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We investigate the probability of the first hitting time of some discrete Markov chain that converges weakly to the Bessel process.
Both the probability that the chain will hit a given boundary before the other and the average number of transitions are computed
explicitly. Furthermore, we show that the quantities that we obtained tend (with the Euclidian metric) to the corresponding ones
for the Bessel process.

1. Introduction

The study of the probability of the hitting times for stochastic
differential equations is an active area of research and they are
of great interest inmany applications, for example, in finance,
the study of path dependent exotic options as barrier options,
in percolation theory [1], in optimal control problems [2], and
in neuroscience [3]. In this paper we investigate the discrete
version of Bessel processes defined by an stochastic differ-
ential equation. It is well known [4] that, given a diffusion
process defined by a stochastic differential equation, we can
produce a discreteMarkov chain that converges weakly to the
solution of this stochastic differential equation (by making
use of a binomial approximation). In this paper we show
that the probability of the first passage times and the number
of the transitions of this discrete Markov chain tend to the
corresponding ones for the continuous times Bessel process.

The discrete versions of stochastic processes are interest-
ing in themselves; for instance, in quantum mechanics the
motion of a particle should be essentially discontinuous and
random. Moreover, in [5] the authors show the application
of the discrete version of Cox-Ingersoll-Ross process in
hydrology.

In this paper, we consider the so-called gambler’s ruin
problem for a discrete-time Markov chain that converges to
a Bessel process. Phenomena governed by Bessel processes
abound in the physical world, as in the case of growth
phenomena governed by Stochastic Loewner Evolution (SLE)
[1]. Other phenomena include first hitting time of Bessel

processes in the study of systems at or near the point of phase
transition in statistical physics. In finance, a typical example
is the study of stock price. It is well known that in a volatility-
stabilizedmarket the stock prices can be represented in terms
of Bessel processes. Since the stock price does not vary
completely continuously, the discrete formulas that will be
derived in the present paper would be interesting.

The paper is organized as follows. In Section 2, we briefly
describe the transition probability derived from the Bessel
stochastic differential equation. Our main contribution is in
the third section (Section 3.2): We find the explicit formula
of the average number of transitions needed to end the
game that was impossible to obtain in [6]. We also show the
sequence of the probability of the first passage times and the
average number of transitions to end the game converges
(with Euclidean metric) to the corresponding values in the
continuous case.

2. Bessel Process Defined by
a Stochastic Differential Equation and
Simple Binomial Approximation

2.1. Preliminaries on Bessel Processes. We consider the Bessel
process defined by the following differential equation:

𝑑𝑅 (𝑡) = (] + 12) 1𝑅 (𝑡)𝑑𝑡 + 𝑑𝐵 (𝑡) ,
where 𝐵 (𝑡) Brownian motion. (1)
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Next, let 𝑎 = ] + 1/2 and if there is no ambiguity we remove
the index 𝑡 on𝑅. Assume that𝑅(0) = 𝑟 ∈ (1,𝑁), where𝑁 ∈ N

(for simplicity), and define

𝜏 (𝑟) = inf {𝑡 > 0 : 𝑅 (𝑡) = 1 or 𝑁 | 𝑅 (0) = 𝑟} . (2)

As is well known (see, e.g., [7], page 220), the probability

𝑝 (𝑟) = 𝑃 [𝑅 [𝜏 (𝑟)] = 𝑁] . (3)

satisfies the ordinary differential equation:
12𝑝 (𝑟) + 𝑎𝑟 𝑝 (𝑟) = 0, with 𝑝 (1) = 0, 𝑝 (𝑁) = 1. (4)

We easily find that, if 𝑎 ̸= 1/2
𝑝 (𝑟) = 𝑟1−2𝑎 − 𝑁1−2𝑎𝑁1−2𝑎 − 1 for 1 ⩽ 𝑟 ⩽ 𝑁, (5)

and when 𝑎 = 1/2, the solutions is
𝑝 (𝑟) = ln 𝑟

ln𝑁 for 1 ⩽ 𝑟 ⩽ 𝑁. (6)

Let

𝑚(𝑢) = 𝐸 [𝜏 (𝑢)] . (7)

In [7], we see the function 𝑚(𝑢) satisfies the second-order
ordinary differential equation:

12𝑚 (𝑢) + 𝑎𝑢𝑚 (𝑢) = −1 with 𝑚(1) = 𝑚 (𝑁) = 0. (8)

The general solution of this equation is

𝑚(𝑢) = ∫𝑢
1
𝑟−2𝑎 (−2∫𝑁

𝑟
𝑦2𝑎 𝑑𝑦 + 𝑐0)𝑑𝑟, (9)

where

𝑐0 = 2 ∫𝑁
1

𝑟−2𝑎 (∫𝑁
𝑟

𝑦2𝑎 𝑑𝑦) 𝑑𝑟
∫𝑁
1

𝑟−2𝑎 𝑑𝑟 , 𝑎 ̸= 12 . (10)

2.2. Preliminaries: Binomial Approximation. In this section
we recall binomial approximation briefly; for more details
please see [4]. We wish to find a sequence of stochastic
processes that converges in distribution to process (1) over
the time interval [0, 𝑇].

