
Research Article
Bifurcation and Global Dynamics of a Leslie-Gower Type
Competitive System of Rational Difference Equations with
Quadratic Terms

V. HadDiabdiT,1 M. R. S. KulenoviT,2 and E. Pilav3

1Division of Mathematics, Faculty of Mechanical Engineering, University of Sarajevo, Bosnia and Herzegovina
2Department of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USA
3Department of Mathematics, University of Sarajevo, 75 000 Sarajevo, Bosnia and Herzegovina

Correspondence should be addressed to M. R. S. Kulenović; mkulenovic@mail.uri.edu
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We investigate global dynamics of the following systems of difference equations 𝑥𝑛+1 = 𝑥𝑛/(𝐴1 + 𝐵1𝑥𝑛 + 𝐶1𝑦𝑛), 𝑦𝑛+1 = 𝑦2𝑛/(𝐴2 +𝐵2𝑥𝑛 + 𝐶2𝑦2𝑛), 𝑛 = 0, 1, . . ., where the parameters 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 are positive numbers and the initial conditions 𝑥0 and𝑦0 are arbitrary nonnegative numbers. This system is a version of the Leslie-Gower competition model for two species. We show
that this system has rich dynamics which depends on the part of parametric space.

1. Introduction

In this paper we study the global dynamics of the following
rational system of difference equations:𝑥𝑛+1 = 𝑥𝑛𝐴1 + 𝐵1𝑥𝑛 + 𝐶1𝑦𝑛 ,𝑦𝑛+1 = 𝑦2𝑛𝐴2 + 𝐵2𝑥𝑛 + 𝐶2𝑦2𝑛 ,𝑛 = 0, 1, . . . ,

(1)

where the parameters 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 are positive
numbers and initial conditions 𝑥0 and 𝑦0 are arbitrary
nonnegative numbers.

System (1) is a competitive system, and our results are
based on recent results about competitive systems in the
plane; see [1]. System (1) can be used as amathematical model
for competition in population dynamics. System (1) is related
to Leslie-Gower competition model𝑥𝑛+1 = 𝑥𝑛𝐴1 + 𝐵1𝑥𝑛 + 𝐶1𝑦𝑛 ,𝑦𝑛+1 = 𝑦𝑛𝐴2 + 𝐵2𝑥𝑛 + 𝐶2𝑦𝑛 ,𝑛 = 0, 1, . . . , (2)

where the parameters 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 are positive
numbers and initial conditions 𝑥0 and 𝑦0 are arbitrary
nonnegative numbers, considered in [2]. System (2) globally
exhibits three dynamic scenarios in five parametric regions
which are competitive exclusion, competitive coexistence,
and existence of an infinite number of equilibrium solutions;
see [1–3]. System (2) does not exhibit the Allee effect, which is
desirable frommodeling point of view.The simplest variation
of system (2) which exhibits the Allee effect is probably
system

𝑥𝑛+1 = 𝑥2𝑛𝐴1 + 𝐵1𝑥2𝑛 + 𝐶1𝑦𝑛 ,
𝑦𝑛+1 = 𝑦2𝑛𝐴2 + 𝐵2𝑥𝑛 + 𝐶2𝑦2𝑛 ,𝑛 = 0, 1, . . . ,

(3)

where the parameters 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 are positive
numbers and initial conditions 𝑥0 and 𝑦0 are arbitrary non-
negative numbers, considered in [4]. System (3) has between 1
and 9 equilibrium points and exhibits nine dynamics scenar-
ios part of each is the Allee effect. In the case of the dynamic
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scenario with nine equilibrium points system (3) exhibits
both competitive exclusion and competitive coexistence as
well as the Allee effect. Another system with quadratic terms
is

𝑥𝑛+1 = 𝑥2𝑛𝐵1𝑥2𝑛 + 𝐶1𝑦2𝑛 ,𝑦𝑛+1 = 𝑦2𝑛𝐴2 + 𝐵2𝑥2𝑛 + 𝐶2𝑦2𝑛 ,𝑛 = 0, 1, . . . ,
(4)

where the parameters 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 are positive
numbers and initial conditions 𝑥0 and 𝑦0 are arbitrary
nonnegative numbers such that 𝑥0 + 𝑦0 > 0, considered
in [5]. System (4) exhibits seven scenarios part of each is
singular Allee’s effect, which means that the origin as the
singular point of this system still has some basin of attraction.
First systematic study for a system with quadratic terms was
performed in [6] for system𝑥𝑛+1 = 𝑥𝑛𝐴1 + 𝑦2𝑛 ,𝑦𝑛+1 = 𝑦𝑛𝐴2 + 𝑥2𝑛 ,𝑛 = 0, 1, . . .

(5)

which exhibits nine dynamic scenarios and whose dynamics
is very similar to the corresponding systemwithout quadratic
terms considered in [7].

In general, it seems that an introduction of quadratic
terms in equations of the Leslie-Gower model (2) generates
the Allee effect. We will test this hypothesis in this paper by
introducing the quadratic terms only in the second equation.
System (1) can be considered as the competitive version of the
decoupled system𝑥𝑛+1 = 𝑥𝑛𝐴1 + 𝐵1𝑥𝑛 ,𝑦𝑛+1 = 𝑦2𝑛𝐴2 + 𝐶2𝑦2𝑛 ,𝑛 = 0, 1, . . . ,

(6)

where the parameters 𝐴1, 𝐴2, 𝐵1, and 𝐶2 are positive
numbers and initial conditions 𝑥0 and 𝑦0 are arbitrary non-
negative numbers, whose dynamics can be directly obtained
from two separate equations. Unlike system (2) which has
five regions of parameters with distinct local behavior system
(1) has eighteen regions of parameters with distinct local
behavior, which is caused by the geometry of the problem,
that is, by the geometry of equilibrium curves.More precisely,
the equilibrium curves of system (2) are lines while the
equilibrium curves of system (1) are a line and a parabola. In
the case when 𝐴1 > 1, all equilibrium points are hyperbolic
and all solutions are attracted to the three equilibrium
points on the 𝑦-axis and we can describe this situation as

competitive exclusion case. When 𝐴1 = 1, the equilibrium
point 𝐸1 is nonhyperbolic and dynamics is analogous to
the case when 𝐴1 > 1. In both cases the Allee effect is
present. When 𝐴1 < 1, there exist 11 regions of parameters
with different global dynamics. In nine of these regions
the global dynamics is in competitive exclusion case, which
means that all solutions converge to one of the equilibrium
points on the axes and in only two situations we have
competitive coexistence case, which means that the interior
equilibrium points have substantial basin of attraction. In all
11 cases, the zero equilibrium has some basin of attraction
which is a part of 𝑦-axis so we can say that in these cases
system (1) exhibits weak Allee’s effect. Figure 3 gives the
bifurcation diagram showing the transition from different
global dynamics situations when 𝐴1 < 1, since the cases𝐴1 ≥ 1 are simple and do not need graphical interpretation.

The paper is organized as follows. Section 2 contains
some necessary results on competitive systems in the plane.
Section 3 provides some basic information about the number
of equilibrium points. Section 4 contains local stability
analysis of all equilibrium solutions. Section 5 contains some
global results on injectivity of themap associated with system
(1). Section 6 gives global dynamics of system (1) in all regions
of the parameters.

2. Preliminaries

A first-order system of difference equations𝑥𝑛+1 = 𝑓 (𝑥𝑛, 𝑦𝑛) ,𝑦𝑛+1 = 𝑔 (𝑥𝑛, 𝑦𝑛) ,𝑛 = 0, 1, . . . , (7)

where S ⊂ R2, (𝑓, 𝑔) : S → S, 𝑓, 𝑔 are continuous
functions is competitive if 𝑓(𝑥, 𝑦) is nondecreasing in 𝑥 and
nonincreasing in 𝑦, and 𝑔(𝑥, 𝑦) is nonincreasing in 𝑥 and
nondecreasing in 𝑦. If both 𝑓 and 𝑔 are nondecreasing in 𝑥
and 𝑦, system (7) is cooperative. Competitive and cooperative
maps are defined similarly. Strongly competitive systems of
difference equations or strongly competitive maps are those
for which the functions 𝑓 and 𝑔 are coordinate-wise strictly
monotone.

Competitive and cooperative systems have been investi-
gated by many authors; see [1–3, 7–16]. Special attention to
discrete competitive and cooperative systems in the plane
was given in [1–3, 16, 17]. One of the reasons for paying
special attention to two-dimensional discrete competitive
and cooperative systems is their applicability and the fact
that many examples of mathematical models in biology
and economy which involve competition or cooperation are
models which involve two species. Another reason is that the
theory of two-dimensional discrete competitive and coop-
erative systems is very well developed, unlike such theory
for three-dimensional and higher systems. Part of the reason
for this situation is de Mottoni-Schiaffino theorem given
below, which provides relatively simple scenarios for possible
behavior of many two-dimensional discrete competitive and
cooperative systems. However, this does not mean that one
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can not encounter chaos in such systems as has been shown
by Smith; see [16].

