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Conjugate gradient (CG) method is used to find the optimum solution for the large scale unconstrained optimization problems.
Based on its simple algorithm, low memory requirement, and the speed of obtaining the solution, this method is widely used in
many fields, such as engineering, computer science, and medical science. In this paper, we modified CG method to achieve the
global convergence with various line searches. In addition, it passes the sufficient descent condition without any line search. The
numerical computations under weak Wolfe-Powell line search shows that the efficiency of the new method is superior to other
conventional methods.

1. Introduction

The nonlinear CG method is a useful tool to find the
minimum value of function for unconstrained optimization
problems. Let us consider the following form

min {𝑓 (𝑥) : 𝑥 ∈ R
𝑛} , (1)

where 𝑓 : R𝑛 → R is continuously differentiable and its
gradient is denoted by 𝑔(𝑥) = ∇𝑓(𝑥). The method to find a
sequence of points {𝑥𝑘} starting from initial point 𝑥0 ∈ R𝑛 is
given by the iterative formula:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 = 0, 1, . . . , (2)

where 𝑥𝑘 is the current iteration point and 𝛼𝑘 > 0 is the step
size obtained by some line search. The search direction 𝑑𝑘 is
defined by

𝑑𝑘 =
{
{
{

−𝑔𝑘, 𝑘 = 0
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1, 𝑘 ≥ 1, (3)

where 𝑔𝑘 = 𝑔(𝑥𝑘) and 𝛽𝑘 is known as the conjugate gradient
coefficient.

StrongWolfe-Powell (SWP) line search is the most popu-
lar inexact line search, which is depending on a reduction in
function and decreasing the search area to find step length.
In addition, it forces the step length to be closed to stationary
point or local minimum of function, so it is useful method to
find the step size.

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓 (𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑇𝑘 𝑑𝑘, (4)
𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘

 ≤ 𝜎 𝑔𝑇𝑘 𝑑𝑘
 , (5)

where 0 < 𝛿 < 𝜎 < 1. In fact, SWP line search is modified
from weak Wolfe-Powell (WWP), so we find that the step
length satisfies (4) and

𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≥ 𝜎𝑔𝑇𝑘 𝑑𝑘. (6)

However, WWP line search may accept the step length
far from stationary or local minimum of function. Dai [1]
proposed twoArmijo type line searches: the first onematches
the global convergence for any 𝛽𝑘 ≥ 0 using methods (2)
and (3). By this line search, the global convergence for FR,
nonnegative PRP, and CD methods have been established.
To match the global convergence of original PRP method, he
designed another line search proposed as follows.
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Given a constant 𝜆 ∈ (0, 1), 𝛿 > 0 and 𝜎 ∈ (0, 1)
determine the smallest integer 𝑚 ≥ 0, if it defines 𝛼𝑘 = 𝜆𝑚,
then the vectors 𝑥𝑘+1 and 𝑑𝑘+1 given by (2) and (3) satisfy (4)
with

0 ̸= 𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘+1 ≤ −𝜎 𝑑𝑘+12 , 𝜎 ∈ (0, 1) , (7)

where 𝛿 ∈ (0, 1/2) and 𝜎 ∈ (𝛿, 1) are two constants.
The most popular formulas for 𝛽𝑘 are as follows:

Hestenes-Stiefel (HS) [2], Fletcher-Reeves (FR) [3], Polak-
Ribière-Polyak (PRP) [4], Conjugate Descent (CD) [5], Liu-
Storey (LS) [6], Dai-Yuan (DY) [7], Wei et al. (WYL) [8], and
Hager and Zhang (HZ) [9].

𝛽HS
𝑘 = 𝑔𝑇𝑘 (𝑦𝑘−1)

𝑑𝑇
𝑘−1

(𝑔𝑘 − 𝑔𝑘−1)
,

𝛽FR
𝑘 =

𝑔𝑘2𝑔𝑘−12
,

𝛽PRP
𝑘 = 𝑔𝑇𝑘𝑦𝑘−1𝑔𝑘−12

,

𝛽CD
𝑘 = −

𝑔𝑘2
𝑑𝑇
𝑘−1

𝑔𝑘−1
,

𝛽LS
𝑘 = −𝑔𝑇𝑘 (𝑦𝑘−1)

