,𝑞 (𝑥𝑖) = 0 as in (38) . (45)

But, from (33),

Δ 𝑝,𝑞 (𝐴𝑥)𝑁 = 𝑐0Δ𝑝,𝑞 (𝛽𝑁,0) + 𝑐1Δ𝑝,𝑞 (𝛽𝑁,1)
+ ∞∑
𝑖=2

𝑐𝑖Δ𝑝,𝑞 (𝛽𝑁,𝑖) = 𝑐𝑗Δ𝑝,𝑞 (𝛽𝑁,𝑗) = 𝐿
< 0,

(46)

which again contradicts that {𝐴𝑥} is a (𝑝, 𝑞)-convex sequence.
This completes the proof.

Theorem 2 generalizes the necessary and sufficient con-
ditions given in [9, Theorem 2, p. 8] in the case of 𝑝 = 1 and𝑞 > 0 with 𝑞 ̸= 1.

Next, we consider the values of 𝑝 and 𝑞 where 𝑝 = 𝑞
results in the cases listed in (22).

Theorem 3. For 𝑝 = 𝑞, a nonnegative infinite matrix 𝐴
satisfying (23) or (25), corresponding to the cases listed in (22),
preserves (𝑝, 𝑞)-convexity of sequences if and only if, for 𝑛 =2, 3, 4, . . .,

(i) Δ𝑝,𝑝(𝛽𝑛,0) = 0
(ii) Δ𝑝,𝑝(𝛽𝑛,1) = 0
(iii) Δ𝑝,𝑝(𝛽𝑛,𝑖) ≥ 0 for 𝑖 = 2, 3, . . .,

where the matrix [𝛽𝑛,𝑖] is defined by
𝛽𝑛,𝑖 = ∞∑

𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖𝑎𝑛,𝑗. (47)

Proof. First we prove a result on the transformed sequence of
any (𝑝, 𝑝)-convex sequence {𝑥𝑛}. Now, we have, from (8),

𝑥𝑛 = 𝑛∑
𝑖=0

(𝑛 − 𝑖 + 1) 𝑝𝑛−𝑖𝑐𝑖, (48)

where 𝑐𝑖 ≥ 0 for 𝑖 ≥ 2 by Lemma 1. Then, the 𝑛th term of the
transformed sequence is

(𝐴𝑥)𝑛 = ∞∑
𝑘=0

𝑎𝑛,𝑘𝑥𝑘 = ∞∑
𝑘=0

𝑎𝑛,𝑘( 𝑘∑
𝑖=0

(𝑘 − 𝑖 + 1) 𝑝𝑘−𝑖𝑐𝑖) . (49)

Interchanging the order of summation,

(𝐴𝑥)𝑛 = ∞∑
𝑖=0

𝑐𝑖 ∞∑
𝑘=𝑖

(𝑘 − 𝑖 + 1) 𝑝𝑘−𝑖𝑎𝑛,𝑘
= 𝑐0 ∞∑
𝑘=0

(𝑘 + 1) 𝑝𝑘𝑎𝑛,𝑘 + 𝑐1 ∞∑
𝑘=1

𝑘𝑝𝑘−1𝑎𝑛,𝑘
+ ∞∑
𝑖=2

𝑐𝑖 ∞∑
𝑘=𝑖

(𝑘 − 𝑖 + 1) 𝑝𝑘−𝑖𝑎𝑛,𝑘.
(50)

From (11), we have

(𝐴𝑥)𝑛 = 𝑐0𝛽𝑛,0 + 𝑐1𝛽𝑛,1 + ∞∑
𝑖=2

𝑐𝑖𝛽𝑛,𝑖. (51)

Then, for 𝑛 ≥ 2,
Δ𝑝,𝑝 (𝐴𝑥)𝑛 = (𝐴𝑥)𝑛 − 2𝑝 (𝐴𝑥)𝑛−1 + 𝑝2 (𝐴𝑥)𝑛−2
= (𝑐0𝛽𝑛,0 + 𝑐1𝛽𝑛,1 + ∞∑

𝑖=2

𝑐𝑖𝛽𝑛,𝑖)
− 2𝑝(𝑐0𝛽𝑛−1,0 + 𝑐1𝛽𝑛−1,1 + ∞∑

𝑖=2

𝑐𝑖𝛽𝑛−1,𝑖)
+ 𝑝2(𝑐0𝛽𝑛−2,0 + 𝑐1𝛽𝑛−2,1 + ∞∑

𝑖=2

𝑐𝑖𝛽𝑛−2,𝑖) .

