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The continuous quaternion wavelet transform (CQWT) is a generalization of the classical continuous wavelet transform within the
context of quaternion algebra. First of all, we show that the directional quaternion Fourier transform (QFT) uncertainty principle
can be obtained using the component-wise QFT uncertainty principle. Based on this method, the directional QFT uncertainty
principle using representation of polar coordinate form is easily derived. We derive a variation on uncertainty principle related
to the QFT. We state that the CQWT of a quaternion function can be written in terms of the QFT and obtain a variation on
uncertainty principle related to the CQWT. Finally, we apply the extended uncertainty principles and properties of the CQWT to
establish logarithmic uncertainty principles related to generalized transform.

1. Introduction

As it is known, the classical wavelet transform (WT) is a very
useful mathematical tool. It has been discussed extensively
in the literature and has been proven to be powerful and
useful in the communication theory, quantum mechanics,
and many other fields [1–4]. Of great interest is the study of
the quaternionwavelet transform,which can be considered as
a generalization of the WT using quaternion algebra. Some
research papers on the continuous and discrete quaternion
wavelet transforms have been published. In [5–7], the authors
constructed the continuous quaternion wavelet transform
(CQWT) using the quaternionic affine group and simil-
itude group, respectively. Several fundamental properties
of this extended wavelet transform, which correspond to
classical continuous wavelet transform properties, were also
investigated. Further, in regard to a numerical concept of
the quaternion wavelet transforms, Bayro-Corrochano [8]
developed the discrete quaternion wavelet transform and
applied it for optical flow estimation. In [9, 10], the authors

studied the discrete reduced biquaternion wavelet transform
and applied it to multiscale texture classification. Another
approach of the CQWT based on a natural convolution
of quaternion-valued functions was recently proposed by
Akila and Roopkumar [11, 12]. The essential part in the
study of the quaternion wavelet transform, as usual, is to
establish its Heisenberg type uncertainty principle. It plays
an important role in quaternionic signal processing. Based on
the Heisenberg type uncertainty principle for the quaternion
Fourier transform (QFT) [13, 14], the authors in [7] proposed
a component-wise uncertainty principle associated with the
CQWT.

Motivated by the authors in [15–17], in the present paper,
we propose the directional uncertainty principle related to
the CQWT and then apply this uncertainty to obtain a
variation on the Heisenberg type uncertainty principle and
the logarithmic uncertainty principle in the context of the
CQWT. The uncertainty principle describes the relation
between the QFT of a quaternion function and its CQWT.
These principles are more general forms of Heisenberg’s
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uncertainty principle related to the CQWT [7]. To achieve
the results, our first step is to derive the directional uncer-
tainty principle for the QFT using the component-wise
QFT uncertainty principle. Due to this principle, we can
easily derive directional QFT uncertainty principle using a
representation of polar coordinate from the ones proposed in
[18]. We then study an important theorem which describes
interactions between the CQWT and QFT in frequency
domain. Applying the cyclic multiplication of quaternion, we
obtain some useful properties of the CQWT. Based on the
relationship between the extended Heisenberg uncertainty
principle and properties related to the CQWT, we finally
establish the logarithmic uncertainty principles associated
with the CQWT.

2. Preliminaries

Theconcept of the quaternion algebra [19, 20] was introduced
by Sir Hamilton in 1842 and is denoted byH in his honor. It is
an extension of the complex numbers to a four-dimensional
(4-D) algebra. Every element of H is a linear combination of
a real scalar and three imaginary units i, j, and k with real
coefficients,

H = {𝑞 = 𝑞0 + i𝑞𝑖 + j𝑞𝑗 + k𝑞𝑘 | 𝑞0, 𝑞𝑖, 𝑞𝑗, 𝑞𝑘 ∈ R} , (1)

which obey Hamilton’s multiplication rules

ij = −ji = k,
jk = −kj = i,
ki = −ik = j,
i2 = j2 = k2 = ijk = −1.

(2)

For a quaternion 𝑞 = 𝑞0 + i𝑞1 + j𝑞2 + k𝑞3 ∈ H, 𝑞0 is called the
scalar (or real) part of 𝑞 denoted by Sc(𝑞) and i𝑞1 + j𝑞2 + k𝑞3
is called the vector (or pure) part of 𝑞. The vector part of 𝑞 is
conventionally denoted by q or Vec(𝑞) = i𝑞1 + j𝑞2 + k𝑞3.

Let 𝑝, 𝑞 ∈ H and p, q be their vector parts, respectively.
Equation (2) yields the quaternionic multiplication 𝑞𝑝 as

𝑞𝑝 = 𝑞0𝑝0 − q ⋅ p + 𝑞0p + 𝑝0q + q × p, (3)

where

q ⋅ p = 𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3,
q × p = i (𝑞2𝑝3 − 𝑞3𝑝2) + j (𝑞3𝑝1 − 𝑞1𝑝3)

+ k (𝑞1𝑝2 − 𝑞2𝑝1) .
(4)

The conjugate 𝑞 of the quaternion 𝑞 is the quaternion given
by

𝑞 = 𝑞0 − i𝑞1 − j𝑞2 − k𝑞3, 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ R. (5)

It is an anti-involution; that is,

𝑞𝑝 = 𝑝 𝑞. (6)

From (5), we obtain the norm or modulus of 𝑞 ∈ H defined
as

󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 = √𝑞𝑞 = √𝑞20 + 𝑞21 + 𝑞22 + 𝑞23. (7)

It is not difficult to see that
Sc (𝑞) ≤ 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 ,
|q| ≤ 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 . (8)

Using conjugate (5) and the modulus of q, we can define the
inverse of 𝑞 ∈ H \ {0} as

𝑞−1 = 𝑞󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 , (9)

which shows that H is a normed division algebra.
Now we notice that

Sc (𝑝𝑞) = 12 (𝑝𝑞 + 𝑞𝑝) = 𝑞0𝑝0 + q ⋅ p. (10)

These will lead to the cyclic multiplication; that is,

Sc (𝑝𝑞𝑟) = Sc (𝑟𝑞𝑝) = Sc (𝑞𝑝𝑟) , ∀𝑝, 𝑞, 𝑟 ∈ H. (11)

Any quaternion 𝑞may be split up into

𝑞 = 𝑞+ + 𝑞−, 𝑞± = 12 (𝑞 ± i𝑞j) . (12)

The above gives

𝑞± = {(𝑞0 ± 𝑞3) + i (𝑞1 ∓ 𝑞2)} 1 ± k2
= 1 ± k2 {(𝑞0 ± 𝑞3) + j (𝑞2 ∓ 𝑞1)} .