𝑑𝑇
𝑘−1

𝑔𝑘−1
,

𝛽DY
𝑘 =

𝑔𝑘2
𝑑𝑇
𝑘−1

(𝑔𝑘 − 𝑔𝑘−1)
,

𝛽WYL
𝑘 = 𝑔𝑇𝑘 (𝑔𝑘 − (𝑔𝑘 / 𝑔𝑘−1) 𝑔𝑘−1)𝑔𝑘−12

,

𝛽HZ
𝑘 = max {𝛽𝑁𝑘 , 𝜂𝑘} ,

(8)

where 𝛽𝑁𝑘 = (1/𝑑𝑇𝑘𝑦𝑘)(𝑦𝑘 − 2𝑑𝑘(‖𝑦𝑘‖2/𝑑𝑇𝑘𝑦𝑘))𝑇𝑔𝑘, 𝜂𝑘 =
−1/‖𝑑𝑘‖min{𝜂, ‖𝑔𝑘‖} with 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 and 𝜂 > 0 being
a constant.

The global convergence of FR method with exact line
search was achieved by Zoutendijk [10], Al-Baali [11] proved
that FR method is globally convergent under strong Wolfe
condition when 𝜎 < 1/2, and later Liu et al. [12] extended
the result to 𝜎 ≤ 1/2. Its behavior on numerical computation
is unpredictable. In few cases, it is as efficient as PRPmethod.
However, generally, it is very slow. In addition, DY and CD
have the same performance as FR method under exact line
searchwith strong global convergence. Global convergence of
PRP method for convex objective function under exact line
search was proved by Polak and Ribière in 1969 [4]. Later,
Powell gave out a counterexample showing that there exists
nonconvex function, which PRP method does not converge
globally, although the exact line search is used. Powell sug-
gested the importance of achieving the global convergence
of PRP method, and it should not be negative. Gilbert and
Nocedal [13] proved that nonnegative PRPmethod is globally

convergent with theWolfe-Powel line search. HSmethod and
LSmethod have the same performance as PRPwith exact line
search. Therefore, PRP method is the most efficient method
when it is compared to the other conjugate gradientmethods.
For more, the reader can see the following references [14–19].

In 2006,Wei et al. [8] gave a newpositive CGmethod, and
it seems like original PRP method which has been studied
in both exact line search and inexact line search, and many
modifications have appeared, such as the following [20–23],
respectively.

A littlemodification from 𝛽WYL
𝑘 , Zhang [21] presented the

following CG method:

𝛽NPRP
𝑘 =

𝑔𝑘2 − (𝑔𝑘 / 𝑔𝑘−1) 𝑔𝑇𝑘𝑔𝑘−1
𝑔𝑘−12
. (9)

In the same manner, 𝛽DPRP
𝑘 construct the following CG by

using the denominator of 𝛽NPRP
𝑘 :

𝛽DPRP
𝑘 =

𝑔𝑘2 − (𝑔𝑘 / 𝑔𝑘−1) 𝑔𝑇𝑘𝑔𝑘−1


𝑤 𝑔𝑇𝑘 𝑑𝑘−1 + 𝑔𝑘−12
. (10)

In addition, 𝛽MLS∗
𝑘 is constructed by using the numerator of

𝛽WYL
𝑘 :

𝛽MLS∗
𝑘 = 𝑔𝑇𝑘 (𝑔𝑘 − (𝑔𝑘 / 𝑔𝑘−1) 𝑔𝑘−1)

−𝑔𝑇
𝑘−1

𝑑𝑘−1 + 𝑚 𝑔𝑇𝑘 𝑑𝑘−1
, (11)

where𝑚 ≥ 0 and 𝑤 ≥ 1.
Thedescent condition plays important rule inCGmethod

given by

𝑔𝑇𝑘 𝑑𝑘 < 0, 𝑘 ≥ 0. (12)

If we extend (12) to the following form,

𝑔𝑇𝑘 𝑑𝑘 ≤ −𝑐 𝑔𝑘2 , 𝑘 ≥ 0, 𝑐 > 0, (13)

then the search direction satisfies the sufficient descent
condition.

In this paper, we will present the new formula and the
algorithm in Section 2. Furthermore, we will establish the
global convergence of our method with several line searches
in Section 3. Numerical results with conclusion will be
presented in Sections 4 and 5, respectively.