(52)
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Thus, for any (𝑝, 𝑝)-convex sequence {𝑥𝑛},
Δ𝑝,𝑝 (𝐴𝑥)𝑛 = 𝑐0Δ𝑝,𝑝 (𝛽𝑛,0) + 𝑐1Δ𝑝,𝑝 (𝛽𝑛,1)

+ ∞∑
𝑖=2

𝑐𝑖Δ𝑝,𝑝 (𝛽𝑛,𝑖) . (53)

Now, to prove the sufficiency of the conditions given in the
theorem, assume that (i), (ii), and (iii) are true. Then by (53),

Δ𝑝,𝑝 (𝐴𝑥)𝑛 ≥ 0. (54)

Thus, the sequence (𝐴𝑥)𝑛 is also (𝑝, 𝑝)-convex.
Conversely, assume that the matrix 𝐴 preserves (𝑝, 𝑝)-

convexity of sequences.
Suppose that the condition (i) fails to hold. Then there

exists an integer𝑁 ≥ 2 such that

Δ𝑝,𝑝 (𝛽𝑁,0) = 𝐿 ̸= 0. (55)

Consider the following sequence:

𝑢 = {−𝐿, −2𝑝𝐿, −3𝑝2𝐿, . . .} . (56)

It is easy to see, using (2) and Lemma 1, that 𝑢 is a (𝑝, 𝑝)-
convex sequence with

𝑐0 = 𝑢𝑜 = −𝐿,
𝑐𝑖 = 0 for 𝑖 ≥ 1. (57)

Thus, from (53), for the transformed sequence {(𝐴𝑢)𝑛},
Δ𝑝,𝑝 (𝐴𝑢)𝑁 = 𝑐0Δ𝑝,𝑝 (𝛽𝑁,0) + 𝑐1Δ𝑝,𝑝 (𝛽𝑁,1)

+ ∞∑
𝑖=2

𝑐𝑖Δ𝑝,𝑝 (𝛽𝑁,𝑖) = −𝐿2 < 0, (58)

which contradicts that {(𝐴𝑢)𝑛}must be (𝑝, 𝑝)-convex.
Next, suppose that the condition (ii) is not true. This

case can be settled by a similar argument by considering the
following sequence:

V = {0, −𝐿, −2𝑝𝐿, −3𝑝2𝐿, . . .} , (59)

which implies that

𝑐0 = 0,
𝑐1 = −𝐿,
𝑐𝑖 = 0 for 𝑖 ≥ 2.

(60)

Now, suppose that the condition (iii) is not true. Then there
exists an integer 𝑗 ≥ 2 such that the 𝑗th column-sequence of
thematrix [𝛽𝑛,𝑘] is not (𝑝, 𝑝)-convex.That is, for some𝑁 ≥ 2,

Δ 𝑝,𝑝 (𝛽𝑁,𝑗) = 𝐿 < 0. (61)

Consider the (𝑝, 𝑝)-convex sequence:
𝑥 = {0, . . . , 0, 1, 2𝑝, 3𝑝2, . . .} .

↓
𝑥0

↓
𝑥𝑗−1

↓
𝑥𝑗

↓
𝑥𝑗+1

(62)

We see that, as in the proof of Theorem 2,

Δ 𝑝,𝑝 (𝐴𝑥)𝑁 = 𝐿 < 0, (63)

which contradicts that {𝐴𝑥} is a (𝑝, 𝑝)-convex sequence.
We see that the result on the convexity of sequences given

in [3, p. 331] is a particular case of Theorem 3 when 𝑝 = 𝑞 =1. Also, this theorem generalizes the necessary and sufficient
conditions for a triangular matrix given in [9, p. 4].