(13)

This leads to the following modulus identity:
󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 = 󵄨󵄨󵄨󵄨𝑞−󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑞+󵄨󵄨󵄨󵄨2 . (14)

It is convenient to introduce an inner product for two
quaternion functions 𝑓, 𝑔 : R2 → H as follows:

(𝑓, 𝑔) = ∫
R2
𝑓 (x) 𝑔 (x) 𝑑x, (15)

where the overline indicates the quaternion conjugation of
the function. In particular, for 𝑓 = 𝑔, we obtain the𝐿𝑝(R2;H)-norm

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝 = (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨𝑝 𝑑x)1/𝑝 , 1 ≤ 𝑝 ≤ 2, (16)

where
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨 = √𝑓20 (x) + 𝑓21 (x) + 𝑓22 (x) + 𝑓23 (x). (17)

As a consequence of the inner product (15), we obtain the
quaternion Cauchy-Schwarz inequality
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R2 𝑓𝑔𝑑x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ≤ ∫

R2

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨2 𝑑x∫
R2

󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨2 𝑑x,
∀𝑓, 𝑔 ∈ 𝐿2 (R2;H) .

(18)
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Definition 1. A couple 𝛼 = (𝛼1, 𝛼2) of nonnegative integers is
called a multi-index. One denotes

|𝛼| = 𝛼1 + 𝛼2,
𝛼! = 𝛼1!𝛼2!, (19)

and, for x ∈ R2,

x𝛼 = 𝑥𝛼11 𝑥𝛼22 . (20)

Derivatives are conveniently expressed by multi-indices:

𝜕𝛼 = 𝜕|𝛼|𝜕𝑥𝛼11 𝜕𝑥𝛼22 . (21)

Next, we obtain the Schwartz space as (compared to [21])

S (R2;H) = {𝑓

∈ 𝐶∞ (R2,H) : sup
x∈R2

(1 + |x|𝑘) 󵄨󵄨󵄨󵄨𝜕𝛼𝑓 (x)󵄨󵄨󵄨󵄨 < ∞} ,
(22)

where𝐶∞(R2,H) is the set of smooth functions fromR2 toH.
Elements in the dual space S󸀠(R2;H) of S(R2;H) are called
tempered distribution.

3. Quaternion Fourier Transform and Its
Heisenberg Uncertainty Principle

3.1. QFT and Properties. In the following, we introduce the
(right-sided) QFT and some of its fundamental properties
such as Riemann-Lebesgue lemma and continuity.

Definition 2 (right-sided QFT). The (right-sided) quaternion
Fourier transform (QFT) of 𝑓 ∈ 𝐿1(R2;H) is the transform
F𝑄{𝑓}: R2 → H given by

F𝑄 {𝑓} (𝜔) = 𝑓̂ (𝜔) = ∫
R2
𝑓 (x) 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2𝑑x,

𝑑x = 𝑑𝑥1𝑑𝑥2,
(23)

where x = 𝑥1e1 + 𝑥2e2,𝜔 = 𝜔1e1 + 𝜔2e2, and the quaternion
exponential product 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2 is the quaternion Fourier
kernel.

Theorem 3 (inverse QFT). Suppose that 𝑓 ∈ 𝐿1(R2;H) and
F𝑄{𝑓} ∈ 𝐿1(R2;H). Then, the QFT of 𝑓 is an invertible
transform and its inverse is given by

F
−1
𝑄 [F𝑄 {𝑓}] (x) = 𝑓 (x)
= 1
(2𝜋)2 ∫R2F𝑄 {𝑓} (𝜔) 𝑒j𝜔2𝑥2𝑒i𝜔1𝑥1𝑑𝜔,

(24)

where the quaternion exponential product 𝑒j𝜔2𝑥2𝑒i𝜔1𝑥1 is called
the inverse (right-sided) quaternion Fourier kernel.

Since S(R2;H) ⊂ 𝐿1(R2;H), the definition of QFT (23)
may be extended to the Schwartz space. It is important to
note that F𝑄{𝑓} is not necessary in 𝐿1(R2;H) even if 𝑓 is
in 𝐿1(R2;H), so in generalF𝑄{𝑓}might not be well defined.
However, the QFT of a Schwartz quaternion function is also
in the Schwartz space.

Applying (23), we have

F𝑄 {𝑓} (𝜔)
= ∫

R2
(𝑓0 (x) + i𝑓1 (x) + j𝑓2 (x) + k𝑓3 (x))

⋅ 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2𝑑x = F𝑄 {𝑓0} (𝜔) + iF𝑄 {𝑓1} (𝜔)
+ jF𝑄 {𝑓2} (𝜔) + kF𝑄 {𝑓3} (𝜔) .