If k = (𝑢, V) ∈ R2, we denote with Qℓ(k), ℓ ∈ {1, 2, 3, 4},
the four quadrants inR2 relative to k, that is,Q1(k) = {(𝑥, 𝑦) ∈
R2 : 𝑥 ≥ 𝑢, 𝑦 ≥ V}, Q2(k) = {(𝑥, 𝑦) ∈ R2 : 𝑥 ≤𝑢, 𝑦 ≥ V}, and so on. Define the South-East partial order⪯se on R2 by (𝑥, 𝑦) ⪯se (𝑠, 𝑡) if and only if 𝑥 ≤ 𝑠 and 𝑦 ≥ 𝑡.
Similarly, we define theNorth-East partial order ⪯ne onR

2 by(𝑥, 𝑦) ⪯ne (𝑠, 𝑡) if and only if 𝑥 ≤ 𝑠 and 𝑦 ≤ 𝑡. For A ⊂ R2

and 𝑥 ∈ R2, define the distance from 𝑥 to A as dist(𝑥,A) fl
inf{‖𝑥 − 𝑦‖ : 𝑦 ∈ A}. By intA we denote the interior of a set
A.

It is easy to show that a map 𝐹 is competitive if it is
nondecreasing with respect to the South-East partial order,
that is, if the following holds:

(𝑥1𝑦1)⪯se (𝑥2𝑦2) 󳨐⇒
𝐹(𝑥1𝑦1)⪯se 𝐹(𝑥2𝑦2) . (8)

For standard definitions of attracting fixed point, saddle
point, stable manifold, and related notions see [10].

We now state three results for competitive maps in the
plane. The following definition is from [16].

Definition 1. LetS be a nonempty subset ofR2. A competitive
map𝑇 : S → S is said to satisfy condition (𝑂+) if for every 𝑥,𝑦 in S, 𝑇(𝑥) ⪯ne 𝑇(𝑦) implies 𝑥⪯ne 𝑦, and 𝑇 is said to satisfy
condition (𝑂−) if for every 𝑥, 𝑦 in S, 𝑇(𝑥) ⪯ne 𝑇(𝑦) implies𝑦⪯ne 𝑥.

The following theorem was proved by de Mottoni-
Schiaffino [17] for the Poincaré map of a periodic competitive
Lotka-Volterra system of differential equations. Smith gener-
alized the proof to competitive and cooperative maps [13, 14].

Theorem 2. Let S be a nonempty subset of R2. If 𝑇 is a
competitive map for which (𝑂+) holds then for all 𝑥 ∈ S,{𝑇𝑛(𝑥)} is eventually componentwise monotone. If the orbit of𝑥 has compact closure, then it converges to a fixed point of 𝑇.
If instead (𝑂−) holds, then for all 𝑥 ∈ S, {𝑇2𝑛(𝑥)} is eventually
componentwise monotone. If the orbit of 𝑥 has compact closure
in S, then its omega limit set is either a period-two orbit or a
fixed point.

The following result is from [16], with the domain of the
map specialized to be the Cartesian product of intervals of
real numbers. It gives a sufficient condition for conditions
(𝑂+) and (𝑂−).
Theorem 3. Let R ⊂ R2 be the Cartesian product of two
intervals in R. Let 𝑇 : R → R be a 𝐶1 competitive map. If𝑇 is injective and det 𝐽𝑇(𝑥) > 0 for all 𝑥 ∈ R then 𝑇 satisfies(𝑂+). If 𝑇 is injective and det 𝐽𝑇(𝑥) < 0 for all 𝑥 ∈ R then 𝑇
satisfies (𝑂−).

The following result is a direct consequence of the Tri-
chotomyTheoremofDancer andHess (see [18]) and is helpful
for determining the basins of attraction of the equilibrium
points.

Corollary 4. If the nonnegative cone of ⪯ is a generalized
quadrant in R𝑛, and if 𝑇 has no fixed points in ⟦𝑢1, 𝑢2⟧ other
than 𝑢1 and 𝑢2, then the interior of ⟦𝑢1, 𝑢2⟧ is either a subset of
the basin of attraction of 𝑢1 or a subset of the basin of attraction
of 𝑢2.

Next result is well known global attractivity result which
holds in partially ordered Banach spaces as well; see [18].

Theorem 5. Let 𝑇 be a monotone map on a closed and
bounded rectangular region R ⊂ R2. Suppose that 𝑇 has a
unique fixed point e inR. Then e is a global attractor of 𝑇 on
R.

The following theorems were proved by Kulenović and
Merino [1] for competitive systems in the plane, when one
of the eigenvalues of the linearized system at an equilibrium
(hyperbolic or nonhyperbolic) is by absolute value smaller
than 1 while the other has an arbitrary value. These results
are useful for determining basins of attraction of fixed points
of competitive maps.

Theorem 6. Let 𝑇 be a competitive map on a rectangular
region R ⊂ R2. Let 𝑥 ∈ R be a fixed point of 𝑇 such thatΔ fl R∩ int(Q1(𝑥)∪Q3(𝑥)) is nonempty (i.e., 𝑥 is not the NW
or SE vertex ofR), and 𝑇 is strongly competitive on Δ. Suppose
that the following statements are true:

(a) The map 𝑇 has a 𝐶1 extension to a neighborhood of 𝑥.
(b) The Jacobian 𝐽𝑇(𝑥) of 𝑇 at 𝑥 has real eigenvalues 𝜆, 𝜇

such that 0 < |𝜆| < 𝜇, where |𝜆| < 1, and the eigenspace𝐸𝜆 associated with 𝜆 is not a coordinate axis.

Then there exists a curve C ⊂ R through 𝑥 that is invariant
and a subset of the basin of attraction of 𝑥, such that C is
tangential to the eigenspace 𝐸𝜆 at 𝑥, and C is the graph of a
strictly increasing continuous function of the first coordinate on
an interval. Any endpoints of C in the interior ofR are either
fixed points or minimal period-two points. In the latter case,
the set of endpoints ofC is a minimal period-two orbit of 𝑇.

The situation where the endpoints of C are boundary
points ofR is of interest.The following result gives a sufficient
condition for this case.

Theorem7. For the curveC ofTheorem 6 to have endpoints in𝜕R, it is sufficient that at least one of the following conditions
is satisfied

(i) The map 𝑇 has no fixed points or periodic points of
minimal period-two in Δ.

(ii) Themap𝑇 has no fixed points inΔ, det 𝐽𝑇(𝑥) > 0, and𝑇(𝑥) = 𝑥 has no solutions 𝑥 ∈ Δ.
(iii) The map 𝑇 has no points of minimal period-two in Δ,

det 𝐽𝑇(𝑥) < 0, and 𝑇(𝑥) = 𝑥 has no solutions 𝑥 ∈ Δ.
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The next result is useful for determining basins of attrac-
tion of fixed points of competitive maps.

Theorem 8. (A) Assume the hypotheses of Theorem 6, and let
C be the curve whose existence is guaranteed by Theorem 6. If
the endpoints ofC belong to 𝜕R, thenC separatesR into two
connected components, namely,

W− fl {𝑥 ∈ R \C : ∃𝑦 ∈ C 𝑤𝑖𝑡ℎ 𝑥 ⪯𝑠𝑒 𝑦} ,
W+ fl {𝑥 ∈ R \C : ∃𝑦 ∈ C 𝑤𝑖𝑡ℎ 𝑦⪯𝑠𝑒 𝑥} , (9)

such that the following statements are true:

(i) W− is invariant, and dist(𝑇𝑛(𝑥),Q2(𝑥)) → 0 as 𝑛 →∞ for every 𝑥 ∈ W−.

(ii) W+ is invariant, and dist(𝑇𝑛(𝑥),Q4(𝑥)) → 0 as 𝑛 →∞ for every 𝑥 ∈ W+.

(B) If, in addition to the hypotheses of part (A), 𝑥 is an
interior point of R and 𝑇 is 𝐶2 and strongly competitive in
a neighborhood of 𝑥, then 𝑇 has no periodic points in the
boundary of Q1(𝑥) ∪ Q3(𝑥) except for 𝑥, and the following
statements are true:

(iii) For every 𝑥 ∈ W− there exists 𝑛0 ∈ N such that𝑇𝑛(𝑥) ∈
intQ2(𝑥) for 𝑛 ≥ 𝑛0.

(iv) For every 𝑥 ∈ W+ there exists 𝑛0 ∈ N such that𝑇𝑛(𝑥) ∈
intQ4(𝑥) for 𝑛 ≥ 𝑛0.

If 𝑇 is a map on a setR and if 𝑥 is a fixed point of 𝑇, the
stable set W𝑠(𝑥) of 𝑥 is the set {𝑥 ∈ R : 𝑇𝑛(𝑥) → 𝑥} and
unstable set W𝑢(𝑥) of 𝑥 is the set

{𝑥 ∈ R : there exists {𝑥𝑛}0𝑛=−∞ ⊂ R s.t. 𝑇 (𝑥𝑛)= 𝑥𝑛+1, 𝑥0 = 𝑥, lim
𝑛→−∞

𝑥𝑛 = 𝑥} . (10)

When𝑇 is noninvertible, the setW𝑠(𝑥)maynot be connected
andmade up of infinitelymany curves, orW𝑢(𝑥)maynot be a
manifold.The following result gives a description of the stable
and unstable sets of a saddle point of a competitivemap. If the
map is a diffeomorphismonR, the setsW𝑠(𝑥) andW𝑢(𝑥) are
the stable and unstable manifolds of 𝑥.
Theorem 9. In addition to the hypotheses of part (B) of
Theorem 8, suppose that 𝜇 > 1 and that the eigenspace 𝐸𝜇
associated with 𝜇 is not a coordinate axis. If the curve C of
Theorem 6 has endpoints in 𝜕R, thenC is the stable setW𝑠(𝑥)
of 𝑥, and the unstable set W𝑢(𝑥) of 𝑥 is a curve in R that is
tangential to 𝐸𝜇 at 𝑥 and such that it is the graph of a strictly
decreasing function of the first coordinate on an interval. Any
endpoints ofW𝑢(𝑥) inR are fixed points of 𝑇.