2. The Modified Formula

In this section, 𝛽HZ∗
𝑘 is presented which is extended to 𝛽MLS∗

𝑘

and 𝛽NPRP
𝑘 method; that is,

𝛽HZ∗
𝑘 =

𝑔𝑘2 − (𝑔𝑘 / 𝑔𝑘−1) 𝑔𝑇𝑘𝑔𝑘−1


−𝑔𝑇
𝑘−1

𝑑𝑘−1 + 𝜃 𝑔𝑇𝑘 𝑑𝑘−1
, (14)

where ‖ ⋅ ‖means the Euclidean norm, and 𝜃 > 1.
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Algorithm 1.

Step 1 (initialization). Given 𝑥0, set 𝑘 = 0.
Step 2. Compute 𝛽𝑘 based on (14).

Step 3. Compute 𝑑𝑘 based on (3). If ‖𝑔𝑘‖ = 0, then stop.

Step 4. Compute 𝛼𝑘 based on some line search; we use in
numerical section WWP line search with 𝜎 = 0.1 and 𝛿 =
0.001.
Step 5. Update new point based on (2).

Step 6. Convergent test and stopping criteria: if 𝑓(𝑥𝑘) <
𝑓(𝑥𝑘+1) and ‖𝑔𝑘‖ ≤ 10−6 then stop; otherwise, go to Step 1
with 𝑘 = 𝑘 + 1.

3. The Global Convergence Analysis for
𝛽HZ∗
𝑘 Method

The following assumption is needed to be used in following
theorems.

Assumption 2. (I) 𝑓(𝑥) is bounded from below on the level
set Ω = {𝑥 ∈ R𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥1)}, where 𝑥1 is the starting
point.

(II) In some neighborhood 𝑁 of Ω, 𝑓 is continuous and
differentiable, and its gradient is Lipschitz continuous; that
is, for any 𝑥, 𝑦 ∈ 𝑁, there exists a constant 𝐿 > 0 such that
‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖.
Lemma 3. Let Assumption 2 hold. Consider any method in
form (2), (3), and 𝛼𝑘 satisfies the WWP line search (4) and
(6), in which the search direction is descent.Then, the following
condition holds:

∞

∑
𝑘=0

(𝑔𝑇𝑘 𝑑𝑘)
2

𝑑𝑘2
< ∞. (15)

Substituting (13) into (15), it follows that
∞

∑
𝑘=0

𝑔𝑘4𝑑𝑘2
< ∞. (16)

3.1. The Sufficient Descent Condition with Convergence
Properties for SWP Line Search

Theorem 4. Let sequences 𝑔𝑘 and 𝑑𝑘 be generated by methods
(2), (3), and (14); then (13) holds, where 𝑐 ∈ (0, 1).
Proof. We use proof by induction. From (3), we know that for
𝑘 = 0 it is hold. Suppose that it is true until 𝑘 − 1; that is,

𝑔𝑇𝑘−1𝑑𝑘−1 ≤ −𝑐 𝑔𝑘−12 ; (17)

then
1

−𝑔𝑇
𝑘−1

𝑑𝑘−1
≤ 1

𝑐 𝑔𝑘−12
. (18)

Now multiply (3) by 𝑔𝑇𝑘 :

𝑔𝑇𝑘 𝑑𝑘 = 𝑔𝑇𝑘 (−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1) = − 𝑔𝑘2 + 𝛽𝑘𝑔𝑇𝑘 𝑑𝑘−1

≤ − 𝑔𝑘2 + 𝑔𝑇𝑘 𝑑𝑘−1


𝑔𝑘2
𝜃 𝑔𝑇𝑘 𝑑𝑘−1

= − (1 − 1
𝜃) 𝑔𝑘2 ,

(19)

where 𝜃 > 1. Take 𝑐 = 1 − 1/𝜃 and complete the proof.

3.2. Global Convergence under WWP Line Search. Gilbert
and Nocedal [13] present an important theorem to find the
global convergence for a nonnegative part of PRP method; it
is summarized byTheorem 5. In addition, [13] presents a nice
property called Property∗, which plays strong roles in studies
of CG methods.