(25)

Now, we define a module ofF𝑄{𝑓}(𝜔) as
󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨𝑄 = (󵄨󵄨󵄨󵄨F𝑄 {𝑓0} (𝜔)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨F𝑄 {𝑓1} (𝜔)󵄨󵄨󵄨󵄨2
+ 󵄨󵄨󵄨󵄨F𝑄 {𝑓2} (𝜔)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨F𝑄 {𝑓3} (𝜔)󵄨󵄨󵄨󵄨2)1/𝑝 .

(26)

Furthermore, we obtain the 𝐿𝑝(R2;H)-norm
󵄩󵄩󵄩󵄩F𝑄 {𝑓}󵄩󵄩󵄩󵄩𝑄,𝑝 = (∫

R2

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨𝑝𝑄 𝑑𝜔)
1/𝑝 . (27)

Remark 4. It is worth noting here that ifF𝑄{𝑓𝑖}, 𝑖 = 0, 2, 3, is
real-valued, (26) can be written in the form

󵄩󵄩󵄩󵄩F𝑄 {𝑓}󵄩󵄩󵄩󵄩𝑄,𝑝 = 󵄩󵄩󵄩󵄩F𝑄 {𝑓} (𝜔)󵄩󵄩󵄩󵄩𝑝 , (28)

where

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨𝑄 = ((F𝑄 {𝑓0} (𝜔))2 + (F𝑄 {𝑓1} (𝜔))2
+ (F𝑄 {𝑓2} (𝜔))2 + (F𝑄 {𝑓3} (𝜔))2)1/𝑝 .

(29)

Some important properties of the QFT are stated in the
following lemmas.

Lemma 5 (QFT Plancherel). If 𝑓 ∈ 𝐿1(R2;H) ∩ 𝐿2(R2;H),
then

1
(2𝜋)2 ∫R2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔 = ∫R2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x. (30)

Moreover,

1
(2𝜋)2 ∫R2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2𝑄 𝑑𝜔 = ∫R2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x. (31)



4 Abstract and Applied Analysis

Proof. We prove expression (31) of Lemma 5. Using (26), we
immediately get

1
(2𝜋)2 ∫R2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2𝑄 𝑑𝜔 =

1
(2𝜋)2

⋅ ∫
R2
(󵄨󵄨󵄨󵄨F𝑄 {𝑓0} (𝜔)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨F𝑄 {𝑓1} (𝜔)󵄨󵄨󵄨󵄨2

+ 󵄨󵄨󵄨󵄨F𝑄 {𝑓2} (𝜔)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨F𝑄 {𝑓3} (𝜔)󵄨󵄨󵄨󵄨2) 𝑑𝜔
= 1
(2𝜋)2 (∫R2 󵄨󵄨󵄨󵄨F𝑄 {𝑓0} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

+ ∫
R2

󵄨󵄨󵄨󵄨F𝑄 {𝑓1} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔 + ∫
R2

󵄨󵄨󵄨󵄨F𝑄 {𝑓2} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔
+ ∫

R2

󵄨󵄨󵄨󵄨F𝑄 {𝑓3} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔) .

(32)

Applying (30) into the right-hand side of the above identity
gives

1
(2𝜋)2 ∫R2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2𝑄 𝑑𝜔
= ∫

R2

󵄨󵄨󵄨󵄨𝑓0 (x)󵄨󵄨󵄨󵄨2 𝑑x + ∫
R2

󵄨󵄨󵄨󵄨𝑓1 (x)󵄨󵄨󵄨󵄨2 𝑑x
+ ∫

R2

󵄨󵄨󵄨󵄨𝑓2 (x)󵄨󵄨󵄨󵄨2 𝑑x + ∫
R2

󵄨󵄨󵄨󵄨𝑓3 (x)󵄨󵄨󵄨󵄨2 𝑑x.
(33)

Since 𝑓𝑖(x), 𝑖 = 0, 1, 2, 3, is real-valued, the above equation
can be written in the form

1
(2𝜋)2 ∫R2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2𝑄 𝑑𝜔
= ∫

R2
(𝑓20 (x) + 𝑓21 (x) + 𝑓22 (x) + 𝑓23 (x)) 𝑑x,

(34)

which completes the proof of the theorem.

Remark 6. Equation (30) shows that the QFT is a bounded
linear operator on 𝐿1(R2;H) ∩ 𝐿2(R2;H). Hence, using
standard density arguments, one may extend the QFT in a
unique way to the whole of 𝐿2(R2;H).
Lemma7 (see [14]). If𝑓 ∈ 𝐿1(R2;H)∩𝐿2(R2;H) and (𝜕/𝑥𝑘)𝑓
exists and is also in 𝐿2(R2;H), then one has for every 𝑛 ∈ N

F𝑄 { 𝜕𝑛𝜕𝑥𝑛1 𝑓} (𝜔) = 𝜔
𝑛
1F𝑄 {𝑓i} (𝜔) , (35)

F𝑄 { 𝜕𝑛𝜕𝑥𝑛2 𝑓} (𝜔) = F𝑄 {𝑓} (𝜔) (j𝜔2)𝑛 . (36)

By Riesz’s interpolation theorem, we get that the
Hausdorff-Young inequality (see [15])

󵄩󵄩󵄩󵄩F𝑄 {𝑓}󵄩󵄩󵄩󵄩𝑄,𝑝󸀠 ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝 (37)

holds for 1 ≤ 𝑝 ≤ 2 with 1/𝑝 + 1/𝑝󸀠 = 1. Using inversion
formula of the QFT, (37) can be rewritten in the form

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝󸀠 ≤ 󵄩󵄩󵄩󵄩F𝑄 {𝑓}󵄩󵄩󵄩󵄩𝑄,𝑝 . (38)

The following theorem is an extension of the Riemann-
Lebesgue lemma in the QFT domain.