4. Examples

Wegive below examples of (𝑝, 𝑞)-convexity preservingmatri-
ces for each of the cases (a) through (h) given in (13) and (22).

Example for Case (a). Considering 0 < 𝑝, 𝑞 < 1, and 𝑝 ̸= 𝑞,
we can assume, without loss of generality, that 𝑝 < 𝑞. Let the
matrix 𝐴 = [𝑎𝑛,𝑘] be defined by

𝑎𝑛,𝑘 = {{{{{
𝑝𝑛, if 𝑘 = 0,
𝑝𝑛𝑞𝑘𝑘 , if 𝑘 ≥ 1. (64)

Then, for each 𝑛,
∞∑
𝑘=1

𝑘𝑎𝑛,𝑘 = ∞∑
𝑘=1

𝑝𝑛𝑞𝑘 = 𝑝𝑛 ( 𝑞1 − 𝑞) < ∞. (65)

Thus, by (14), 𝛽𝑛,𝑖 is well-defined for 𝑛 = 0, 1, 2, . . . and𝑖 = 0, 1, 2, . . .. The matrix 𝐴 satisfies the three conditions of
Theorem 2 because, for 𝑛 ≥ 2, using (12),

Δ 𝑝,𝑞 (𝛽𝑛,𝑖) = ∞∑
𝑗=𝑖

(𝑝𝑗−𝑖+1 − 𝑞𝑗−𝑖+1𝑝 − 𝑞 )Δ 𝑝,𝑞 (𝑎𝑛,𝑗) , (66)

in which

Δ𝑝,𝑞 (𝑎𝑛,𝑗) = 𝑎𝑛,𝑗 − (𝑝 + 𝑞) 𝑎𝑛−1,𝑗 + 𝑝𝑞𝑎𝑛−2,𝑗
= {{{{{

𝑝𝑛 − (𝑝 + 𝑞) 𝑝𝑛−1 + 𝑝𝑞𝑝𝑛−2, if 𝑗 = 0,
𝑞𝑗𝑗 (𝑝𝑛 − (𝑝 + 𝑞) 𝑝𝑛−1 + 𝑝𝑞𝑝𝑛−2) , if 𝑗 ≥ 1

= 0.
(67)

Therefore, the matrix𝐴 preserves (𝑝, 𝑞)-convexity of sequen-
ces.

Example for Case (b). Considering 0 < 𝑝 < 1, 𝑞 = 1, let the
matrix 𝐴 = [𝑎𝑛,𝑘] be defined by

𝑎𝑛,𝑘 = 𝑝𝑘. (68)

Then, for each 𝑛,
∞∑
𝑘=0

𝑎𝑛,𝑘 = ∞∑
𝑘=0

𝑝𝑘 = 11 − 𝑝 < ∞. (69)
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Thus, by (16), 𝛽𝑛,𝑖 is well-defined for 𝑛 = 0, 1, 2, . . . and𝑖 = 0, 1, 2, . . .. The matrix 𝐴 satisfies the three conditions of
Theorem 2 because, for 𝑛 ≥ 2, using (12),

Δ 𝑝,1 (𝛽𝑛,𝑖) = ∞∑
𝑗=𝑖

(𝑝𝑗−𝑖+1 − 1𝑝 − 1 )Δ𝑝,1 (𝑎𝑛,𝑗) , (70)

in which

Δ𝑝,1 (𝑎𝑛,𝑗) = 𝑎𝑛,𝑗 − (𝑝 + 1) 𝑎𝑛−1,𝑗 + 𝑝𝑎𝑛−2,𝑗
= 𝑝𝑗 − (𝑝 + 1) 𝑝𝑗 + 𝑝𝑗+1 = 0. (71)

Therefore, the matrix𝐴 preserves (𝑝, 1)-convexity of sequen-
ces.