3. Number of Equilibria

In this section we give some basic facts which are used later.
Let 𝑇 be the map associated with system (1) given by

𝑇 (𝑥, 𝑦) = (𝑓 (𝑥, 𝑦) , 𝑔 (𝑥, 𝑦))
= ( 𝑥𝐴1 + 𝐵1𝑥 + 𝐶1𝑦, 𝑦2𝐴2 + 𝐵2𝑥 + 𝐶2𝑦2) . (11)

Let R = R2+. The equilibrium points (𝑥, 𝑦) of system (1)
satisfy equations

𝑥𝐴1 + 𝐵1𝑥 + 𝐶1𝑦 = 𝑥,
𝑦2𝐴2 + 𝐵2𝑥 + 𝐶2𝑦2 = 𝑦. (12)

For 𝑥 = 0 we have
𝑦 = 𝑦2 − 𝐴2𝑦 − 𝐶2𝑦3 (13)

from which we obtain three equilibrium points

𝐸1 = (0, 0) ,
𝐸2 = (0, 1 − √Δ 12𝐶2 ) ,
𝐸3 = (0, 1 + √Δ 12𝐶2 ) ,

(14)

where Δ 1 = 1 − 4𝐴2𝐶2.
Assume that 𝑥 ̸= 0. Then, from the first equation of

system (12) we have

𝑦 = −𝐴1 + 𝐵1𝑥 − 1𝐶1 . (15)

By substituting this into the second equation we obtain

𝐴1 + 𝐵1𝑥 − 1 = 0 (16)

or

𝑔 (𝑥) ≡ 𝐵21𝐶2𝑥2+ 𝑥 (𝐵1 (2 (𝐴1 − 1)𝐶2 + 𝐶1) + 𝐵2𝐶21)+ (𝐴1 − 1)2 𝐶2 + (𝐴1 − 1)𝐶1 + 𝐴2𝐶21 = 0,
(17)
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from which we obtain the other three equilibrium points

𝐸4 = (1 − 𝐴1𝐵1 , 0) ,
𝐸5

= (−2𝐴1𝐵1𝐶2 − 𝐵2𝐶21 − 𝐵1𝐶1 + 2𝐵1𝐶2 + 𝐶1√Δ 22𝐵21𝐶2 ,
𝐵1 + 𝐵2𝐶1 − √Δ 22𝐵1𝐶2 ) ,

𝐸6
= (−2𝐴1𝐵1𝐶2 − 𝐵2𝐶21 − 𝐵1𝐶1 + 2𝐵1𝐶2 − 𝐶1√Δ 22𝐵21𝐶2 ,
𝐵1 + 𝐵2𝐶1 + √Δ 22𝐵1𝐶2 ) ,

(18)

whereΔ 2 = (𝐵1 + 𝐵2𝐶1)2 − 4𝐵1 (𝐴2𝐵1 − (𝐴1 − 1) 𝐵2) 𝐶2. (19)

Lemma 10. The following hold:

(i) The equilibrium points 𝐸2 and 𝐸3 exist if and only ifΔ 1 ≥ 0 and 𝐸2 = 𝐸3 if and only if Δ 1 = 0.
(ii) The equilibrium point 𝐸4 exists if and only if 𝐴1 ≤ 1

and 𝐸4 = 𝐸1 if and only if 𝐴1 = 1.
(iii) Assume that Δ 2 ≥ 0.The equilibrium point 𝐸5 exists if

and only if 𝐴1 < 1 and
𝐶1 ≤ (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 ,
𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)

(20)

or

𝐶1 > (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 ,𝐶2 ≤ 𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 . (21)

(iv) Assume that Δ 2 ≥ 0.The equilibrium point 𝐸6 exists if
and only if 𝐴1 < 1 and

𝐶1 ≤ (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 ,𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 ≤ 𝐶2
≤ (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2) .

(22)

Proof. Theproof of the statements (i) and (ii) is trivial and we
skip it. Nowwe prove the statement (iii). In view of Descartes’
rule of signs we obtain that (17) has no positive solutions if𝐴1 ≥ 1. Now, we suppose that 𝐴1 < 1. One can see that𝑦5 > 0 for all values of parameters. We consider two cases:

(1) Assume that−2𝐴1𝐵1𝐶2 − 𝐵2𝐶21 − 𝐵1𝐶1 + 2𝐵1𝐶2 ≥ 0, (23)

which is equivalent to

𝐶2 ≥ 𝐶1 (𝐵2𝐶1 + 𝐵1)2 (1 − 𝐴1) 𝐵1 . (24)

Since Δ 2 ≥ 0 ⇐⇒
𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2) (25)

we have that 𝑥5 ≥ 0 if and only if

𝐶1 (𝐵2𝐶1 + 𝐵1)2 (1 − 𝐴1) 𝐵1 ≤ 𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2) , (26)

(𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 − (𝐴1 − 1) 𝐵2) − 𝐶1 (𝐵2𝐶1 + 𝐵1)2 (1 − 𝐴1) 𝐵1= −(𝐵2𝐶1 + 𝐵1) ((1 − 𝐴1) 𝐵2𝐶1 + 𝐵1 (2𝐴2𝐶1 + 𝐴1 − 1))4 (1 − 𝐴1) 𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)≥ 0
(27)

which is equivalent to

𝐶1 ≤ (1 − 𝐴1) 𝐵12𝐴2𝐵1 + (1 − 𝐴1) 𝐵2 . (28)

From (27) and (28) it follows 𝑥5 ≥ 0 if and only if

𝐶1 ≤ (1 − 𝐴1) 𝐵12𝐴2𝐵1 + (1 − 𝐴1) 𝐵2 ,𝐶1 (𝐵2𝐶1 + 𝐵1)2 (1 − 𝐴1) 𝐵1 ≤ 𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2) .
(29)

(2) Assume that−2𝐴1𝐵1𝐶2 − 𝐵2𝐶21 − 𝐵1𝐶1 + 2𝐵1𝐶2 < 0 (30)

which is equivalent to

𝐶2 < 𝐶1 (𝐵2𝐶1 + 𝐵1)2 (1 − 𝐴1) 𝐵1 . (31)
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Figure 1: Parameter regions in the (𝐶1, 𝐶2)-plane.The curvesC21,𝐶22, andC23 are defined as part of the parabola𝐶2 = 𝐶1(1−𝐴1−𝐴2𝐶1)/(1−𝐴1)2 and the curvesC32 andC31 are defined as part of the parabola 𝐶2 = (𝐵2𝐶1 + 𝐵1)2/(4𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)).
Then 𝑥5 ≥ 0 if and only if

Δ 2𝐶21 − (−𝐵1 (2 (𝐴1 − 1)𝐶2 + 𝐶1) − 𝐵2𝐶21)2= −4𝐵21𝐶2 ((𝐴1 − 1)2 𝐶2 + 𝐶1 (𝐴2𝐶1 + 𝐴1 − 1))≥ 0, (32)

which is equivalent to

𝐶2 ≤ 𝐶1 (−𝐴2𝐶1 − 𝐴1 + 1)(1 − 𝐴1)2 , (33)

Δ 2 ≥ 0 ⇐⇒
𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2) . (34)

Since(𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 − (𝐴1 − 1) 𝐵2) − 𝐶1 (−𝐴2𝐶1 − 𝐴1 + 1)(1 − 𝐴1)2= ((1 − 𝐴1) 𝐵2𝐶1 + 𝐵1 (−2𝐴2𝐶1 − 𝐴1 + 1))24 (1 − 𝐴1)2 𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2) ≥ 0 (35)

then from (33) and Δ 2 ≥ 0 we have
𝐶2 ≤ 𝐶1 (1 − 𝐴2𝐶1 − 𝐴1)(1 − 𝐴1)2 . (36)

Since𝐶1 (1 − 𝐴2𝐶1 − 𝐴1)(1 − 𝐴1)2 − 𝐶1 (𝐵2𝐶1 + 𝐵1)2 (1 − 𝐴1) 𝐵1= −𝐶1 ((1 − 𝐴1) 𝐵2𝐶1 + 𝐵1 (2𝐴2𝐶1 + 𝐴1 − 1))2 (𝐴1 − 1)2 𝐵1
(37)

we have that (31) and (36) are equivalent to𝐶1 > (1 − 𝐴1) 𝐵12𝐴2𝐵1 + (1 − 𝐴1) 𝐵2 ,𝐶2 ≤ 𝐶1 (1 − 𝐴2𝐶1 − 𝐴1)(1 − 𝐴1)2
(38)

or 𝐶1 ≤ (1 − 𝐴1) 𝐵12𝐴2𝐵1 + (1 − 𝐴1) 𝐵2 ,𝐶2 < 𝐶1 (𝐵2𝐶1 + 𝐵1)2 (1 − 𝐴1) 𝐵1 . (39)

Now, the proof of the statement (iii) follows from (28), (38),
and (39).The proof of the statement (iv) is similar andwe skip
it.