Theorem 8 (Riemann-Lebesgue lemma of QFT). For a func-
tion in 𝑓 ∈ 𝐿1(R2;H), one has that

lim
|𝜔1|→∞

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨 = 0,
lim
|𝜔2|→∞

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨 = 0. (39)

Proof. Notice first that

𝑒−i𝜔1𝑥1 = −𝑒−i𝜔1(𝑥1+𝜋/𝜔1),
𝑒−j𝜔2𝑥2 = −𝑒−j𝜔2(𝑥2+𝜋/𝜔2). (40)

Applying (40) gives

F𝑄 {𝑓} (𝜔) = ∫
R2
𝑓 (x) 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2𝑑x

= −∫
R2
𝑓 (x) 𝑒−i𝜔1(𝑥1+𝜋/𝜔1)𝑒−j𝜔2𝑥2𝑑x.

(41)

RepresentingF𝑄{𝑓} = (1/2)[F𝑄{𝑓}+F𝑄{𝑓}] and changing
variable 𝑥1 +𝜋/𝜔1 = 𝑡1 in the above identity, we immediately
obtain

F𝑄 {𝑓} (𝜔) = ∫
R2
𝑓(𝑡1 − 𝜋𝜔1 , 𝑡2) 𝑒

−i𝜔1𝑡1𝑒−j𝜔2𝑡2𝑑t
= 12 [∫R2 𝑓 (𝑡1, 𝑡2) 𝑒−i𝜔1𝑡1𝑒−j𝜔2𝑡2𝑑t
− ∫

R2
𝑓(𝑡1 − 𝜋𝜔1 , 𝑡2) e

−i𝜔1𝑡1𝑒−j𝜔2𝑡2𝑑t] = 12
⋅ ∫

R2
[𝑓 (𝑡1, 𝑡2) − 𝑓(𝑡1 − 𝜋𝜔1 , 𝑡2)] 𝑒

−i𝜔1𝑡1𝑒−j𝜔2𝑡2𝑑t.

(42)

This means that

lim
|𝜔1|→∞

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨
≤ 12 lim
|𝜔1|→∞

∫
R2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡1, 𝑡2) − 𝑓(𝑡1 −
𝜋𝜔1 , 𝑡2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑t
= 0.

(43)

Analogously, it can be shown that

lim
|𝜔2|→∞

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨 = 0. (44)

The proof is complete.
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Theorem 9 (continuity). If 𝑓 ∈ 𝐿1(R2;H), then the
quaternion Fourier transformF𝑄{𝑓}(𝜔) is continuous on R2.
Moreover,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐶(R2 ;H) = max
x∈R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩1 , (45)

where𝐶(R2;H) is the space of continuous quaternion functions
from R2 to H.

Proof. From the QFT definition (23), we readily see that

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔 + h) −F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R2 𝑓 (x)
⋅ 𝑒−i(𝜔1+ℎ1)𝑥1𝑒−j(𝜔2+ℎ2)𝑥2𝑑x − ∫

R2
𝑓 (x)

⋅ 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2𝑑x󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R2 𝑓 (x)

⋅ 𝑒−i𝜔1𝑥1𝑒−iℎ1𝑥1𝑒−j𝜔2𝑥2𝑒−jℎ2𝑥2𝑑x − ∫
R2
𝑓 (x)

⋅ 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2𝑑x󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R2 𝑓 (x)

⋅ (𝑒−i𝜔1𝑥1𝑒−iℎ1𝑥1𝑒−j𝜔2𝑥2𝑒−jℎ2𝑥2
− 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2) 𝑑x󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫R2

󵄨󵄨󵄨󵄨󵄨𝑓 (x)
⋅ (𝑒−i𝜔1𝑥1𝑒−iℎ1𝑥1𝑒−jℎ2𝑥2𝑒−j𝜔2𝑥2
− 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2)󵄨󵄨󵄨󵄨󵄨 𝑑x = ∫

R2

󵄨󵄨󵄨󵄨󵄨𝑓 (x)
⋅ 𝑒−i𝜔1𝑥1 (𝑒−iℎ1𝑥1𝑒−jℎ2𝑥2 − 1) 𝑒−j𝜔2𝑥2 󵄨󵄨󵄨󵄨󵄨 𝑑x
= ∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑒−iℎ1𝑥1𝑒−jℎ2𝑥2 − 1󵄨󵄨󵄨󵄨󵄨 𝑑x.

(46)

Using the triangle inequality for quaternions, we easily get
󵄨󵄨󵄨󵄨󵄨𝑒−iℎ1𝑥1𝑒−jℎ2𝑥2 − 1󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑒−iℎ1𝑥1𝑒−jℎ2𝑥2 󵄨󵄨󵄨󵄨󵄨 + 1 = 2. (47)

This means that we have

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔 + h) −F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨 ≤ 2∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨 𝑑x. (48)

The quaternion function 𝑓(x) is integrable and the Lebesgue
dominated convergence theorem with (46) then gives

lim
h→0

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔 + h) −F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨 = 0. (49)

This proves thatF𝑄{𝑓}(𝜔) is continuous onR2. Again, since
(48) is independent of 𝜔,F𝑄{𝑓}(𝜔) is, in fact, uniformly
continuous on R2.

3.2. Uncertainty Principle for QFT. In what follows, we
investigate the uncertainty principles associated with the
QFT. These results will be needed in the next section.

Theorem 10 (QFT component-wise uncertainty principle
[14]). If 𝑓 ∈ 𝐿1(R2;H) ∩ 𝐿2(R2;H) and (𝜕/𝑥𝑘)𝑓 exists and
is also in 𝐿2(R2;H), then

∫
R2
𝑥2𝑘 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
𝜔2𝑘 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

≥ (2𝜋)24 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2 , 𝑘 = 1, 2.
(50)

Remark 11. An alternative form of Theorem 10 is

∫
R2
𝑥2𝑘 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
𝜔2𝑙 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

≥ (2𝜋)24 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2 .
(51)

Notice that for 1 ≤ 𝑝 ≤ 2 we can replace the 𝐿2 norms
to 𝐿𝑝 norms on the left-hand side of (50) and obtain the
following theorem.