Example for Case (c). Considering 𝑝 > 1, 𝑞 = 1, let matrix𝐴 = [𝑎𝑛,𝑘] be defined by

𝑎𝑛,𝑘 = 1𝑝2𝑘 . (72)

Then, for each 𝑛,
∞∑
𝑘=0

𝑝𝑘𝑎𝑛,𝑘 = ∞∑
𝑘=0

1𝑝𝑘 = 11 − 1/𝑝 < ∞. (73)

Thus, by (18), 𝛽𝑛,𝑖 is well-defined for 𝑛 = 0, 1, 2, . . . and𝑖 = 0, 1, 2, . . .. The matrix 𝐴 satisfies the three conditions of
Theorem 2 because, for 𝑛 ≥ 2, as in the previous example (b),

Δ𝑝,1 (𝑎𝑛,𝑗) = 𝑎𝑛,𝑗 − (𝑝 + 1) 𝑎𝑛−1,𝑗 + 𝑝𝑎𝑛−2,𝑗
= 1𝑝2𝑗 − (𝑝 + 1) 1𝑝2𝑗 + 𝑝 1𝑝2𝑗 = 0.

(74)

Therefore, the matrix 𝐴 preserves (𝑝, 1)-convexity of
sequences.

Example for Case (d). Considering 𝑝 > 1, 0 < 𝑞 < 1, let
matrix 𝐴 = [𝑎𝑛,𝑘] be defined by

𝑎𝑛,𝑘 = 𝑝𝑛−2𝑘. (75)

Then, for each 𝑛,
∞∑
𝑘=0

𝑝𝑘𝑎𝑛,𝑘 = ∞∑
𝑘=0

𝑝𝑛−𝑘 = 𝑝𝑛+1𝑝 − 1 < ∞. (76)

Thus, by (18), 𝛽𝑛,𝑖 is well-defined for 𝑛 = 0, 1, 2, . . . and𝑖 = 0, 1, 2, . . .. The matrix 𝐴 satisfies the three conditions of
Theorem 2 because, for 𝑛 ≥ 2, using (12),

Δ 𝑝,𝑞 (𝛽𝑛,𝑖) = ∞∑
𝑗=𝑖

(𝑝𝑗−𝑖+1 − 𝑞𝑗−𝑖+1𝑝 − 𝑞 )Δ 𝑝,𝑞 (𝑎𝑛,𝑗) , (77)

in which

Δ𝑝,𝑞 (𝑎𝑛,𝑗) = 𝑎𝑛,𝑗 − (𝑝 + 𝑞) 𝑎𝑛−1,𝑗 + 𝑝𝑞𝑎𝑛−2,𝑗
= 1𝑝2𝑗 (𝑝𝑛 − (𝑝 + 𝑞) 𝑝𝑛−1 + 𝑝𝑞𝑝𝑛−2) = 0.

(78)

Therefore, the matrix𝐴 preserves (𝑝, 𝑞)-convexity of sequen-
ces.

Example for Case (e). Considering 𝑝, 𝑞 > 1 and 𝑝 ̸= 𝑞, we can
assume, without loss of generality, that 𝑝 > 𝑞. Let the matrix𝐴 = [𝑎𝑛,𝑘] be defined by

𝑎𝑛,𝑘 = 𝑝𝑛−2𝑘𝑞𝑘. (79)

Then, for each 𝑛,
∞∑
𝑘=0

𝑝𝑘𝑎𝑛,𝑘 = 𝑝𝑛 ∞∑
𝑘=0

( 𝑞𝑝)
𝑘 = 𝑝𝑛+1𝑝 − 𝑞 < ∞. (80)

Thus, by (18), 𝛽𝑛,𝑖 is well-defined for 𝑛 = 0, 1, 2, . . . and𝑖 = 0, 1, 2, . . .. The matrix 𝐴 satisfies the three conditions of
Theorem 2 because, for 𝑛 ≥ 2, as in the previous example (d),

Δ 𝑝,𝑞 (𝑎𝑛,𝑗) = 𝑎𝑛,𝑗 − (𝑝 + 𝑞) 𝑎𝑛−1,𝑗 + 𝑝𝑞𝑎𝑛−2,𝑗
= 𝑞𝑗𝑝2𝑗 (𝑝𝑛 − (𝑝 + 𝑞) 𝑝𝑛−1 + 𝑝𝑞𝑝𝑛−2) = 0.