Take the interval [0, 𝑇], and chop it into 𝑛 equal pieces{0, 𝑡1, 𝑡2, . . . , 𝑡𝑛} of length Δ𝑡 ≡ 𝑇/𝑛, 𝑡𝑗 = 𝑗Δ𝑡. Define a
sequence 𝑅𝑡𝑗 = 1 + 𝑗Δ𝑟 of binomial approximations from
(1), which is constant between nodes, such that at any given
node 𝑅𝑡𝑗 the process jumps up to 𝑅+𝑡𝑗 = 𝑅𝑡𝑗+1 (resp., down to
𝑅−𝑡𝑗 = 𝑅𝑡𝑗−1) with probability 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 (resp., 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 ), and stays
at the node with probability 1 − 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 − 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 .
P [𝑅𝑡𝑗+1 = 𝑅+ (𝑟𝑡𝑗) | 𝑅𝑡𝑗 = 𝑟𝑡𝑗] = 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 ,
P [𝑅𝑡𝑗+1 = 𝑅− (𝑟𝑡𝑗) | 𝑅𝑡𝑗 = 𝑟𝑡𝑗] = 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 ,
P [𝑅𝑡𝑗+1 = 𝑅𝑡𝑗 = 𝑐 | 𝑅𝑡𝑗 = 𝑟𝑡𝑗] = 1 − 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 − 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 .

(11)

The local drift of 𝑅𝑡𝑗 is given by

𝜇Δ𝑡 = {𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 − 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 }Δ𝑟, (12)

and the local second moment of 𝑅𝑡𝑗 is given by

𝜎Δ𝑡
= [𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 + 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 − {𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 − 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 }2] (Δ𝑟)2 . (13)

On the other hand,

lim
Δ𝑡→0

E [{𝑅𝑡𝑗+1 − 𝑅𝑡𝑗} | 𝑅𝑡𝑗]Δ𝑡 = lim
Δ𝑟,Δ𝑡→0

𝜇Δ𝑡Δ𝑡 = 𝑎𝑅𝑡𝑗 ,

lim
Δ𝑡→0

var [{𝑅𝑡𝑗+1 − 𝑅𝑡𝑗} | 𝑅𝑡𝑗]Δ𝑡 = lim
Δ𝑟,Δ𝑡→0

𝜎Δ𝑡Δ𝑡 = 1.
(14)

By solving (12), (13), and (14), we obtain

𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 = 12𝐴 [
[
1 + 𝑎𝑟𝑡𝑗 Δ𝑟 + Δ𝑡( 𝑎𝑟𝑡𝑗 )

2]
]

,

𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 = 12𝐴 [
[
1 − 𝑎𝑟𝑡𝑗 Δ𝑟 + Δ𝑡( 𝑎𝑟𝑡𝑗 )

2]
]

.
(15)

Since 1/𝑟𝑡𝑗 is bounded, we can write Δ𝑡(𝑎/𝑟𝑡𝑗)2 = 𝑂(Δ𝑡);
hence we obtain

𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 = 12𝐴 [1 + 𝑎Δ𝑟𝑟𝑡𝑗 + 𝑂 (Δ𝑡)] ,

𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 = 12𝐴 [1 − 𝑎Δ𝑟𝑟𝑡𝑗 + 𝑂 (Δ𝑡)] .
(16)

We obtain the following transition probabilities 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 ,𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 , and 𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗 given by

𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗+1 ≃ 12𝐴 [1 + 𝑎Δ𝑟𝑟𝑡𝑗 ] ,

𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗−1 ≃ 12𝐴 [1 − 𝑎Δ𝑟𝑟𝑡𝑗 ] ,
𝑝𝑟𝑡𝑗 ,𝑟𝑡𝑗 ≃ 1 − 1𝐴.