Theorem 12. Under the assumptions of Theorem 10, one has

(∫
R2
𝑥𝑝1 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨𝑝 𝑑x)1/𝑝

⋅ (∫
R2
𝜔𝑝1 󵄨󵄨󵄨󵄨F𝑄 {i𝑓} (𝜔)󵄨󵄨󵄨󵄨𝑝𝑄 𝑑𝜔)

1/𝑝 ≥ 12
⋅ ∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x,
(∫

R2
𝑥𝑝2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨𝑝 𝑑x)1/𝑝

⋅ (∫
R2
𝜔𝑝2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨𝑝𝑄 𝑑𝜔)

1/𝑝 ≥ 12
⋅ ∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x.

(52)

Proof. It is not difficult to check that

∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x = −2Sc(∫
R

𝑥𝑘𝑓 (x) 𝜕𝜕𝑥𝑘𝑓 (x)𝑑x) . (53)

Using Holder’s inequality, we further get

∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x ≤ 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R 𝑥𝑘𝑓 (x)

𝜕𝜕𝑥𝑘𝑓 (x)𝑑x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2 (∫
R

󵄨󵄨󵄨󵄨𝑥𝑘𝑓 (x)󵄨󵄨󵄨󵄨𝑝 𝑑x)1/𝑝(∫
R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝜕𝑥𝑘𝑓 (x)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠 𝑑x)

1/𝑝󸀠

= 2 󵄩󵄩󵄩󵄩𝑥𝑘𝑓󵄩󵄩󵄩󵄩𝑝 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕𝜕𝑥𝑘𝑓

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝󸀠 .

(54)
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By application of the Hausdorff-Young inequality (38) and
then integration by parts, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕𝜕𝑥𝑘𝑓

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝󸀠 ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩F𝑄 {

𝜕𝜕𝑥𝑘}
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑄,𝑝

= (∫
R2
(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨F𝑄 {

𝜕𝜕𝑥𝑘𝑓0}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨F𝑄 {

𝜕𝜕𝑥𝑘𝑓1}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨F𝑄 {
𝜕𝜕𝑥𝑘𝑓2}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨F𝑄 {

𝜕𝜕𝑥𝑘𝑓3}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝)𝑑𝜔)1/𝑝 .

(55)

We set 𝑘 = 1. Using (35) gives
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩F𝑄 {

𝜕𝜕𝑥1}
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑄,𝑝 = (∫R2 (

󵄨󵄨󵄨󵄨𝜔1F𝑄 {i𝑓0}󵄨󵄨󵄨󵄨𝑝

+ 󵄨󵄨󵄨󵄨𝜔1F𝑄 {i𝑓1}󵄨󵄨󵄨󵄨𝑝 + 󵄨󵄨󵄨󵄨𝜔1F𝑄 {i𝑓2}󵄨󵄨󵄨󵄨𝑝
+ 󵄨󵄨󵄨󵄨𝜔1F𝑄 {i𝑓3}󵄨󵄨󵄨󵄨𝑝) 𝑑𝜔)1/𝑝

= (∫
R2
(𝜔𝑝1 󵄨󵄨󵄨󵄨F𝑄 {i𝑓0}󵄨󵄨󵄨󵄨𝑝 + 𝜔𝑝1 󵄨󵄨󵄨󵄨F𝑄 {i𝑓1}󵄨󵄨󵄨󵄨𝑝

+ 𝜔𝑝1 󵄨󵄨󵄨󵄨F𝑄 {i𝑓2}󵄨󵄨󵄨󵄨𝑝 + 𝜔𝑝1 󵄨󵄨󵄨󵄨F𝑄 {i𝑓3}󵄨󵄨󵄨󵄨𝑝) 𝑑𝜔)1/𝑝

= (∫
R2
𝜔𝑝1 󵄨󵄨󵄨󵄨F𝑄 {i𝑓}󵄨󵄨󵄨󵄨𝑝𝑄 𝑑𝜔)

1/𝑝 .

(56)

For 𝑘 = 2, we can take similar steps as above using (36) and
get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩F𝑄 {
𝜕𝜕𝑥2}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑄,𝑝 = (∫R2 𝜔
𝑝
2
󵄨󵄨󵄨󵄨F𝑄 {𝑓}󵄨󵄨󵄨󵄨𝑝𝑄 𝑑𝜔)

1/𝑝 . (57)

This concludes the proof of the theorem.

A generalized version ofTheorem 10 is directional uncer-
tainty principle for the QFT given by the following.

Theorem 13 (QFT directional uncertainty principle). If 𝑓 ∈𝐿1(R2;H) ∩ 𝐿2(R2;H) and (𝜕/𝑥𝑘)𝑓 exists and is also in𝐿2(R2;H), then
∫
R2
|x|2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
|𝜔|2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

≥ (2𝜋)2 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2 .
(58)

Proof. We have

∫
R2
|x|2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
|𝜔|2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

= ∫
R2
(𝑥21 + 𝑥22) 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x

⋅ ∫
R2
(𝜔21 + 𝜔22) 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

= ∫
R2
𝑥21 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
𝜔21 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

+ ∫
R2
𝑥21 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
𝜔22 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

+ ∫
R2
𝑥22 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
𝜔21 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

+ ∫
R2
𝑥22 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
𝜔22 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔.

(59)

Using (51) gives

∫
R2
|x|2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
|𝜔|2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

≥ (2𝜋)24 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2

+ (2𝜋)24 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2

+ (2𝜋)24 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2

+ (2𝜋)24 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2

= (2𝜋)2 (∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)2 .

(60)

The result follows.