Property ∗. Consider a method of form (1) and (2), and
suppose 0 < 𝛾 ≤ ‖𝑔𝑘‖ ≤ 𝛾; we say that the method possesses
Property ∗ if there exists constant 𝑏 > 1 and 𝜆 > 0, where for
all 𝑘 ≥ 1, and we get |𝛽𝑘| ≤ 𝑏, and if ‖𝑥𝑘 − 𝑥𝑘−1‖ ≤ 𝜆, then
|𝛽𝑘| ≤ 1/2𝑏.
Theorem 5 (see [13]). Consider that any CG method of form
(2) and (3) achieves the following conditions that hold:

(I) 𝛽𝑘 ≥ 0
(II) The sufficient descent condition (13)

(III) Zoutendijk condition

(IV) Property ∗
(V) Assumption 2

Then the iterates are globally convergent.

Lemma 6. Suppose that Assumption 2 holds with Algorithm 1;
then 𝛽HZ∗

𝑘 satisfy Property ∗.
Proof. Since 𝛽HZ∗

𝑘 ≤ 𝛽MLS∗
𝑘 and since 𝛽MLS∗

𝑘 satisfies Property
∗, 𝛽HZ∗
𝑘 also achieves Property ∗; formore we suggest that the

reader reads Lemma 3.6 [24]. The proof is completed.

The following corollary is a result from Theorem 5 and
Lemma 3.

Corollary 7. Let sequences 𝑥𝑘 be generated by Algorithm 1.
If Assumption 2 holds true, then any line search satisfies
Zoutendijk condition; we have lim inf𝑘→∞‖𝑔𝑘‖ = 0.

3.3. Global Convergence Properties for Armijo Type
Line Search

Theorem 8. Suppose Assumption 2 is true. Consider the
methods of form (2) and (3) with 𝛽HZ∗

𝑘 , and 𝛼𝑘 is obtained by
(4) and (7). Then we have lim inf𝑘→∞‖𝑔𝑘‖ = 0.
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Proof. By using Lemma 2.8 in [1], we achieve

𝛼𝑘 > 𝑐, 𝑐 ∈ (0, 1) . (20)

Using (2) and (7), then
𝑑𝑘 ≤ 𝜎−1 𝑔𝑘 . (21)

From (2), (4), (7), and (20), we have

lim
𝑘→∞

𝑑𝑘 = 0. (22)

From Assumption 2 and (21), we obtain

𝑔𝑘+1 ≤ (1 + 𝐿
𝜎) 𝑔𝑘 . (23)

From (3),
𝑔𝑘+1 ≤ 𝑑𝑘+1 + 𝛽𝑘+1 𝑑𝑘 . (24)

Using (23), (13), (14), and (24), then

𝑔𝑘+1 ≤ 𝑑𝑘+1 + (1 + 𝐿/𝜎)2
𝑐

𝑑𝑘 , (25)

where 𝑐 ∈ (0, 1). Take the limit and use (22), and thenwe have
lim inf𝑘→∞‖𝑔𝑘‖ = 0. The proof is completed.

4. Numerical Results and Discussions

To analyze the efficiency of the newmethod, we selected some
of the test functions in Table 1 fromCUTEr [25], Andrei [26],
and Adorio and Diliman [24]. We performed a comparison
with other CGmethods, includingNPRP andDPRPmethods
using weak Wolfe-Powell line search with 𝛿 = 0.001. The
tolerance 𝜀 is selected to 10−6 for all algorithms to investigate
the rapidity of the iteration methods towards the optimal.
The gradient value is taken as the stopping criteria. Here,
the stopping criteria considered ‖𝑔𝑘‖ ≤ 10−6. Since the
parameters NPRP andDPRP are tested based onweakWolfe-
Powell line search, the modified parameters HZ∗ are tested
based on weak Wolfe line search with values of 𝜎 = 0.1 and
𝛿 = 0.001. In addition, the values of 𝜃 = 2 and 𝑤 = 2 are for
HZ∗ and DPRP parameters, respectively.

We used Matlab 7.9 subroutine program, with CPU
processor Intel (R) Core (TM), i3 CPU, and 2GBDDR2RAM
under strong Wolfe line search. The performance results are
shown in Figures 1 and 2, respectively, using a performance
profile introduced byDolan andMoré [27].This performance
measure was introduced to compare a set of solvers 𝑆 on a set
of problems 𝜌. Assuming 𝑛𝑠 solvers and 𝑛𝑝 problems in 𝑆 and
𝜌, respectively, the measure 𝑡𝑝,𝑠 is defined as the computation
time (e.g., the number of iterations or the CPU time) required
for solver 𝑠 to solve problem 𝑝.