(81)

Therefore, the matrix𝐴 preserves (𝑝, 𝑞)-convexity of sequen-
ces.

Example for Case (f). Considering 0 < 𝑝 = 𝑞 < 1, let the
matrix 𝐴 = [𝑎𝑛,𝑘] be defined by

𝑎𝑛,𝑘 = {{{{{
𝑝𝑛, if 𝑘 = 0,
𝑝𝑛+𝑘𝑘 , if 𝑘 ≥ 1. (82)

Then, for each 𝑛,
∞∑
𝑘=1

𝑘𝑎𝑛,𝑘 = ∞∑
𝑘=1

𝑝𝑛+𝑘 = 𝑝𝑛 ∞∑
𝑘=1

𝑝𝑘 = 𝑝𝑛+1 ( 11 − 𝑝) < ∞. (83)

Thus, by (23), 𝛽𝑛,𝑖 is well-defined for 𝑛 = 0, 1, 2, . . . and𝑖 = 0, 1, 2, . . .. The matrix 𝐴 satisfies the three conditions of
Theorem 3 because, for 𝑛 ≥ 2, using (12),

Δ 𝑝,𝑝 (𝛽𝑛,𝑖) = ∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖Δ𝑝,𝑝 (𝑎𝑛,𝑗) , (84)

in which

Δ𝑝,𝑝 (𝑎𝑛,𝑗) = 𝑎𝑛,𝑗 − 2𝑝𝑎𝑛−1,𝑗 + 𝑝2𝑎𝑛−2,𝑗
= {{{{{

𝑝𝑛 − 2𝑝𝑝𝑛−1 + 𝑝2𝑝𝑛−2, if 𝑗 = 0,
𝑝𝑗𝑗 (𝑝𝑛 − 2𝑝𝑝𝑛−1 + 𝑝2𝑝𝑛−2) , if 𝑗 ≥ 1 = 0.

(85)

Therefore, thematrix𝐴 preserves (𝑝, 𝑝)-convexity of sequen-
ces.

Examples for Case (g). They can be found in [3], since Δ 1,1 is
the same as the second-order convexity Δ2.
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Example for Case (h). Considering 𝑝 = 𝑞 > 1, let the matrix𝐴 = [𝑎𝑛,𝑘] be defined by

𝑎𝑛,𝑘 = {{{{{
𝑝𝑛 (𝑛 + 2) , if 𝑘 = 0,
𝑝𝑛−2𝑘 (𝑛 + 2)𝑘 , if 𝑘 ≥ 1. (86)

Therefore, for each 𝑛,
∞∑
𝑘=1

𝑘𝑝𝑘𝑎𝑛,𝑘 = ∞∑
𝑘=1

𝑝𝑛−𝑘 (𝑛 + 2) = 𝑝𝑛 (𝑛 + 2) ∞∑
𝑘=1

( 1𝑝)
𝑘

= (𝑛 + 2) 𝑝𝑛𝑝 − 1 < ∞.
(87)

Thus, by (23), 𝛽𝑛,𝑖 is well-defined for 𝑛 = 0, 1, 2, . . . and𝑖 = 0, 1, 2, . . .. The matrix 𝐴 satisfies the three conditions of
Theorem 3 because, for 𝑛 ≥ 2, using (12),