We now introduce the following notation for regions in
parameter space (𝐶1, 𝐶2) (see Figure 1):
R24 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 𝐶1

< (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 , 𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2< 𝐶2 < (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)} ,
R22 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 𝐶2

< 𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 } ,
R21 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 𝐶2

> (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)} ,
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R25 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 1 − 𝐴12𝐴2 > 𝐶1
> (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 , 𝐶1 (1 − 𝐴1 − 𝐴2C1)(1 − 𝐴1)2
< 𝐶2 < (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)} ,

R23 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 𝐶1
> 1 − 𝐴12𝐴2 , 𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2
< (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)} ,

R1 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 < 0} ,
C31 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 𝐶1

< (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 , 𝐶2
= (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)} ,

C32 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 1 − 𝐴12𝐴2 > 𝐶1
> (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 , 𝐶2
= (𝐵2𝐶1 + 𝐵1)24𝐵1 (𝐴2𝐵1 + (1 − 𝐴1) 𝐵2)} ,

C21 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 𝐶1
< (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 , 𝐶2
= 𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 } ,

C22 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 1 − 𝐴12𝐴2 > 𝐶1
> (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 , 𝐶2
= 𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 } ,

C23 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 > 0, 𝐶1
> 1 − 𝐴12𝐴2 , 𝐶2 = 𝐶1 (1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 } ,

C11 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 = 0, 𝐶1 > 1 − 𝐴12𝐴2 } ,
C12 = {(𝐶1, 𝐶2) : 𝐴1 < 1, Δ 1 = 0, 𝐶1 < 1 − 𝐴12𝐴2 } ,
P1 = {(𝐶1, 𝐶2) : 𝐴1 < 1, 𝐶1 = 1 − 𝐴12𝐴2 , 𝐶2 = 14𝐴2} ,
P2 = {(𝐶1, 𝐶2) : 𝐴1 < 1, 𝐶1

= (1 − 𝐴1) 𝐵1(1 − 𝐴1) 𝐵2 + 2𝐴2𝐵1 , 𝐶2
= 𝐵1 (𝐴2𝐵1 − (𝐴1 − 1) 𝐵2)((𝐴1 − 1) 𝐵2 − 2𝐴2𝐵1)2 } ,

R31 = {(𝐶1, 𝐶2) : 𝐴1 = 1, Δ 1 < 0} ,
R32 = {(𝐶1, 𝐶2) : 𝐴1 = 1, Δ 1 > 0} ,
C3 = {(𝐶1, 𝐶2) : 𝐴1 = 1, Δ 1 = 0} ,
R41 = {(𝐶1, 𝐶2) : 𝐴1 > 1, Δ 1 < 0} ,
R42 = {(𝐶1, 𝐶2) : 𝐴1 > 1, Δ 1 > 0} ,
C4 = {(𝐶1, 𝐶2) : 𝐴1 > 1, Δ 1 = 0} .

(40)

Figure 1 gives a graphical representation of above sets.The
following result gives a complete classification for the number
of equilibrium solutions of system (1).

Proposition 11. Let𝐴1,𝐴2, 𝐵1, 𝐵2,𝐶1, and𝐶2 be positive real
numbers. Then, the number of positive equilibrium solutions of
system (1) with parameters 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 can be
from 1 to 6. The different cases are given in Table 1.

Proof. The proof follows from Lemma 10.

4. Linearized Stability Analysis

The Jacobian matrix of the map 𝑇 has the form

𝐽𝑇
= ( 𝐴1 + 𝑦𝐶1(𝐴1 + 𝑥𝐵1 + 𝑦𝐶1)2 − 𝑥𝐶1(𝐴1 + 𝑥𝐵1 + 𝑦𝐶1)2− 𝑦2𝐵2(𝐴2 + 𝑥𝐵2 + 𝑦2𝐶2)2 2𝑦 (𝐴2 + 𝑥𝐵2)(𝐴2 + 𝑥𝐵2 + 𝑦2𝐶2)2). (41)
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Table 1: The criteria for the existence of the equilibrium points.

Case Equilibria Region The criteria for the existence

(i) 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6 R24

𝐴1 < 1, Δ 1 > 0, 𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 < (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)
(ii) 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 = 𝐸6 C31

𝐴1 < 1, Δ 1 > 0, 𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶2 = (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)
(iii) 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 R22 𝐴1 < 1, Δ 1 > 0, 𝐶2 < 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2
(iv) 𝐸1, 𝐸2, 𝐸3, 𝐸4 R21 ∪R25 ∪C32

𝐴1 < 1, Δ 1 > 0, 𝐶2 > (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2) or𝐴1 < 1, Δ 1 > 0, 1 − 𝐴12𝐴2 > 𝐶1 > (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)
(v) 𝐸1, 𝐸2, 𝐸3, 𝐸4 R23

𝐴1 < 1, Δ 1 > 0, 𝐶1 > 1 − 𝐴12𝐴2 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)
(vi) 𝐸1, 𝐸2, 𝐸3 = 𝐸6, 𝐸4, 𝐸5 C21 𝐴1 < 1, Δ 1 > 0, 𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 , 𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2
(vii) 𝐸1, 𝐸2, 𝐸3 = 𝐸5 = 𝐸6, 𝐸4 P2 𝐴1 < 1, Δ 1 > 0, 𝐶1 = (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 , 𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2
(viii) 𝐸1, 𝐸2, 𝐸3 = 𝐸5, 𝐸4 C22

𝐴1 < 1, Δ 1 > 0, 1 − 𝐴12𝐴2 > 𝐶1 > (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2
(ix) 𝐸1, 𝐸3, 𝐸2 = 𝐸5, 𝐸4 C23 𝐴1 < 1, Δ 1 > 0, 𝐶1 > 1 − 𝐴12𝐴2 , 𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2
(x) 𝐸1, 𝐸2 = 𝐸3 = 𝐸5, 𝐸4 P1 𝐴1 < 1, Δ 1 = 0, 𝐶1 = 1 − 𝐴12𝐴2 , 𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2C1)(1 − 𝐴1)2
(xi) 𝐸1, 𝐸2 = 𝐸3, 𝐸4 C11 ∪C12 𝐴1 < 1, Δ 1 = 0, 𝐶1 ̸= 1 − 𝐴12𝐴2
(xii) 𝐸1, 𝐸4 R1 𝐴1 < 1, Δ 1 < 0
(xiii) 𝐸1 = 𝐸4, 𝐸2, 𝐸3 R32 𝐴1 = 1, Δ 1 > 0
(xiv) 𝐸1 = 𝐸4, 𝐸2 = 𝐸3 C3 𝐴1 = 1, Δ 1 = 0
(xv) 𝐸1 = 𝐸4 R31 𝐴1 = 1, Δ 1 < 0
(xvi) 𝐸1, 𝐸2, 𝐸3 R42 𝐴1 > 1, Δ 1 > 0
(xvii) 𝐸1, 𝐸2 = 𝐸3 C4 𝐴1 > 1, Δ 1 = 0
(xviii) 𝐸1 R41 𝐴1 > 1, Δ 1 < 0
The determinant of (41) at the equilibrium point is given by

det 𝐽𝑇 (𝑥, 𝑦)
= 𝑦 (2𝐴1 (𝐴2 + 𝐵2𝑥) + 𝑦 (2𝐴2 + 𝐵2𝑥)𝐶1)(𝐴1 + 𝐵1𝑥 + 𝐶1𝑦)2 (𝐴2 + 𝐵2𝑥 + 𝐶2𝑦2)2 (42)

and the trace of (41) at the equilibrium point is given by

tr 𝐽𝑇 (𝑥, 𝑦) = 𝐴1 + 𝑦𝐶1(𝐴1 + 𝐵1𝑥 + 𝐶1𝑦)2+ 2𝑦 (𝐴2 + 𝐵2𝑥)(𝐴2 + 𝐵2𝑥 + 𝐶2𝑦2)2 .
(43)
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The characteristic equation has the form𝜆2
− 𝜆( 𝐴1 + 𝑦𝐶1(𝐴1 + 𝐵1𝑥 + 𝐶1𝑦)2 + 2𝑦 (𝐴2 + 𝐵2𝑥)(𝐴2 + 𝐵2𝑥 + 𝐶2𝑦2)2)
+ 𝑦 (2𝐴1 (𝐴2 + 𝐵2𝑥) + 𝑦 (2𝐴2 + 𝐵2𝑥)𝐶1)(𝐴1 + 𝐵1𝑥 + 𝐶1𝑦)2 (𝐴2 + 𝐵2𝑥 + 𝐶2𝑦2)2 = 0.

(44)

Lemma 12. The following statements hold:

(a) 𝐸1 is locally asymptotically stable if 𝐴1 > 1.
(b) 𝐸1 is a saddle point if 𝐴1 < 1.
(c) 𝐸1 is a nonhyperbolic equilibrium point if 𝐴1 = 1.

Proof. We have that, for the equilibrium point 𝐸1, tr 𝐽𝑇(𝐸1) =1/𝐴1 and det 𝐽𝑇(𝐸1) = 0. The characteristic equation of (50)
at 𝐸1 has the form 𝜆2 − (1/𝐴1)𝜆 = 0, from which the proof
follows.

Lemma 13. The following statements hold:

(a) 𝐸4 is locally asymptotically stable if 𝐴1 < 1.
(b) 𝐸4 is a nonhyperbolic equilibrium point if 𝐴1 = 1.

Proof. We have that, for the equilibrium point 𝐸4, tr 𝐽𝑇(𝐸4) =𝐴1 and det 𝐽𝑇(𝐸4) = 0. The characteristic equation of (50) at𝐸4 has the form 𝜆2 − 𝐴1𝜆 = 0, from which the proof follows.