(17)

We state the following assumptions, under which 𝑅𝑡𝑗 con-
verges weakly to 𝑅𝑡 (see [8]).
Assumption 1. With probability 1, a solution {𝑅𝑡} of the
stochastic integral equation

𝑅𝑡 = 𝑅0 + ∫𝑡
0

𝑎𝑅 (𝑠) 𝑑𝑠 + ∫𝑡
0
𝑑𝐵𝑠 (18)

exists for 0 < 𝑡 < ∞, and is distributionally unique.
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Assumption 2. For all 𝛿 > 0 and all 𝑇 > 0,
lim
Δ𝑡→0

sup
|𝑟|⩽𝛿
0⩽𝑡⩽𝑇

𝑅+Δ𝑡 (𝑟, 𝑡) − 𝑟 (𝑡) = 0,
lim
Δ𝑡→0

sup
|𝑟|⩽𝛿
0⩽𝑡⩽𝑇

𝑅−Δ𝑡 (𝑟, 𝑡) − 𝑟 (𝑡) = 0. (19)

Assumption 3. For all 𝛿 > 0 and all 𝑇 > 0,
lim
Δ𝑡→0

sup
|𝑟|⩽𝛿
0⩽𝑡⩽𝑇

𝜇Δ𝑡 (𝑟, 𝑡) −
𝑎𝑟 (𝑡)

 = 0,
lim
Δ𝑡→0

sup
|𝑟|⩽𝛿
0⩽𝑡⩽𝑇

𝜎Δ𝑡 (𝑟, 𝑡) − 1 = 0. (20)

Theorem4. Under Assumptions 1–3,𝑅𝑡𝑗 ⇒ 𝑅𝑡 converge to the
solution of (1), where⇒ denotes weak convergence.

Next, we assume 𝑅𝑡𝑗 is bounded for any 𝑗 = 0, 1, . . . , 𝑛.
3. Discrete Value of the Probability and
the Average Number of Transitions of First
Passage Time, of the Bessel Process

Let

𝑇𝑗 = inf {𝑚 > 0 : 𝑅𝑡𝑚 = 1 or 𝑁 | 𝑅0 = 1 + 𝑗Δ𝑟} , (21)

𝑝𝑗 = 𝑃 [𝑅𝑇𝑗 = 𝑁] ,
𝑑𝑗 = 𝐸 [𝑅𝑇𝑗 = 𝑁] . (22)

In this section, we will compute the quantity 𝑝𝑗 for 𝑗 ∈{1, . . . , 𝑘 − 1}. We will show that 𝑝𝑗 converges to the function𝑝(𝑟) for the Bessel process asΔ𝑟 decreases to zero and 𝑘 tends
to infinity in such a way that 1 + 𝑘Δ𝑟 remains equal to𝑁.

3.1. Computation of the Probability 𝑝𝑗
3.1.1. Assuming First That Δ𝑟 = 1. Then the state space is{1, 2, . . . , 𝑁} and the transition probabilities become

𝑝𝑗,𝑗+1 = 12𝐴 {1 + 𝑎𝑗} ,
𝑝𝑗,𝑗−1 = 12𝐴 {1 − 𝑎𝑗} ,
𝑝𝑗,𝑗 = 1 − 1𝐴,

(23)

for 𝑗 ∈ {2, . . . , 𝑁 − 1}. It is well known that the probability
defined in (22) satisfies the following difference equation:

𝑝𝑗 = 𝑝𝑗,𝑗+1𝑝𝑗+1 + 𝑝𝑗,𝑗−1𝑝𝑗−1 + 𝑝𝑗,𝑗𝑝𝑗. (24)
Equation (24) can be rewritten as

𝑤𝑗 − (𝑗 − 𝑎𝑗 + 𝑎)𝑤𝑗−1 = 0 where 𝑤𝑗 = 𝑝𝑗 − 𝑝𝑗−1. (25)

We find that the solution of this first-order difference equa-
tion that satisfies the boundary condition 𝑤1 = 𝑝2 is given
by

𝑤𝑗 = 𝑓 (𝑎) Γ (𝑗 + 1 − 𝑎)
Γ (𝑗 + 1 + 𝑎) ,

where 𝑓 (𝑎) = − (1 + 𝑎) Γ (𝑎)(1 − 𝑎) Γ (−𝑎) .
(26)

We have the following lemma.

Lemma 5. For 𝑎 ̸= 1/2, the unique solution of (24) subject to
the boundary conditions (4) is given by

𝑝𝑗 = (𝑗 + 𝑎) (Γ (𝑗 + 1 − 𝑎) /Γ (𝑗 + 1 + 𝑎)) − (1 + 𝑎) (Γ (2 − 𝑎) /Γ (2 + 𝑎))
(𝑁 + 𝑎) (Γ (𝑁 + 1 − 𝑎) /Γ (𝑁 + 1 + 𝑎)) − (1 + 𝑎) (Γ (2 − 𝑎) /Γ (2 + 𝑎)) for 𝑗 = 1, 2, . . . , 𝑁. (27)