Δ𝑝,𝑝 (𝛽𝑛,𝑖) = ∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖Δ𝑝,𝑝 (𝑎𝑛,𝑗) , (88)

in which

Δ𝑝,𝑝 (𝑎𝑛,𝑗) = 𝑎𝑛,𝑗 − 2𝑝𝑎𝑛−1,𝑗 + 𝑝2𝑎𝑛−2,𝑗
= {{{{{

𝑝𝑛 (𝑛 + 2) − 2𝑝𝑛 (𝑛 + 1) + 𝑝𝑛𝑛 if 𝑗 = 0,
(𝑛 + 2) 𝑝𝑛−2𝑗𝑗 − 2(𝑛 + 1) 𝑝𝑛−2𝑗𝑗 + 𝑛𝑝𝑛−2𝑗𝑗 , if 𝑗 ≥ 1.

= 0.
(89)

Therefore, the matrix𝐴 preserves the convexity of sequences.
We conclude this paper by giving an example of an

infinite matrix which does not preserve (𝑝, 𝑞)-convexity of
sequences.

It is interesting to notice that the Borel matrix preserves
the (1, 1)-convexity of sequences [3, p. 336], but it does not
preserve (𝑝, 𝑝)-convexity when 𝑝 ̸= 1.

The Borel matrix 𝐵 = [𝑏𝑛,𝑘] is defined by

𝑏𝑛,𝑘 = 𝑛𝑘𝑒𝑛𝑘! . (90)

Then, for each 𝑛,
∞∑
𝑘=1

𝑘𝑏𝑛,𝑘 = 𝑛𝑒𝑛
∞∑
𝑘=1

𝑛𝑘−1(𝑘 − 1)! = 𝑛 < ∞, (91)

∞∑
𝑘=1

𝑘𝑝𝑘𝑏𝑛,𝑘 = (𝑛𝑝)𝑒𝑛
∞∑
𝑘=1

(𝑛𝑝)𝑘−1(𝑘 − 1)! = (𝑛𝑝)𝑒𝑛 𝑒𝑛𝑝 < ∞. (92)

Thus, for each of the cases, 0 < 𝑝 < 1 and 𝑝 > 1, we see that
(23) and (25) are satisfied and hence 𝛽𝑛,𝑖 is well-defined for𝑛 = 0, 1, 2, . . . and 𝑖 = 0, 1, 2 . . . .

From (11),

𝛽𝑛,𝑖 = ∞∑
𝑗=𝑖

(𝑗 − 𝑖 + 1) 𝑝𝑗−𝑖𝑏𝑛,𝑗. (93)

Therefore,

𝛽𝑛,0 = ∞∑
𝑗=0

(𝑗 + 1) 𝑝𝑗 𝑛𝑗𝑒𝑛𝑗!
= 1𝑒𝑛 (

∞∑
𝑗=0

𝑗 (𝑝𝑛)𝑗𝑗! + ∞∑
𝑗=0

(𝑝𝑛)𝑗𝑗! )
= 1𝑒𝑛 (𝑝𝑛𝑒𝑝𝑛 + 𝑒𝑝𝑛) = 𝑒𝑛(𝑝−1) (𝑝𝑛 + 1) ,

(94)

which implies that

Δ𝑝,𝑝 (𝛽𝑛,0) = 𝛽𝑛,0 − 2𝑝𝛽𝑛−1,0 + 𝑝2𝛽𝑛−2,0
= 𝑒𝑛(𝑝−1) (𝑝𝑛 + 1) − 2𝑝𝑒(𝑛−1)(𝑝−1) (𝑝 (𝑛 − 1) + 1)
+ 𝑝2𝑒(𝑛−2)(𝑝−1) (𝑝 (𝑛 − 2) + 1)

= 𝑒𝑛(𝑝−1)𝑒2𝑝 ((𝑝𝑛 + 1) (𝑒𝑝 − 𝑝𝑒)2 + 2𝑝2𝑒 (𝑒𝑝 − 𝑝𝑒))
> 0,

(95)

since 𝑒𝑝 − 𝑝𝑒 > 0 when 𝑝 ̸= 1. Thus, the condition (i) of
Theorem 3 fails in the case of Borel matrix.
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