The equilibrium points 𝐸5 and 𝐸6 are intersection points
of the curves 𝑥𝑓 (𝑦) = 1 − 𝐴1 − 𝐶1𝑦𝐵1 ,

𝑥𝑔 (𝑦) = 𝑦 − 𝐴2 − 𝐶2𝑦2𝐵2 . (45)

Let 𝑥(𝑦) = 𝑥𝑓(𝑦)−𝑥𝑔(𝑦) for 𝑦 ∈ [(1−√1 − 4𝐴2𝐶2)/2𝐶2, (1+√1 − 4𝐴2𝐶2)/2𝐶2].
Lemma 14. Let 𝑇 = (𝑓, 𝑔) be the map defined by (11). Then𝑓󸀠𝑥(𝐸5) < 1, 𝑓󸀠𝑥(𝐸6) < 1, 𝑔󸀠𝑦(𝐸6) < 1. Let𝑓 (𝑦) = 𝐵1𝐶2𝑦2 − (𝐵2𝐶1 + 𝐵1) 𝑦 + 𝐴2𝐵1+ 𝐵2 (1 − 𝐴1) . (46)

Then,𝑦5 and𝑦6 are zeros of𝑓(𝑦) and sign(𝑥(𝑦)) = sign(𝑓(𝑦))
for 𝑦 ∈ [(1 − √1 − 4𝐴2𝐶2)/2𝐶2, (1 + √1 − 4𝐴2𝐶2)/2𝐶2].
Proof. The first derivative of 𝑥𝑓(𝑦6) is given by

𝑥󸀠𝑓 (𝑦𝑖) = 𝑓󸀠𝑦 (𝐸𝑖)1 − 𝑓󸀠𝑥 (𝐸𝑖) = −𝐶1𝐵1 < 0, 𝑖 = 5, 6. (47)

Since𝑓󸀠𝑦(𝐸𝑖) < 0, 𝑖 = 5, 6, we get𝑓󸀠𝑥(𝐸𝑖) < 1, 𝑖 = 5, 6. Similarly,
one can see that

𝑥󸀠𝑔 (𝑦6) = 1 − 𝑔󸀠𝑦 (𝐸6)𝑔󸀠𝑥 (𝐸6)
= −√(𝐵2𝐶1 + 𝐵1)2 − 4𝐵1𝐶2 (𝐴2𝐵1 − (𝐴1 − 1) 𝐵2) + 𝐵2𝐶1𝐵1𝐵2< 0.

(48)

Since 𝑔󸀠𝑥(𝐸6) < 0, we get 𝑔󸀠𝑦(𝐸6) < 1. Further,
𝑥 (𝑦) = 1 − 𝐴1 − 𝐶1𝑦𝐵1 − 𝑦 − 𝐴2 − 𝐶2𝑦2𝐵2= 𝐵1𝐶2𝑦2 − (𝐵2𝐶1 + 𝐵1) 𝑦 + 𝐴2𝐵1 − 𝐴1𝐵2 + 𝐵2𝐵1𝐵2

= 𝑓 (𝑦)𝐵1𝐵2 ,
(49)

from which the proof follows.

Lemma 15. Let 𝑇 be the map associated with system (1) and

𝐽𝑇 (𝑥𝑖, 𝑦𝑖) = (𝑎𝑖 𝑏𝑖𝑐𝑖 𝑑𝑖) (50)

be the Jacobianmatrix of 𝑇 at fixed point 𝐸𝑖(𝑖 = 5, 6).Then the
Jacobian matrix (50) has real and distinct eigenvalues 𝜆1 and𝜆2 such that 0 < 𝜆1 ≤ 𝜆2. Furthermore, the following hold:

sign (𝑥󸀠 (𝑦6)) = sign (1 − 𝜆(6)2 ) , 𝜆(6)2 < 1, (51)

sign (𝑥󸀠 (𝑦5)) = sign (1 − 𝜆(5)2 ) (1 − 𝜆(5)2 ) . (52)

Proof. Implicit differentiation of the equations defining 𝐶𝑓
and 𝐶𝑔 at 𝐸𝑖 gives

𝑥󸀠𝑓 (𝑦𝑖) = 𝑓󸀠𝑦 (𝐸𝑖)1 − 𝑓󸀠𝑥 (𝐸𝑖) ,
𝑥󸀠𝑔 (𝑦𝑖) = 1 − 𝑔󸀠𝑦 (𝐸𝑖)𝑔󸀠𝑥 (𝐸𝑖) . (53)

Characteristic equations associated with the Jacobian matrix
of 𝑇 at 𝐸𝑖 are given by

𝑝 (𝜆) = 𝜆2 − [𝑓󸀠𝑥 (𝐸𝑖) + 𝑔󸀠𝑦 (𝐸𝑖)] 𝜆+ [𝑓󸀠𝑥 (𝐸𝑖) 𝑔󸀠𝑦 (𝐸𝑖) − 𝑓󸀠𝑦 (𝐸𝑖) 𝑔󸀠𝑥 (𝐸𝑖)]= 𝜆2 − (𝑎𝑖 + 𝑑𝑖) 𝜆 + (𝑎𝑖𝑑𝑖 − 𝑏𝑖𝑐𝑖) .
(54)
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Since the map 𝑇 is competitive, then the eigenvalues of the
Jacobian matrix of the map 𝑇, at the equilibrium 𝐸𝑖, are real
and distinct and furthermore 0 < 𝜆(𝑖)1 < 𝜆(𝑖)2 . By (53), we have𝑥󸀠 (𝑦𝑖) = 𝑥󸀠𝑓 (𝑦𝑖) − 𝑥󸀠𝑔 (𝑦𝑖)

= 𝑓󸀠𝑦 (𝐸𝑖)1 − 𝑓󸀠𝑥 (𝐸𝑖) − 1 − 𝑔󸀠𝑦 (𝐸𝑖)𝑔󸀠𝑥 (𝐸𝑖)= 𝑏𝑖1 − 𝑎𝑖 − 1 − 𝑑𝑖𝑐𝑖= −1 + (𝑎𝑖 + 𝑑𝑖) − (𝑎𝑖𝑑𝑖 − 𝑏𝑖𝑐𝑖)𝑐𝑖 (1 − 𝑎𝑖) = −𝑝 (1)𝑐𝑖 (1 − 𝑎𝑖)
= (1 − 𝜆(𝑖)1 ) (1 − 𝜆(𝑖)2 )𝑐𝑖 (𝑎𝑖 − 1) .

(55)

In view of Lemma 14 and from tr 𝐽𝑇(𝐸6) = 𝑎6 +𝑑6 = 𝑓󸀠𝑥(𝐸6) +𝑔󸀠𝑦(𝐸6) = 𝜆(6)1 + 𝜆(6)2 < 2 we get 𝜆(6)1 < 1. The map 𝑇 is
competitive, which implies 𝑐6 = 𝑔󸀠𝑥(𝐸6) < 0. In view of
Lemma 14 we get 𝑎6 = 𝑓󸀠𝑥(𝐸6) < 1 from which it follows
(51). Similarly, from 𝑐5 = 𝑔󸀠𝑥(𝐸5) < 0 and 𝑎5 = 𝑓󸀠𝑥(𝐸5) < 1 we
obtain (52).

The following lemma describes the local stability of the
equilibrium points 𝐸5 and 𝐸6.
Lemma 16. Assume that 𝐴1 < 1 and Δ 2 ≥ 0. Then the
following hold:

(i) If Δ 2 > 0 and 𝐸6 exists then it is locally asymptotically
stable.

(ii) If Δ 2 > 0 and 𝐸5 exists then it is a saddle point.
(iii) If Δ 2 = 0 then 𝐸5 = 𝐸6. Furthermore, if 𝐸5 = 𝐸6

exists then it is nonhyperbolic equilibrium point. The
eigenvalues of 𝐽𝑇(𝐸5 = 𝐸6) are given by 𝜆1 = 1 and𝜆2 < 1.

Proof. Assuming that Δ 2 > 0, then 𝑦5 and 𝑦6 are zeros of
multiplicity one of𝑓 (𝑦) = 𝐵1𝐶2𝑦2 − (𝐵2𝐶1 + 𝐵1) 𝑦 + 𝐴2𝐵1+ 𝐵2 (1 − 𝐴1) (56)

and 𝑦6 > 𝑦5 > 0. From this we have𝑓(𝑦) > 0 for 𝑦 ∈ (0, 𝑦5)∪(𝑦6, +∞) and 𝑓(𝑦) < 0 for 𝑦 ∈ (𝑦5, 𝑦5).
By Lemmas 6 and 7 from [19] the equilibrium curves𝑥𝑓(𝑦) and 𝑥𝑔(𝑦) intersect transversally at 𝐸5 and 𝐸6, that is,𝑥󸀠(𝑦𝑖) ̸= 0 𝑖 = 5, 6. By this and Lemma 14 and by continuity

of function 𝑥(𝑦) there exists a neighborhood 𝑈(𝑖)
𝑦
𝑖

of 𝑦𝑖 such
that 𝑥󸀠(𝑦) > 0 for 𝑦 ∈ 𝑈𝑦

6

and 𝑥󸀠(𝑦) < 0 for 𝑦 ∈ 𝑈(5)
𝑦
5

. This
implies that 𝑥󸀠(𝑦6) > 0 and 𝑥󸀠(𝑦5) < 0. By Lemma 15 we have
that𝐸6 is locally asymptotically stable and𝐸5 is a saddle point
whenever equilibrium points 𝐸5 and 𝐸6 exist.

Assume that Δ 2 = 0. Then 𝑦5 = 𝑦6 is zero of 𝑓(𝑦) of
multiplicity two. In view of Lemmas 6 and 7 from [19] we
have that 𝑥󸀠(𝑦5) = 0. The rest of the proof follows from the
proof of Lemma 15.