To create a baseline for comparison, the performance of
solver 𝑠 on problem𝑝 is scaled by the best performance of any
solver in 𝑆 on the problem using the ratio:

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min {𝑡𝑝,𝑠: 𝑠 ∈ 𝑆} . (26)

Table 1: The test functions.

Number Function Dimension/s

1 EXTENDEDWHITE &
HOlST 500, 1000, 5000, 10000

2 EXTENDED
ROENBROCK 500, 1000, 5000, 10000

3 EXTENDED BEALE 500, 1000, 5000, 10000

4 EXTENDED
HIMMELBLAU 500, 1000, 5000, 10000

5 EXTENDED DENSCHNB 500, 1000, 5000, 10000
6 SIX HUMP 2
7 THREE HUMP 2
8 BOOTH 2
9 SHALLOW 500, 1000, 5000, 10000
10 DIXMAANA 1500, 3000, 6000, 9000
11 DIXMAANB 1500, 3000, 6000, 9000
12 NONDIA (Shanno-78) 500, 1000, 5000, 1000
13 DQDRTIC 500, 1000, 5000, 10000
14 RAYDAN 1 500, 1000, 5000, 10000

15 EXTENDED
TRIDIAGONAL 1 500, 1000, 5000, 1000

16 GENERALIZED
QUARTIC GQ1 500, 1000, 5000, 10000

17 DIAGONAL4 500, 1000, 5000, 10000
18 EXTENDED POWELL 4

19 PERTURBED
QUADRATIC 500, 1000, 5000

20 EXTENDED CLIFF 10, 20, 30, 40

21 A QUADRATIC
FUNCTION QF2 500, 1000, 5000, 10000

22 DIAGONAL 2 500, 1000, 5000, 10000
23 SUM SQUARES 500, 1000, 5000, 10000
24 ZETTL 2
25 DIXMAANC 1500, 3000, 6000, 9000
26 NONDIA 500, 1000, 5000, 10000

Let the parameter 𝑟𝑀 ≥ 𝑟𝑝,𝑠 for all𝑝, 𝑠 be selected, and further
assume that 𝑟𝑝,𝑠 = 𝑟𝑀 if and only if the solver 𝑠 does not solve
problem 𝑝. As we would like to obtain an overall assessment
of the performance of a solver, we defined the measure:

𝑃𝑠 (𝑡) = 1
𝑛𝑝 size {𝑝 ∈ 𝜌: 𝑟𝑝,𝑠 ≤ 𝑡} . (27)

Thus, 𝑃𝑠(𝑡) is the probability for solver 𝑠 ∈ 𝑆 that the
performance ratio 𝑟𝑝,𝑠 is within a factor 𝑡 ∈ R of the best
possible ratio. If we define the function 𝑝𝑠 as the cumulative
distribution function for the performance ratio, then the
performance measure 𝑝𝑠 : R → [0, 1] for a solver is
nondecreasing and piecewise continuous function from the
right. The value of 𝑝𝑠(1) is the probability that the solver
achieves the best performance of all of the solvers. In general,
a solver with high values of 𝑃𝑠(𝑡), which would appear in the
upper right corner of the figure, is preferable.
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Figure 1: Performance profile based on the CPU time with weak
Wolfe-Powell line search.
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Figure 2: Performance profile based on the number of iterations
with the weak Wolfe-Powell line search.

It is clear that HZ∗ parameter is strong competitive with
NPRP parameter and slightly better in some cases for all
graphs in Figures 1, 2, 3, and 4 which include the number
of iterations, CPU times, gradient evaluations, and function
evaluations. On the other hand, it is clear that HZ∗ parameter
outperforms DPRP parameter in all performance profiles.

5. Conclusion

In this paper, we proposed a new modification of conjugate
gradientmethod extended fromNPRPmethods. Our numer-
ical results had shown that the new coefficient is comparable
compared to other conventional CG methods. This method
converges globally with several line searches with descent
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Figure 3: Performance profile based on the number of gradient
evaluations with weak Wolfe-Powell line search.
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Figure 4: Performance profile based on the function evolutionswith
weak Wolfe-Powell line search.

direction. However, in future, we will focus on speed using
hybrid methods. Additionally, we will try to compare several
line searches with modern CG method.
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