Proof. We have

𝑝𝑗+1 − 𝑝𝑗 = 𝑓 (𝑐) Γ (𝑗 + 1 − 𝑐)
Γ (𝑗 + 1 + 𝑐)

= 𝑓 (𝑐)Γ (2𝑐) ∫
1

0
𝑡𝑗𝑡−𝑐 (1 − 𝑡)2𝑐−1 𝑑𝑡,

𝑝𝑗 − 𝑝1 =
𝑗−1∑
𝑘=1

(𝑝𝑘+1 − 𝑝𝑘)

= 𝑓 (𝑐)Γ (2𝑐) ∫
1

0

𝑡 − 𝑡𝑗1 − 𝑡 𝑡−𝑐 (1 − 𝑡)2𝑐−1 𝑑𝑡.

(28)

Since𝑝1 = 0 and𝐵(𝑧, 𝑤) = ∫1
0
𝑡𝑧−1(1−𝑡)𝑤−1𝑑𝑡 = ∫∞

0
(𝑡𝑧−1/(1+𝑡)𝑧+𝑤)𝑑𝑡 = Γ(𝑧)Γ(𝑤)/Γ(𝑧 + 𝑤) we obtain,

𝑝𝑗 = 𝑓 (𝑐)Γ (2𝑐) ∫
1

0
𝑡1−𝑐 (1 − 𝑡)2𝑐−2 𝑑𝑡 − 𝑓 (𝑐)Γ (2𝑐)

⋅ ∫1
0
𝑡𝑗−𝑐 (1 − 𝑡)2𝑐−2 𝑑𝑡

= 𝑓 (𝑐) Γ (2𝑐 − 1)Γ (2𝑐) [(𝑐 + 1) Γ (2 − 𝑐)Γ (2 + 𝑐)
− (𝑗 + 𝑐) Γ (𝑗 + 1 − 𝑐)

Γ (𝑗 + 𝑐 + 1) ] .

(29)
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By applying boundary conditions (4), we obtain

1 = 𝑝𝑁 = 𝑓 (𝑎) Γ (2𝑎 − 1)Γ (2𝑎) [(𝑎 + 1) Γ (2 − 𝑎)Γ (2 + 𝑎) − (𝑁 + 𝑎) Γ (𝑁 + 1 − 𝑎)Γ (𝑁 + 𝑎 + 1) ] ,
𝑓 (𝑎) Γ (2𝑎 − 1)Γ (2𝑎) = 1(𝑎 + 1) Γ (2 − 𝑎) /Γ (2 + 𝑎) − (𝑁 + 𝑎) Γ (𝑁 + 1 − 𝑎) /Γ (𝑁 + 𝑎 + 1) ,

(30)

and hence

𝑝𝑗 = (𝑗 + 𝑎) (Γ (𝑗 + 1 − 𝑎) /Γ (𝑗 + 1 + 𝑎)) − (1 + 𝑎) (Γ (2 − 𝑎) /Γ (2 + 𝑎))
(𝑁 + 𝑎) (Γ (𝑁 + 1 − 𝑎) /Γ (𝑁 + 1 + 𝑎)) − (1 + 𝑎) (Γ (2 − 𝑎) /Γ (2 + 𝑎)) for 𝑗 = 1, 2, . . . , 𝑁. (31)

Now we suppose 𝑎 ̸= 1/2.
Lemma 6. When 𝑎 tends to 1/2, the solution becomes

𝑝𝑗 = Ψ (𝑗 + 1/2) − 2 + 𝛾 + 2 ln 2Ψ (𝑁 + 1/2) − 2 + 𝛾 + 2 ln 2 , (32)

where Ψ(𝑧) = Γ(𝑧)/Γ(𝑧) and 𝛾 is Euler’s constant.

Proof. Indeed, we have

𝑝𝑗 = (𝑗 + 𝑎) (Γ (𝑗 + 1 − 𝑎) /Γ (𝑗 + 1 + 𝑎)) − (1 + 𝑎) (Γ (2 − 𝑎) /Γ (2 + 𝑎))(𝑁 + 𝑎) (Γ (𝑁 + 1 − 𝑎) /Γ (𝑁 + 1 + 𝑎)) − (1 + 𝑎) (Γ (2 − 𝑎) /Γ (2 + 𝑎))
= (𝑗 + 𝑎) (Γ (𝑗 + 1 − 𝑎) / (𝑗 + 𝑎) Γ (𝑗 + 𝑎)) − (1 + 𝑎) Γ (2 − 𝑎) / (1 + 𝑎) Γ (1 + 𝑎)(𝑁 + 𝑎) Γ (𝑁 + 1 − 𝑎) / (𝑁 + 𝑎) Γ (𝑁 + 𝑎) − (1 + 𝑎) Γ (2 − 𝑎) / (1 + 𝑎) Γ (1 + 𝑎) for 𝑗 = 1, 2, . . . , 𝑁,