Remark 14. A different proof of Theorem 13 using the log-
arithmic uncertainty principle for the QFT can be found in
[15].

Using the polar coordinate form of quaternion function𝑓, Yang et al. [18] obtained an alternative form of the
directional uncertainty principle for the QFT as follows.

Theorem 15. If 𝑓 ∈ 𝐿1(R2;H) ∩𝐿2(R2;H) and (𝜕/𝑥𝑘)𝑓 exists
and is also in 𝐿2(R2;H), then

∫
R2
𝑥2𝑘 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
𝜔2𝑘 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

≥ (2𝜋)2 (14 + COV2𝑥𝑘𝜔𝑘) ,
∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x = 1,
(61)

where COV𝑥𝑘𝜔𝑘 is the absolute covariance.
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Applying (51), we can easily generalize the uncertainty
principle (61) to the directional QFT uncertainty principle;
that is,

∫
R2
|x|2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x∫

R2
|𝜔|2 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔

≥ (2𝜋)2 (4 (14 + COV2𝑥𝑘𝜔𝑘))
≥ (2𝜋)2 (1 + COV2𝑥𝑘𝜔𝑘) .

(62)

It is obvious that the result is the same asTheorem 4.3 in [18].
4. Continuous Quaternion Wavelet Transform

This section briefly introduces the continuous quaternion
wavelet transform (CQWT).We shall derive two theorems of
the CQWT which will be used in proving the main theorem.
A more complete and detailed discussion of the properties of
the CQWT can be found in [5, 7–9].

Definition 16. A quaternion-valued function is admissible if
and only if it satisfies the following admissibility condition:

𝐶𝜓 = ∫
R+

󵄨󵄨󵄨󵄨F𝑄 {𝜓} (𝑎𝜔)󵄨󵄨󵄨󵄨2 𝑑𝑎𝑎 < ∞. (63)

Here, 𝐶𝜓 is a real positive constant independent of 𝜔
satisfying |𝜔| = 1.

Let 𝜓 ∈ 𝐿1(R2;H) be a quaternion mother wavelet. We
consider the family of the wavelets 𝜓𝑎,b defined by

𝜓𝑎,b (x) = 𝑇b𝜓𝑎 (x) = 1𝑎𝜓(x − b𝑎 ) , 𝑎 ∈ R
+, (64)

where 𝑇b𝑓(x) = 𝑓(x−b) and 𝜓𝑎(x) = (1/𝑎)𝜓(x/𝑎). Here, 𝑎 is
a dilation parameter and b is a translation vector parameter.

The relationship between (64) and its QFT is given in the
following lemma.

Lemma 17. Let 𝜓 be an admissible quaternion function. The
family of the wavelets (64) can be written in terms of the QFT
as

F𝑄 {𝜓𝑎,b} (𝜔)
= 𝑎𝑒−i𝜔1𝑏1 {F𝑄 {𝜓0} (𝑎𝜔) + iF𝑄 {𝜓1} (𝑎𝜔)} 𝑒−j𝜔2𝑏2
+ 𝑎𝑒i𝜔1𝑏1 {jF𝑄 {𝜓2} (𝑎𝜔) + kF𝑄 {𝜓3} (𝑎𝜔)} 𝑒−j𝜔2𝑏2 .

(65)

If we assume that F𝑄{𝜓𝑖}(𝜔), 𝑖 = 0, 1, 2, 3, is real-valued
(in the next section, we will always assume that the QFT of
quaternion mother wavelet, i.e., F𝑄{𝜓}(𝜔) = 𝜓̂(𝜔), is real-
valued), (65) can be rewritten in the form

F𝑄 {𝜓𝑎,b} (𝜔)
= 𝑎 [𝜓0 (𝑎𝜔) + i𝜓1 (𝑎𝜔) + j𝜓2 (𝑎𝜔) + k𝜓3 (𝑎𝜔)]
⋅ 𝑒−i𝜔1𝑏1𝑒−j𝜔2𝑏2 (25)= 𝑎F𝑄 {𝜓} (𝑎𝜔) 𝑒−i𝜔1𝑏1𝑒−j𝜔2𝑏2 .

(66)

Definition 18 (CQWT). The CQWT of a quaternion function𝑓 ∈ 𝐿2(R2;H) with respect to the quaternion mother wavelet𝜓 is defined by

𝑇𝜓𝑓 (𝑎, b) = ∫
R2
𝑓 (x) 1𝑎𝜓(x − b𝑎 )𝑑x. (67)

As an easy consequence of the above definition, we
further obtain the following useful theorem.

Theorem 19. Let 𝜓 ∈ 𝐿2(R2;H) be a quaternion admissible
wavelet; then, CQWT (67) can be expressed as

𝑇𝜓𝑓 (𝑎, b) = 𝑎
(2𝜋)2 ∫R2 𝑓̂ (𝜔) 𝑒j𝑏2𝜔2𝑒i𝑏1𝜔1 𝜓̂ (𝑎𝜔)𝑑𝜔. (68)

We need the following two important results, which will
be useful in proving the logarithmic uncertainty principle for
the CQWT.