Lemma 17. Assume that Δ 1 ≥ 0. The following statements are
true:

(a) 𝐸2 is a saddle point if Δ 1 > 0, and 𝐴1 ≥ 1 or 𝐴1 < 1
and 𝐶1 > (1 − 𝐴1)(1 + √1 − 4𝐴2𝐶2)/2𝐴2.

(b) 𝐸2 is a repeller ifΔ 1 > 0,𝐴1 < 1, and𝐶1 < (1−𝐴1)(1+√1 − 4𝐴2𝐶2)/2𝐴2.
(c) 𝐸2 is a nonhyperbolic equilibrium point if Δ 1 = 0 orΔ 1 > 0,𝐴1 < 1,

𝐶1 = (1 − 𝐴1) (1 + √1 − 4𝐴2𝐶2)2𝐴2 . (57)

If Δ 1 = 0 then the eigenvalues of 𝐽𝑇(𝐸2) are given by𝜆1 = 1,
𝜆2 = 12𝐴2𝐶1 + 𝐴1 (58)

with corresponding eigenvectors

k1 = (0, 1)𝑇 ,
k2 = ( 2𝐴2𝐶1 + 𝐴1 − 1𝐵2 (2𝐴2𝐶1 + 𝐴1) , 1)𝑇 . (59)

If (57) holds then the eigenvalues of 𝐽𝑇(𝐸2) are given by𝜆1 = 1,
𝜆2 = 1 + √1 − 4𝐴2𝐶2 > 1 (60)

with corresponding eigenvectors

k1 = (√1 − 4𝐴2𝐶2𝐵2 , 1)𝑇 ,
k2 = (0, 1)𝑇 . (61)

Proof. One can see that1 + det 𝐽𝑇 (𝐸2) − tr 𝐽𝑇 (𝐸2)
= 2 (1 − 𝐴1)√1 − 4𝐴2𝐶2𝐶2 + 𝐶1 (1 − 4𝐴2𝐶2 − √1 − 4𝐴2𝐶2)2𝐴1𝐶2 + 𝐶1 (1 − √1 − 4𝐴2𝐶2) ,
1 − det 𝐽𝑇 (𝐸2)
= 𝐶1 (1 − √1 − 4𝐴2𝐶2) + 2𝐶2 (𝐴1 − 1 − √1 − 4𝐴2𝐶2)2𝐴1𝐶2 + 𝐶1 (1 − √1 − 4𝐴2𝐶2) .

(62)
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(a) Since det 𝐽𝑇(𝐸2) > 0 and tr 𝐽𝑇(𝐸2) > 0, the equilib-
rium 𝐸2 is a saddle point if and only if 1+det 𝐽𝑇(𝐸2)−
tr 𝐽𝑇(𝐸2) < 0. If 𝐴1 ≥ 1 it is obvious that 1 +
det 𝐽𝑇(𝐸2) − tr 𝐽𝑇(𝐸2) < 0. Assume that 𝐴1 < 1.Then1 + det 𝐽𝑇(𝐸2) − tr 𝐽𝑇(𝐸2) < 0 if and only if

𝐶1 > 2 (1 − 𝐴1) 𝐶2√1 − 4𝐴2𝐶24𝐴2𝐶2 − 1 + √1 − 4𝐴2𝐶2= (1 − 𝐴1) (√1 − 4𝐴2𝐶2 + 1)2𝐴2 , (63)

from which the proof of the statement follows.
(b) Since det 𝐽𝑇(𝐸2) > 0 and tr 𝐽𝑇(𝐸2) > 0, the

equilibrium𝐸2 is repeller if and only if 1+det 𝐽𝑇(𝐸2)−
tr 𝐽𝑇(𝐸2) > 0 and 1 − det 𝐽𝑇(𝐸2) < 0.The proof of the
statement follows from the facts1 − det 𝐽𝑇 (𝐸2) < 0 ⇐⇒

𝐶1 < 2𝐶2 (√1 − 4𝐴2𝐶2 − 𝐴1 + 1)1 − √1 − 4𝐴2𝐶2 ,
2 (1 − 𝐴1) 𝐶2√1 − 4𝐴2𝐶24𝐴2𝐶2 − 1 + √1 − 4𝐴2𝐶2− 2𝐶2 (√1 − 4𝐴2𝐶2 − 𝐴1 + 1)1 − √1 − 4𝐴2𝐶2= −−4𝐴2𝐶2 + √1 − 4𝐴2𝐶2 + 12𝐴2 < 0.

(64)

(c) Since det 𝐽𝑇(𝐸2) > 0 and tr 𝐽𝑇(𝐸2) > 0, the equilib-
rium𝐸2 is nonhyperbolic if and only if 1+det 𝐽𝑇(𝐸2)−
tr 𝐽𝑇(𝐸2) = 0 or det 𝐽𝑇(𝐸2) = 1 and tr 𝐽𝑇(𝐸2) ≤ 2.
From the proof of the statements (a) and (b) ifΔ 1 = 0

or Δ 1 > 0,𝐴1 < 1,
𝐶1 = (1 − 𝐴1) (√1 − 4𝐴2𝐶2 + 1)2𝐴2

(65)

we obtain 1 + det 𝐽𝑇(𝐸2) − tr 𝐽𝑇(𝐸2) = 0.Now, assume
that Δ 1 > 0 and
det 𝐽𝑇 (𝐸2) = 1 ⇐⇒

𝐶1 = 2𝐶2 (√1 − 4𝐴2𝐶2 − 𝐴1 + 1)1 − √1 − 4𝐴2𝐶2 . (66)

This implies tr 𝐽𝑇(𝐸2) − 2 = (1 − 4𝐴2𝐶2)/(√1 − 4𝐴2𝐶2 + 1) > 0. The rest of the proof follows
from the fact that if Δ 1 = 0 then

𝐽𝑇 (𝐸2) = ( 1𝐴1 + 2𝐴2𝐶1 00 1) (67)

and if (57) holds then𝐽𝑇 (𝐸2) = (1 00 √1 − 4𝐴2𝐶2 + 1) . (68)

Lemma 18. Assume that Δ 1 ≥ 0. The following statements are
true:

(a) 𝐸3 is locally asymptotically stable ifΔ 1 > 0, and𝐴1 ≥ 1
or 𝐴1 < 1 and 𝐶1 > (1 − 𝐴1)(1 − √1 − 4𝐴2𝐶2)/2𝐴2.

(b) 𝐸3 is a saddle point if Δ 1 > 0, and 𝐴1 < 1, 𝐶1 <(1 − 𝐴1)(1 − √1 − 4𝐴2𝐶2)/2𝐴2.
(c) 𝐸3 is a nonhyperbolic equilibrium point if Δ 1 = 0 orΔ 1 > 0,𝐴1 < 1,

𝐶1 = (1 − 𝐴1) (1 − √1 − 4𝐴2𝐶2)2𝐴2 . (69)

If Δ 1 = 0 then the eigenvalues of 𝐽𝑇(𝐸3) are given by𝜆1 = 1,𝜆2 = 12𝐴2𝐶1 + 𝐴1 (70)

with corresponding eigenvectors

k1 = (0, 1)𝑇 ,
k2 = ( 2𝐴2𝐶1 + 𝐴1 − 1𝐵2 (2𝐴2𝐶1 + 𝐴1) , 1)𝑇 . (71)

If (57) holds then the eigenvalues of 𝐽𝑇(𝐸3) are given by𝜆1 = 1,𝜆2 = 1 − √1 − 4𝐴2𝐶2 < 1 (72)

with corresponding eigenvectors

k1 = (−√1 − 4𝐴2𝐶2𝐵2 , 1)𝑇
k2 = (0, 1)𝑇 . (73)

Proof. Since the proof of this lemma is similar to the proof of
Lemma 17, it is omitted.

We summarize results about local stability in the follow-
ing theorem.

Theorem 19. Let 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 be positive real
numbers. Then, local stability of the equilibrium points for
different parameter regions is given by Table 2.

Proof. Theproof follows fromTheorem 8 and Lemmas 17 and
18.

Figure 2 illustrates visually local stability of all equilib-
rium points of system (1).
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Table 2: The local stability of the equilibrium points.

Case The local stability Parameter region

(i) Saddle: 𝐸1, 𝐸3, 𝐸5; LAS: 𝐸4, 𝐸6;
repeller: 𝐸2 𝐴1 < 1, Δ 1 > 0, 𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 < (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)

(ii)
Saddle: 𝐸1, 𝐸3; LAS: 𝐸4;
nonhyperbolic: 𝐸5 = 𝐸6;

repeller: 𝐸2 𝐴1 < 1, Δ 1 > 0, 𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 , 𝐶2 = (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)
(iii) Saddle: 𝐸1, 𝐸5; LAS: 𝐸3, 𝐸4;

repeller: 𝐸2 𝐴1 < 1, Δ 1 > 0, 𝐶2 < 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2
(iv) Saddle: 𝐸1, 𝐸3; LAS: 𝐸4;

repeller: 𝐸2
𝐴1 < 1, Δ 1 > 0, 𝐶2 > (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2) or 𝐴1 < 1, Δ 1 > 0,1 − 𝐴12𝐴2 > 𝐶1 > (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)

(v) Saddle: 𝐸1, 𝐸2; LAS: 𝐸3, 𝐸4 𝐴1 < 1, Δ 1 > 0, 𝐶1 > 1 − 𝐴12𝐴2 , 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 ≤ (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)
(vi)

Saddle: 𝐸1, 𝐸5; LAS: 𝐸4;
repeller: 𝐸2

Nonhyperbolic: 𝐸3 = 𝐸6;
𝐴1 < 1, Δ 1 > 0, 𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2