lim
𝑎→1/2

𝑝𝑗 = lim
𝑎→1/2

(𝑑/𝑑𝑎) (Γ (𝑗 + 1 − 𝑎) /Γ (𝑗 + 𝑎)) − (𝑑/𝑑𝑎) (Γ (2 − 𝑎) /Γ (1 + 𝑎))
(𝑑/𝑑𝑎) (Γ (𝑁 + 1 − 𝑎) /Γ (𝑁 + 𝑎)) − (𝑑/𝑑𝑎) (Γ (2 − 𝑎) /Γ (1 + 𝑎)) = Ψ (𝑗 + 1/2) − Ψ (3/2)Ψ (𝑁 + 1/2) − Ψ (3/2) .

(33)

Since Ψ(3/2) = 2 − 𝛾 − 2 ln 2 (see [9]), we obtain

lim
𝑎→1/2

𝑝𝑗 = Ψ (𝑗 + 1/2) − 2 + 𝛾 + 2 ln 2Ψ (𝑁 + 1/2) − 2 + 𝛾 + 2 ln 2 . (34)

3.1.2. Now, in the General Case When Δ𝑟 > 0. We must solve
the difference equation:

𝑝𝑗 = 12𝐴 {1 + 𝑎Δ𝑟1 + 𝑗Δ𝑟}𝑝𝑗+1
+ 12𝐴 {1 − 𝑎Δ𝑟1 + 𝑗Δ𝑟}𝑝𝑗−1 + {1 − 1𝐴}𝑝𝑗,

(35)

which can be simplified to

𝑝𝑗+1 − 𝑝𝑗 = 1 − 𝑎Δ𝑟/ (1 + 𝑗Δ𝑟)
1 + 𝑎Δ𝑟/ (1 + 𝑗Δ𝑟) (𝑝𝑗 − 𝑝𝑗−1) . (36)

The boundary conditions become

𝑝0 = 0,
𝑝𝑘 = 1. (37)

Next, proceeding as above, we obtain that if 𝑎 ̸= 1/2, the
probability 𝑝𝑗 is given by
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𝑝𝑗
= (1 + 𝑗Δ𝑟 + 𝑎Δ𝑟) (Γ ((1 + (𝑗 + 1) Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((1 + (𝑗 + 1) Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟)) − (1 + 𝑎Δ𝑟) (Γ ((1 + Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((1 + Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟))(1 + 𝑘Δ𝑟 + 𝑎Δ𝑟) (Γ ((1 + (𝑘 + 1) Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((1 + (𝑘 + 1) Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟)) − (1 + 𝑎Δ𝑟) (Γ ((1 + Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((1 + Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟)) . (38)

Writing

𝑛 = 1 + 𝑗Δ𝑟,
𝑁 = 1 + 𝑘Δ𝑟, (39)

in terms of 𝑛 and𝑁, this expression becomes

𝑝𝑛
= (𝑛 + 𝑎Δ𝑟) (Γ ((𝑛 + Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((𝑛 + Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟)) − (1 + 𝑎Δ𝑟) (Γ ((1 + Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((1 + Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟))(𝑁 + 𝑎Δ𝑟) (Γ ((𝑁 + Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((𝑁 + Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟)) − (1 + 𝑎Δ𝑟) (Γ ((1 + Δ𝑟 − 𝑎Δ𝑟) /Δ𝑟) /Γ ((1 + Δ𝑟 + 𝑎Δ𝑟) /Δ𝑟)) ,

(40)

for 𝑛 ∈ {1, 1 + Δ𝑟, . . . , 1 + 𝑘Δ𝑟 = 𝑁}. The solution reduces to

𝑝𝑛 = Ψ ((2𝑛 + Δ𝑟) /2Δ𝑟) − Ψ ((2 + Δ𝑟) /2Δ𝑟)Ψ ((2𝑁 + Δ𝑟) /2Δ𝑟) − Ψ ((2 + Δ𝑟) /2Δ𝑟)
if 𝑎 = 12 .

(41)

We can now state the following proposition.

Proposition 7. Let 𝑛 = 1 + 𝑗Δ𝑟 for 𝑗 ∈ {0, 1, . . . , 𝑘}, with 𝑘
such that 1+𝑘Δ𝑟 = 𝑁.The probability𝑝𝑛 that the discrete-time
Markov chain defined in Section 2.1, starting from 𝑛, will hit𝑁
before 1 is given by (40) if 𝑎 ̸= 1/2. The value of the probability𝑝𝑛 tends to the function in (41) when 𝑎 tends to 1/2.