Theorem 20. Let 𝜓 ∈ 𝐿2(R2;H) be a quaternion admissible
wavelet; then, CQWT (67) has a quaternion Fourier represen-
tation of the form

F𝑄 {𝑇𝜓𝑓 (𝑎, b)} (𝜔) = 𝑎𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔). (69)

Proof. From the definition of QFT (23), it follows that

F𝑄 {𝑇𝜓𝑓 (𝑎, b)} (𝜔󸀠) = 𝑎
(2𝜋)2 ∫R2 ∫R2 𝑓̂ (𝜔)

⋅ 𝑒j𝑏2𝜔2𝑒i𝑏1𝜔1 𝜓̂ (𝑎𝜔)𝑒−i𝑏1𝜔󸀠1𝑒−j𝑏2𝜔󸀠2𝑑𝜔𝑑b.
(70)

Using the assumption that the QFT of quaternion mother
wavelet is real-valued and then applying Fubini’s theorem, we
obtain

F𝑄 {𝑇𝜓𝑓 (𝑎, b)} (𝜔󸀠) = 𝑎
(2𝜋)2

⋅ ∫
R2
∫
R2
𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔)𝑒j𝑏2𝜔2𝑒i𝑏1𝜔1𝑒−i𝑏1𝜔󸀠1𝑒−j𝑏2𝜔󸀠2𝑑𝜔𝑑b

= 𝑎
(2𝜋)2 ∫R2 𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔)

⋅ ∫
R2
𝑒j𝑏2𝜔2𝑒i𝑏1(𝜔1−𝜔󸀠1)𝑒−j𝑏2𝜔󸀠2𝑑b𝑑𝜔

= 𝑎∫
R2
𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔)𝛿 (𝜔 − 𝜔󸀠) 𝑑𝜔 = 𝑎𝑓̂ (𝜔󸀠)

⋅ 𝜓̂ (𝑎𝜔󸀠), ∀𝜔󸀠 ∈ R
2,

(71)

where 𝛿(𝜔−𝜔󸀠) = 𝛿(𝜔1−𝜔󸀠1)𝛿(𝜔2−𝜔󸀠2).The proof is complete.

Theorem 21. Let 𝜓 ∈ 𝐿2(R2;H) be a quaternion admissible
wavelet which satisfies the admissibility condition defined by
(63). Then, for every 𝑓 ∈ 𝐿2(R2;H), one has

∫
R+
∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3 = 𝐶𝜓 ∫R2 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x. (72)
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Proof. Applying Plancherel’s theorem for QFT (30) to the b-
integral into the left-hand side of (72) yields

∫
R+
∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3
= 1
(2𝜋)2 ∫R+ ∫R2

󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)} (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔𝑑𝑎𝑎3
(69)= 1

(2𝜋)2 ∫R+ ∫R2
󵄨󵄨󵄨󵄨󵄨𝑎𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔𝑑𝑎𝑎3 .

(73)

Taking into consideration Fubini’s theorem about the inver-
sion of order of integration and applying Plancherel’s theorem
(30), we get

∫
R+
∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3
= 1
(2𝜋)2 ∫R+ ∫R2

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨󵄨𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔𝑑𝑎𝑎
= 1
(2𝜋)2 ∫R+

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔∫
R2

󵄨󵄨󵄨󵄨󵄨𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑎𝑎
= 𝐶𝜓
(2𝜋)2 ∫R2

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔 = 𝐶𝜓 ∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x,

(74)

which gives the desired result.

5. Logarithmic Uncertainty Principle for
CQWT

The simplest formulation of the uncertainty principle in
harmonic analysis is Heisenberg-Weyl inequality, which gives
us the information that a nontrivial function and its Fourier
transform cannot both be simultaneously sharply localized [1,
22]. In this section, we first derive a variation on uncertainty
principle associated with the CQWT. From this, we establish
the logarithmic uncertainty principle which is valid for the
QFT [14] to the setting of the CQWT.

Due to the uncertainty principle forQFT (58), we have the
logarithmic uncertainty principle for the QFT [15] as follows.

Theorem 22 (QFT logarithmic uncertainty principle). For𝑓 ∈ S(R2;H),

∫
R2

ln |x| 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x + ∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔
≥ (Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x,
(75)

where Γ󸀠(𝑡) = (𝑑/𝑑𝑡)[Γ(𝑡)] and Γ(𝑡) is Gamma function. Here,
S(R2;H) denotes the Schwartz class on quaternion function.

Applying Plancherel’s theorem for QFT (30) to the right-
hand side of (75), we easily obtain

∫
R2

ln |x| 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x + ∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔
≥ 1
(2𝜋)2 (

Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫
R2

󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔.
(76)

It is proved that, for every 𝑓, 𝜓 ∈ S(R2;H), the
Heisenberg type uncertainty principle for the CQWT is given
[7]:

[∫
R+
∫
R2
𝑏2𝑘 󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3 ]

1/2

⋅ [∫
R2
𝜔2𝑘 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔]

1/2 ≥ √𝐶𝜓2 ∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x.
(77)

A generalization of the above uncertainty principle is given
in the following theorem.

Theorem 23. Let 𝜓, 𝑓 ∈ S(R2;H) be a quaternion admissible
wavelet. Let 𝑇𝜓𝑓(𝑎, b) be the CQWT of 𝑓. If 1 ≤ 𝑝 ≤ 2, then

[∫
R+
∫
R2
𝑏𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑b𝑑𝑎𝑎3 ]
1/𝑝

⋅ [∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜔]
1/𝑝 ≥ 𝑎

(6−3𝑝)/2𝑝√𝐶𝜓
2

⋅ ∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x, 𝑘 = 1, 2.

(78)

For the proof ofTheorem 23, we use the following lemma.

Lemma 24. Suppose that 𝑓, 𝜓 ∈ S(R2;H). Then,

∫
R+
∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜔𝑑𝑎𝑎3
≤ ∫

R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 𝑎(3𝑝−6)/2𝐶𝑝/2𝜓 𝑑𝜔.
(79)
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Proof. A straightforward computation yields

∫
R+
∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜔𝑑𝑎𝑎3
(69)= ∫

R2
∫
R+
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑎𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑎𝑎3 𝑑𝜔
= ∫

R2
∫
R+
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 󵄨󵄨󵄨󵄨󵄨𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑎𝑎3−𝑝 𝑑𝜔
≤ ∫

R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝

⋅ (∫
R+

󵄨󵄨󵄨󵄨󵄨𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑎𝑎6/𝑝−2)
𝑝/2 𝑑𝜔

= ∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝

⋅ (𝑎(3𝑝−6)/𝑝 ∫
R+

󵄨󵄨󵄨󵄨󵄨𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑎𝑎 )
𝑝/2 𝑑𝜔

= ∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 𝑎(3𝑝−6)/2𝐶𝑝/2𝜓 𝑑𝜔.