(vii)
Saddle: 𝐸1; LAS: 𝐸4; repeller:𝐸2
Nonhyperbolic: 𝐸3 = 𝐸5 = 𝐸6; 𝐴1 < 1, Δ 1 > 0, 𝐶1 = (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 , 𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2

(viii)
Saddle: 𝐸1; LAS: 𝐸4; repeller:𝐸2
Nonhyperbolic: 𝐸3 = 𝐸5 𝐴1 < 1, Δ 1 > 0, 1 − 𝐴12𝐴2 > 𝐶1 > (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 , 𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2

(ix) Saddle: 𝐸1; LAS: 𝐸3, 𝐸4;
nonhyperbolic: 𝐸2 = 𝐸5 𝐴1 < 1, Δ 1 > 0, 𝐶1 > 1 − 𝐴12𝐴2 ,𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2

(x) Saddle: 𝐸1; LAS: 𝐸4;
nonhyperbolic: 𝐸2 = 𝐸3 = 𝐸5 𝐴1 < 1, Δ 1 = 0, 𝐶1 = 1 − 𝐴12𝐴2 , 𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2

(xi) Saddle: 𝐸1; LAS: 𝐸4;
nonhyperbolic: 𝐸2 = 𝐸3 𝐴1 < 1, Δ 1 = 0, 𝐶1 ̸= 1 − 𝐴12𝐴2

(xii) Saddle: 𝐸1; LAS: 𝐸4 𝐴1 < 1, Δ 1 < 0
(xiii) Saddle: 𝐸2; LAS: 𝐸3;

nonhyperbolic: 𝐸1 = 𝐸4 𝐴1 = 1, Δ 1 > 0
(xiv) Nonhyperbolic: 𝐸1 = 𝐸4,𝐸2 = 𝐸3 𝐴1 = 1, Δ 1 = 0
(xv) Nonhyperbolic: 𝐸1 = 𝐸4 𝐴1 = 1, Δ 1 < 0
(xvi) Saddle: 𝐸1, 𝐸3; LAS: 𝐸2; 𝐴1 > 1, Δ 1 > 0
(xvii) LAS: 𝐸1; nonhyperbolic:𝐸2 = 𝐸3 𝐴1 > 1, Δ 1 = 0
(xviii) LAS: 𝐸1 𝐴1 > 1, Δ 1 < 0
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Figure 2: Equilibria in different parameter regions for the number of equilibria of system (1) when 𝐴1, 𝐴2, 𝐵1, and 𝐵2 are fixed positive real
numbers, as given by Proposition 11. Each circle in the parameters (𝐶1, 𝐶2)-plane indicates the existence of an isolated equilibrium point of
system (1) in the nonnegative quadrant of the 𝑥𝑦-plane. Local stability character of equilibria as given inTheorem 19 is indicated as follows: ∙,
locally asymptotically stable equilibrium;⊖, saddle; ⃝, repelling equilibriumpoint: two-colored circle, semistable nonhyperbolic equilibrium.

5. Injectivity and Convergence to
Equilibrium Points

In this section we prove some global properties of the map 𝑇
such as injectivity and (𝑂+) property and give global behavior
on the coordinate axes.

Lemma 20. The map 𝑇 is injective.

Proof. Assume that 𝑇(𝑥1, 𝑦1) = 𝑇(𝑥2, 𝑦2).Then, we have

( 𝐴1𝑥1 − 𝐴1𝑥2 − 𝐶1𝑥2𝑦1 + 𝐶1𝑥1𝑦2(𝐴1 + 𝐵1𝑥1 + 𝐶1𝑦1) (𝐴1 + 𝐵1𝑥2 + 𝐶1𝑦2) ,𝐴2𝑦12 + 𝐵2𝑥2𝑦12 − 𝐴2𝑦22 − 𝐵2𝑥1𝑦22(𝐴2 + 𝐵2𝑥1 + 𝐶2𝑦12) (𝐴2 + 𝐵2𝑥2 + 𝐶2𝑦22))= (0, 0) .
(74)

Equation (74) is equivalent to

𝐴1𝑥1 − 𝐴1𝑥2 − 𝐶1𝑥2𝑦1 + 𝐶1𝑥1𝑦2 = 0, (75)𝐴2𝑦12 + 𝐵2𝑥2𝑦12 − 𝐴2𝑦22 − 𝐵2𝑥1𝑦22 = 0. (76)

Equation (75) implies

𝑥1 = 𝐴1𝑥2 + 𝐶1𝑥2𝑦1𝐴1 + 𝐶1𝑦2 . (77)

By substituting this into (76) we obtain

(𝑦1 − 𝑦2) (𝐴1𝐴2𝑦1 + 𝐴1𝐵2𝑥2𝑦1 + 𝐴1𝐴2𝑦2 + 𝐴1𝐵2𝑥2𝑦2 + 𝐴2𝐶1𝑦1𝑦2 + 𝐵2𝐶1𝑥2𝑦1𝑦2 + 𝐴2𝐶1𝑦22)𝐴1 + 𝐶1𝑦2 = 0, (78)

from which it follows that 𝑦1 = 𝑦2. From (77) we have 𝑥1 =𝑥2, which complete the proof.

The global behavior of 𝑇 on the coordinate axes is
described with the following result.

Lemma 21. The following statements hold:

(i) If Δ 1 ≥ 0 and (𝑥𝑛, 𝑦𝑛) = 𝑇𝑛(0, 𝑦0) then 𝑥𝑛 = 0
and (𝑥𝑛, 𝑦𝑛) → 𝐸3 for 𝑦0 ∈ ((1 − √1 − 4𝐴2𝐶2)/2𝐶2,∞) and (𝑥𝑛, 𝑦𝑛) → 𝐸1 for 𝑦0 ∈ (0, (1 +√1 − 4𝐴2𝐶2)/2𝐶2).

(ii) If Δ 1 < 0 and (𝑥𝑛, 𝑦𝑛) = 𝑇𝑛(0, 𝑦0) then 𝑥𝑛 = 0 and(𝑥𝑛, 𝑦𝑛) → 𝐸1 for 𝑦0 ∈ (0,∞).
(iii) If 𝐴1 < 1 and (𝑥󸀠𝑛, 𝑦󸀠𝑛) = 𝑇𝑛(𝑥0, 0) then 𝑦󸀠𝑛 = 0 and(𝑥󸀠𝑛, 𝑦󸀠𝑛) → 𝐸4 for 𝑥0 ∈ (0,∞).
(iv) If 𝐴1 ≥ 1 and (𝑥󸀠𝑛, 𝑦󸀠𝑛) = 𝑇𝑛(𝑥0, 0) then 𝑦󸀠𝑛 = 0 and(𝑥󸀠𝑛, 𝑦󸀠𝑛) → 𝐸1 for 𝑥0 ∈ (0,∞).
(v) 𝑇([0,∞) × [0,∞)) ⊂ [0, 1/𝐵1] × [0, 1/𝐶2].
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Proof.
(i) From (11) it is easy to see that if 𝑥0 = 0 then 𝑥𝑛 = 0 for𝑛 > 0. Since𝑇 (0, 𝑦0) − (0, 𝑦0) = (0, −𝑦0 (𝐶2𝑦20 − 𝑦0 + 𝐴2)𝐴2 + 𝐶2𝑦20 ) (79)

we obtain that(0, 𝑦0) ⪯se 𝑇 (0, 𝑦0)
for 𝑦0 ∈ (0, 1 − √1 − 4𝐴2𝐶22𝐶2 ) ∪ (1 + √1 − 4𝐴2𝐶22𝐶2 ,∞) ,𝑇 (0, 𝑦0) ⪯se (0, 𝑦0)

for 𝑦0 ∈ (1 − √1 − 4𝐴2𝐶22𝐶2 , 1 + √1 − 4𝐴2𝐶22𝐶2 ) .
(80)

Take 𝑦0 > (1 + √1 − 4𝐴2𝐶2)/2𝐶2. Then 𝑇𝑛(0,𝑦0) ⪯se 𝑇𝑛+1(0, 𝑦0) ⪯se 𝐸3. Since 𝑇𝑛(0, 𝑦0) ⪯se 𝐸3 ≺se𝐸2 ≺se 𝐸1 we obtain 𝑇𝑛(0, 𝑦0) → 𝐸3 as 𝑛 → ∞.
Similarly, if 𝑦0 ∈ ((1 − √1 − 4𝐴2𝐶2)/2𝐶2,(1 + √1 − 4𝐴2𝐶2)/2𝐶2) then 𝐸3 ⪯se 𝑇𝑛+1(0, 𝑦0) ⪯se𝑇𝑛(0, 𝑦0) ⪯se 𝐸2 ≺se 𝐸1 which implies 𝑇𝑛(0, 𝑦0) → 𝐸3
as 𝑛 → ∞. If 𝑦0 < (1 − √1 − 4𝐴2𝐶2)/2𝐶2 then𝐸3 ≺se 𝐸2 ≺se 𝑇𝑛(0, 𝑦0) ⪯se 𝑇𝑛+1(0, 𝑦0) ⪯se 𝐸1 which
implies 𝑇𝑛(0, 𝑦0) → 𝐸1 as 𝑛 → ∞.

(ii) If Δ 1 < 0 then 𝑇 has only equilibrium 𝐸1 on 𝑦-
axis and 𝑇(0, 𝑦0) ⪯se (0, 𝑦0) for all 𝑦0 ≥ 0. Since 𝑇 is
monotone map we get 𝑇𝑛(0, 𝑦0) ⪯se 𝑇𝑛+1(0, 𝑦0) ⪯se 𝐸1
which implies 𝑇𝑛(0, 𝑦0) → 𝐸1 as 𝑛 → ∞ from which
the proof follows.