Next, when 𝑎 = 1/2, by making use of the following
approximation Ψ(𝑧) ∼ ln 𝑧 for large 𝑧, we can write that

lim
Δ𝑟↓0

𝑝𝑛 = lim
Δ𝑟↓0

ln (2𝑛 + Δ𝑟) − ln (2 + Δ𝑟)
ln (2𝑁 + Δ𝑟) − ln (2 + Δ𝑟) = ln 𝑛

ln𝑁
for 𝑛 ∈ [1,𝑁] .

(42)

This expression corresponds to the function𝑝(𝑥) given in (6),
obtained when 𝑎 = 1/2. Finally, we have

Γ (𝑧 + 𝛼)Γ (𝑧 + 𝛽) ∝ 𝑧𝛼−𝛽 (1 + 𝑂(1𝑧)) , (43)

as |𝑧| tends to infinity (if |arg (𝑧 + 𝛼)| < 𝜋; see [9]). Hence, in
the case 𝑎 ̸= 0, 1/2, we can write that

lim
Δ𝑟↓0

𝑝𝑛 = 𝑛1−2𝑎 − 1𝑁1−2𝑎 − 1 , for 1 ⩽ 𝑛 ⩽ 𝑁. (44)

Therefore, we retrieve the formula for 𝑝(𝑟) in (5). In the next
section, we will derive the formulas that correspond to the
function𝑚(𝑟) in Section 1.

3.2. Computation of the Mean Number of Transitions 𝑑𝑗
Needed to End the Game. We now turn to the problem

of computing the mean number 𝑑𝑗 of transitions that the
Markov chain {𝑅𝑡𝑚 , 𝑚 = 0, 1, . . .}, starting from 𝑅0 = 1 + 𝑗Δ𝑟,
takes to reach either 1 or 1 + 𝑘Δ𝑟 = 𝑁. Unlike the results
of [6], we find the explicit formula of the average number of
transitions needed to end the game.

3.2.1. The Case Δ𝑟 = 1. If Δ𝑟 = 1, the state of the Markov
chain is the set {1, 2, . . . ,N}. Conditioning on the result of
the first transition of the chain and taking this first transition
into account, we obtain that the quantity 𝑑𝑗 = 𝐸[𝑅𝑇𝑗 = 𝑁]
satisfies the second-order linear, nonhomogeneous difference
equation

𝑑𝑗 = 𝑝𝑗,𝑗+1𝑑𝑗+1 + 𝑝𝑗,𝑗−1𝑑𝑗−1 + 𝑝𝑗,𝑗𝑑𝑗 + 1
for 𝑗 = 2, . . . , 𝑁 − 1, (45)

where the probabilities 𝑝𝑗,𝑗+1, 𝑝𝑗,𝑗−1, and 𝑝𝑗,𝑗 are defined,
respectively, in (17), with the boundary conditions:

𝑑1 = 𝑑𝑁 = 0. (46)

We have

𝑞𝑗 − (𝑗 − 𝑎𝑗 + 𝑎) 𝑞𝑗−1 = −2𝐴 𝑗𝑗 + 𝑎
where 𝑞𝑗 = 𝑑𝑗+1 − 𝑑𝑗.

(47)

Let 𝑟1(𝑗) = (𝑗 − 𝑎)/(𝑗 + 𝑎), 𝑟2(𝑗) = −2𝐴(𝑗/(𝑗 + 𝑎)).
Now, by making use of the formula of Batchelder [10] (5,

p.62), we obtain that a formal particular rational solution 𝑅∗𝑗
of (47) is given by

𝑅∗𝑗 = −∞∑
𝑘=0

𝑟2 (𝑗 + 𝑘)
∏𝑘𝑖=0𝑟1 (𝑗 + 𝑖) = 2𝐴Γ (𝑗 − 𝑎)

Γ (𝑗 + 𝑎)
⋅ ∞∑
𝑘=0

(𝑗 + 𝑘) Γ (𝑗 + 𝑎 + 𝑘)
(𝑗 + 𝑘 − 𝑎) Γ (𝑗 − 𝑎 + 𝑘) = 2𝐴
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⋅ Γ (𝑗 − 𝑎)
Γ (𝑗 + 𝑎) [∞∑

𝑘=0

Γ (𝑗 + 𝑎 + 𝑘 + 1)
Γ (𝑗 − 𝑎 + 𝑘 + 1)

− 𝑎∞∑
𝑘=0

Γ (𝑗 + 𝑎 + 𝑘)
Γ (𝑗 − 𝑎 + 𝑘 + 1)] .