(80)

The proof is complete.

Proof. Using the uncertainty principle in Theorem 12, we
immediately obtain

[∫
R2
𝑏𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑b]
1/𝑝

⋅ [∫
R2
𝜔𝑘 󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜔]

1/𝑝 ≥ 12
⋅ ∫

R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b.
(81)

Now, integrating both sides of (81) with respect to the Haar
measure 𝑑𝑎/𝑎3, we obtain
[∫

R+
∫
R2
𝑏𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑b𝑑𝑎𝑎3 ]
1/𝑝

⋅ [∫
R+
∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜔𝑑𝑎𝑎3 ]
1/𝑝 ≥ 12

⋅ ∫
R+
∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3 .
(82)

Then, inserting Lemma 24 into the second term of (82), we
easily obtain

[∫
R+
∫
R2
𝑏𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑b𝑑𝑎𝑎3 ]
1/𝑝

⋅ 𝑎(3𝑝−6)/2𝑝√𝐶𝜓 [∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜔]
1/𝑝 ≥ 12

⋅ ∫
R+
∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3 .
(83)

Substituting (72) into the right-hand side of (83) and simpli-
fying it, we finally get

[∫
R+
∫
R2
𝑏𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑b𝑑𝑎𝑎3 ]
1/𝑝

⋅ [∫
R2
𝜔𝑝
𝑘

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜔]
1/𝑝 ≥ 𝑎

(6−3𝑝)/2𝑝√𝐶𝜓
2

⋅ ∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x,

(84)

which concludes the proof of Theorem 23.

Let us derive a logarithmic uncertainty principle asso-
ciated with the continuous quaternion wavelet transform
(CQWT).

Theorem 25 (CQWT logarithmic uncertainty principle). Let𝜓 ∈ S(R2;H) be a quaternion admissible wavelet. Let𝑇𝜓𝑓(𝑎, b) be the CQWT of 𝑓 ∈ S(R2;H). Then, the following
inequality is satisfied:

𝐶𝜓 ∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔
+ ∫

R+
∫
R2

ln |b| 󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3
≥ 𝐶𝜓2 (Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x.
(85)

Next, we need the following lemma to assist the proof of
the above theorem.

Lemma 26. Under the same conditions as inTheorem 25, one
has

∫
R+
∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔𝑑𝑎𝑎3
= 𝐶𝜓 ∫

R2
ln |𝜔| 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔.

(86)

Proof. A simple calculation reveals

∫
R+
∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔𝑑𝑎𝑎3
(69)= ∫

R2
∫
R+

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨𝑎𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑎𝑎3 𝑑𝜔
= ∫

R2
∫
R+
𝑎2 ln |𝜔| 𝑓̂ (𝜔) 𝜓̂ (𝑎𝜔) 𝜓̂ (𝑎𝜔) 𝑓̂ (𝜔)𝑑𝑎𝑎3 𝑑𝜔

= ∫
R2
∫
R+

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝜓̂ (𝑎𝜔)󵄨󵄨󵄨󵄨2 𝑑𝑎𝑎 𝑑𝜔
(63)= 𝐶𝜓 ∫

R2
ln |𝜔| 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔.

(87)

The proof is complete.



10 Abstract and Applied Analysis

Proof. It is known that

∫
R2

ln |x| 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x + ∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨F𝑄 {𝑓} (𝜔)󵄨󵄨󵄨󵄨2 𝑑𝜔
≥ (Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x.
(88)

Notice that 𝑓, 𝜓 ∈ S(R2;H). This implies that 𝑇𝜓𝑓(𝑎, b) ∈
S(R2;H). Therefore, we may replace 𝑓 by 𝑇𝜓𝑓(𝑎, b) on both
sides of (88) and get

∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔
+ ∫

R2
ln |b| 󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b

≥ (Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b.
(89)

Integrating both sides of this equation with respect to 𝑑𝑎/𝑎3
yields

∫
R+
∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨F𝑄 {𝑇𝜓𝑓 (𝑎, b)}󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔𝑑𝑎𝑎3
+ ∫

R+
∫
R2

ln |b| 󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3
≥ (Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫

R+
∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3 .
(90)

Inserting Lemma 26 into the first term on the left-hand side
of (90), we obtain

𝐶𝜓 ∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔
+ ∫

R+
∫
R2

ln |b| 󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3
≥ (Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫

R+
∫
R2

󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3 .
(91)

Finally, substituting (72) into the right-hand side of (91), we
have

𝐶𝜓 ∫
R2

ln |𝜔| 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝜔)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔
+ ∫

R+
∫
R2

ln |b| 󵄨󵄨󵄨󵄨󵄨𝑇𝜓𝑓 (𝑎, b)󵄨󵄨󵄨󵄨󵄨2 𝑑b𝑑𝑎𝑎3
≥ 𝐶𝜓2 (Γ󸀠 (𝑡)Γ (𝑡) − ln𝜋)∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x,
(92)

which was to be proved.

Remark 27. It is worth nothing that, following the steps of the
proof of the above theorem, we can also obtain Theorem 25
using (76).

6. Conclusion

Based on the logarithmic uncertainty principle in the quater-
nion Fourier domain, we have established a logarithmic
uncertainty principle related to the CQWT. It is a more gen-
eral formof component-wise uncertainty principle associated
with the CQWT, which describes the relationship between
the QFT of a quaternion function and its CQWT. We also
presented a variation on uncertainty principle related to the
QFT and then found the variation on uncertainty principle
related to the CQWT.
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