(48)

Then

𝑅∗𝑗 = 2𝐴Γ (𝑗 − 𝑎)
Γ (𝑗 + 𝑎) [Γ (𝑗 + 𝑎 + 1)

Γ (𝑗 − 𝑎 + 1)Γ (1)
⋅ 𝐹 (𝑗 + 𝑎 + 1, 1; 𝑗 − 𝑎 + 1, 1) − 𝑎Γ (𝑗 + 𝑎) Γ (1)

Γ (𝑗 − 𝑎)
⋅ 𝐹 (𝑗 + 𝑎, 1; 𝑗 − 1, 1)] ,

(49)

where 𝐹(𝑎, 𝑏; 𝑐; 𝑧) = (Γ(𝑐)/Γ(𝑎)Γ(𝑏)) ∑∞𝑛=0(Γ(𝑎 + 𝑛)Γ(𝑏 +𝑛)/Γ(𝑐 + 𝑛))(𝑧𝑛/𝑛!), hypergeometric function.

Proposition 8. In the case Δ𝑟 = 1, the mean number 𝑑𝑗 of
transitions needed by the Markov chain, starting from 𝑗, to
reach either 1 or𝑁 can be expressed as follows:

𝑑𝑗 =
𝑗−1∑
𝑘=1

{𝛼0 Γ (𝑘 + 1 − 𝑎)Γ (𝑘 + 1 + 𝑎) + 𝑅∗𝑘} , (50)

for 𝑗 = 1, . . . , 𝑁, where the constant 𝛼0 is given by

𝛼0 = −∑𝑁−1𝑘=1 𝑅∗𝑘∑𝑁−1𝑘=1 (Γ (𝑘 + 1 − 𝑎) /Γ (𝑘 + 1 + 𝑎)) . (51)

3.2.2.The CaseΔ𝑟 > 0. To obtain the solution to our problem
in the case when Δ𝑟 > 0, we must find a particular solution
of

𝑑𝑗 = 12𝐴 {1 + 𝑎Δ𝑟1 + 𝑗Δ𝑟} 𝑑𝑗+1
+ 12𝐴 {1 − 𝑎Δ𝑟1 + 𝑗Δ𝑟} 𝑑𝑗−1

(52)

+ {1 + 1𝐴}𝑑𝑗 + 1, (53)

for 𝑗 = 1, . . . , 𝑘 − 1, with 𝑑0 = 𝑑𝑘 = 0; proceeding as above by
letting 𝑑𝑗+1−𝑑𝑗 = 𝑞𝑗, we can rewrite this second-order linear,
nonhomogeneous difference equation as follows:

𝑞𝑗+1 − (1 + 𝑗Δ𝑟 − 𝑎Δ𝑟1 + 𝑗Δ𝑟 + 𝑎Δ𝑟) 𝑞𝑗 = −2𝐴 (1 + 𝑗Δ𝑟)
1 + 𝑗Δ𝑟 + 𝑎Δ𝑟 . (54)

We deduce from the preceding subsection that

𝑅∗𝑗 = −2𝐴Γ (1/Δ𝑟 + 𝑗 − 𝑎)
Γ (1/Δ𝑟 + 𝑗 + 𝑎)

⋅ ∞∑
𝑛=0

( 1Δ𝑟 + 𝑛 + 𝑘) Γ (1/Δ𝑟 + 𝑘 + 𝑛 + 𝑎)Γ (1/Δ𝑟 + 𝑘 + 𝑛 − 𝑎 + 1) .
(55)

To complete the work, we now show that 𝑑𝑗 ×Δ𝑡 converges to
the function 𝑚(𝑟) when we choose Δ𝑡 = (Δ𝑟)2/𝐴. To do so,
we express the general solution of (53) in terms of 𝑟 = 1+𝑗Δ𝑟
and write 𝑑𝑗 as 𝑑(𝑟):

𝑑 (𝑟) ≃ 𝛼0 (Δ𝑟) Γ (𝑟/Δ𝑟 − 𝑎 + 1) Γ (1/Δ𝑟 + 𝑎 + 1)Γ (1/Δ𝑟 + 𝑎 + 1) Γ (𝑟/Δ𝑟 − 𝑎 + 1)
− 2𝐴Γ (𝑟/Δ𝑟 − 𝑎)Γ (𝑟/Δ𝑟 + 𝑎)
⋅ ∞∑
𝑛=0

((𝑟 + 𝑛Δ𝑟) /Δ𝑟) Γ ((𝑟 + 𝑛Δ𝑟) /Δ𝑟 + 𝑎)Γ ((𝑟 + 𝑛Δ𝑟) /Δ𝑟 − 𝑎 + 1) ,
(56)

since for |𝑧| → ∞ and |arg (𝑧 + 𝑎)| < 𝜋 (see [9])

Γ (𝑧 + 𝑎)Γ (𝑧 + 𝑏) ≃ 𝑧𝑎−𝑏 (1 + 𝑂(1𝑧)) . (57)

Then for Δ𝑟 small enough, we may write that

𝑑 (𝑟) ≃ 𝛼0 (Δ𝑟) 𝑟−2𝑎 (1 + 𝑂(Δ𝑟𝑟 )) ( 1Δ𝑟)
−2𝑎 × (1

+ 𝑂 (Δ𝑟)) − 2𝐴( 𝑟Δ𝑟)
−2𝑎 (1 + 𝑂(Δ𝑟𝑟 ))

× ∞∑
𝑛=0

( 1Δ𝑟) (𝑟 + 𝑛Δ𝑟) (𝑟 + 𝑛Δ𝑟Δ𝑟 )2𝑎−1

⋅ (1 + 𝑂(Δ𝑟𝑟 )) .

(58)

Next, let

𝑆 (𝑟)
= ∞∑
𝑛=0

( 1Δ𝑟) (𝑟 + 𝑛Δ𝑟) (𝑟 + 𝑛Δ𝑟Δ𝑟 )2𝑎−1 (1 + 𝑂(Δ𝑟𝑟 ))

= (1 + 𝑂(Δ𝑟𝑟 )) ( 1Δ𝑟)
2𝑎+1 ∞∑
𝑛=0

(𝑟 + 𝑛Δ𝑟)2𝑎 Δ𝑟.
(59)

Now, let 𝑙 = [(𝑁−𝑟)/Δ𝑟], where [𝑥] is the least integer greater
than or equal to 𝑥. Then, for small Δ𝑟, we may write that

𝑆 (𝑟)
= lim
𝑙→∞

(1 + 𝑂(Δ𝑟𝑟 )) ( 1Δ𝑟)
2𝑎+1 𝑙∑
𝑛=0

(𝑟 + 𝑛Δ𝑟)2𝑎 Δ𝑟
= (1 + 𝑂(Δ𝑟𝑟 )) ( 1Δ𝑟)

2𝑎+1 ∫𝑁
𝑟

𝑦2𝑎𝑑𝑦.
(60)

Thus, from what precedes, we deduce that

lim
Δ𝑟→0

𝑑 (𝑟) (Δ𝑟)22𝐴 = 𝛼0 (Δ𝑟) ( Δ𝑟2𝐴) 𝑟−2𝑎

− 2𝑟−2𝑎 ∫𝑁
𝑟

𝑦2𝑎𝑑𝑦,
(61)
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and we get

lim
Δ𝑟→0

𝑑 (𝑟) Δ𝑡 = 𝑟−2𝑎 𝛼0 (Δ𝑟)Δ𝑟 Δ𝑡 − 2𝑟−2𝑎 ∫𝑁
𝑟

𝑦2𝑎𝑑𝑦. (62)

Hence, if we let 𝐷(𝑢) = limΔ𝑟→0𝑑(𝑢)Δ𝑡, we can write (by
making use of the boundary condition𝐷(1) = 0) that

𝐷 (𝑢)
= ∫𝑢
1
{𝑟−2𝑎 lim
Δ𝑟→0

𝛼0 (Δ𝑟)Δ𝑟 Δ𝑡 − 2𝑟−2𝑎 ∫𝑁
𝑟

𝑦2𝑎𝑑𝑦}𝑑𝑟. (63)

Finally, to satisfy the boundary condition 𝐷(𝑁) = 0, we find
that the constant 𝛼0(Δ𝑟)must be chosen so that𝐷(𝑢) = 𝑚(𝑢).
That is, we retrieve formula (9) for the function𝑚(𝑢).
4. Conclusion and Future Research

As it is well known, the Bessel process is a very impor-
tant model in financial mathematics. In practice, stock or
commodity prices vary discretely over time. Therefore, it
is interesting to derive formulas for 𝑝𝑗 and 𝑑𝑗 for Markov
chains that are as close as we want to the diffusion process.
Next, we will try to extend the result in the case of two-
dimensional diffusion process, which had a lot of applications
in real life portfolio insurance [11, 12] and hydrology [13].
It is a difficult task, since we have to solve some systems of
difference equation in two variables.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors acknowledge the University of the Bahamas
Internal Grants Program for Research, Creative and Artistic
Proposals (2016-2017) for generously supporting this project.

References

[1] G. F. Lawler, “Conformal invariance and 2D statistical physics,”
AmericanMathematical Society. Bulletin. New Series, vol. 46, no.
1, pp. 35–54, 2009.

[2] A. Vollert, A Stochastic Control Framework for Real Options
in Strategic Evaluation, Birkhäuser Boston, Inc., Boston, MA,
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