(iii) The proof of the statements (iii) and (iv) is similar to
the proof of statements (i) and (ii) and follows from
the fact that𝑇 (𝑥0, 0) − (𝑥0, 0) = (−𝑥0 (𝐴1 + 𝐵1𝑥0 − 1)𝐴1 + 𝐵1𝑥0 , 0) (81)

and will be omitted.
(v) The proof follows from the facts that 𝑓(𝑥, 𝑦) ≤ 1/𝐵1

and 𝑔(𝑥, 𝑦) ≤ 1/𝐶2.
Lemma 22. Let𝑀(𝑡) ≡ (𝑡, (1 −𝐴1 −𝐵1𝑡)/𝐶1). Then𝑀(𝑥6) =𝐸6,𝑀(𝑥5) = 𝐸5, and𝑀(𝑥4) = 𝐸4 and the following hold:

(i) If Δ 2 ≥ 0 then 𝑀(𝑡) ⪯𝑠𝑒 𝑇(𝑀(𝑡)) for 𝑡 ∈ (0, 𝑥6) ∪(𝑥5, 𝑥4) and 𝑇(𝑀(𝑡)) ⪯𝑠𝑒𝑀(𝑡) for 𝑡 ∈ (𝑥6, 𝑥5).
(ii) If Δ 2 < 0 then 𝑀(𝑡) ⪯𝑠𝑒 𝑇(𝑀(𝑡)) for 𝑡 ∈ (0, 𝑥4) and𝑇(𝑀(𝑡)) ⪯𝑠𝑒𝑀(𝑡) for 𝑡 ∈ (𝑥6, 𝑥5).

Proof. The proof follows from the fact𝑇 (𝑀 (𝑡)) − 𝑀 (𝑡)
= (0, (𝐴1 + 𝐵1𝑡 − 1) 𝑔 (𝑥)𝐶31 (𝐴2 + 𝐵2𝑡) + 𝐶2𝐶1 (𝐴1 + 𝐵1𝑡 − 1)2) , (82)

where 𝑔(𝑥) is given by (17) and 𝑔(𝑥5) = 𝑔(𝑥6) = 0 and 𝑥4 =(1 − 𝐴1)/𝐵1.

Theorem 23. Every solution of system (1) converges to an
equilibrium point.

Proof. The map 𝑇 associated with the system is injective.
Relation (42) implies that determinant of Jacobian (41) is
positive for all 𝑥 ∈ [0,∞) × [0,∞). By using Lemma 20
we have that condition (𝑂+) of Theorem 3 is satisfied for the
map 𝑇 (𝑇 is competitive). Theorem 2 implies that 𝑇𝑛(𝑥) is
eventually componentwise monotone for all 𝑥 ∈ [0,∞)2.The
statement (v) of Lemma 21 implies that every solution enters
in compact set [0, 1/𝐵1] × [0, 1/𝐶2], from which the proof
follows.

Remark 24. In view of Theorem 23 the main objective in
determining the global dynamics of system (1) is to charac-
terize the basins of attractions of all equilibrium points. As
we will see in Theorem 25 the boundaries of these basins
of attractions will be the global stable manifolds of the
saddle or nonhyperbolic equilibrium points, whose existence
is guaranteed byTheorems 7, 8, and 9.

6. Global Behavior

In this section we give results which precisely describe global
dynamics of system (1) including precise characterization of
basins of attraction of different equilibrium points. The main
result of this paper is the following.

Theorem 25. The global behavior of system (1) is given
by Table 3. See Figure 3 for visual illustration of dynamic
scenarios.

Proof. We will prove statements (i)–(x) listed in the second
column of Table 3 in the given order. The proof of other
statements is similar. LetR = [0,∞) × [0,∞).

(i) Suppose (𝐶1, 𝐶2) ∈ R24. By Proposition 11, in𝑄1(0, 0)
there exist six equilibria 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, and𝐸6. By Theorem 19 equilibria 𝐸4 and 𝐸5 are locally
asymptotically stable; 𝐸3, 𝐸4, and 𝐸5 are the saddle
points and 𝐸2 is repeller. In view of (41) the map𝑇 is competitive on R and strongly competitive on
int(R). It follows from the Perron-Frobenius Theo-
rem and a change of variables [16] that, at each point,
the Jacobianmatrix of a strongly competitive map has
two real and distinct eigenvalues, the larger one in
absolute value being positive, and that corresponding
eigenvectors may be chosen to point in the direction
of the second and first quadrant, respectively. Also,
one can show that if the map is strongly competitive
then no eigenvector is aligned with a coordinate axis.
Hence, all conditions of Theorems 7, 8, and 9 are
satisfied,which yields the existence of the global stable
manifoldW𝑠(𝐸5), with endpoint at point 𝐸2, which is
graph of an increasing function. Let W− = {(𝑥, 𝑦) |(𝑥, 𝑦) ⪯se (𝑥0, 𝑦0) for some (𝑥0, 𝑦0) ∈ W𝑠(𝐸5)} and
W+ = {(𝑥, 𝑦) | (𝑥1, 𝑦1) ⪯se (𝑥, 𝑦) for some (𝑥1, 𝑦1) ∈
W𝑠(𝐸5)}. By Lemma 21 and uniqueness of the global
stable manifold we have W𝑠(𝐸1) = {(0, 𝑦) : 0 ≤
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Table 3: The global behavior of system (1).

Case Parameter region Global behavior

(i)

R24 : 𝐴1 < 1, Δ 1 > 0,𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 <(𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)

There exist six equilibrium points 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, and 𝐸6, where 𝐸4
and 𝐸5 are locally asymptotically stable, 𝐸3, 𝐸4, and 𝐸6 are saddle
points, and 𝐸2 is repeller. The stable manifoldW𝑠(𝐸6) of the saddle
point 𝐸6 is an increasing separatrix with endpoint at 𝐸2, and solutions
with initial point above theW𝑠(𝐸6) converge to 𝐸5, while solutions
with initial point below theW𝑠(𝐸6) converge to 𝐸4. All orbits that
start onW𝑠(𝐸6) are attracted to 𝐸6.The basins of attraction of 𝐸1 and𝐸3 are, respectively,
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and
B(𝐸3) = {(0, 𝑦) : 𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}

(ii)

C31 : 𝐴1 < 1, Δ 1 > 0,𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶2 = (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)

There exist five equilibrium points 𝐸1, 𝐸2, 𝐸3, 𝐸4, and 𝐸5 = 𝐸6, where𝐸4 is locally asymptotically stable, 𝐸1 and 𝐸3 are saddle points, 𝐸2 is
repeller, and 𝐸5 = 𝐸6 is nonhyperbolic. There exists a continuous
increasing curveC with endpoint at 𝐸2, which is a subset of the basin
of attraction of 𝐸5 = 𝐸6. All solutions with initial point aboveC
converge to 𝐸5 = 𝐸6, while solutions with initial point belowC

converge to 𝐸4.The basins of attraction of 𝐸1 and 𝐸3 are, respectively,
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and
B(𝐸3) = {(0, 𝑦) : 𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}

(iii)
R22 : 𝐴1 < 1, Δ 1 > 0,𝐶2 < 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2

There exist five equilibrium points 𝐸1, 𝐸2, 𝐸3, 𝐸4, and 𝐸5, where 𝐸3
and 𝐸4 are locally asymptotically stable, 𝐸1 and 𝐸5 are saddle points,
and 𝐸2 is repeller. The stable manifoldW𝑠(𝐸5) of the saddle point 𝐸5
is an increasing separatrix with endpoint at 𝐸2, and solutions with
initial point aboveW𝑠(𝐸5) converge to 𝐸3, while solutions with initial
point belowW𝑠(𝐸5) converge to 𝐸4. All orbits that start onW𝑠(𝐸5)
are attracted to 𝐸5. The basin of attraction of 𝐸1 is
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}

(iv)

R21 ∪R25 ∪C32 : 𝐴1 < 1, Δ 1 > 0,𝐶2 > (𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2) or 𝐴1 < 1,Δ 1 > 0,1 − 𝐴12𝐴2 > 𝐶1 > (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 <(𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)

There exist four equilibrium points 𝐸1, 𝐸2, 𝐸3, and 𝐸4, where 𝐸4 is
globally asymptotically stable, 𝐸1 and 𝐸3 are saddle points, and 𝐸2 is a
repeller. The basins of attraction of 𝐸1, 𝐸3, and 𝐸4 are, respectively,
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)},
B(𝐸3) = {(0, 𝑦) : 𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}, and
B(𝐸4) = (0,∞) × [0,∞).

(v)

R23 : 𝐴1 < 1, Δ 1 > 0,𝐶1 > (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 < 𝐶2 <(𝐵2𝐶1 + 𝐵1)24𝐵1(𝐴2𝐵1 + (1 − 𝐴1)𝐵2)

There exist four equilibrium points 𝐸1, 𝐸2, 𝐸3, and 𝐸4, where 𝐸3 and𝐸4 are locally asymptotically stable and 𝐸1 and 𝐸2 are saddle points.
The stable manifoldW𝑠(𝐸2) of the saddle point 𝐸2 is an increasing
separatrix, and solutions with initial point aboveW𝑠(𝐸1) converge to𝐸3, while solutions with initial point belowW𝑠(𝐸2) converge to 𝐸4.All
orbits that start onW𝑠(𝐸2) are attracted to 𝐸2.The basin of attraction
of 𝐸1 is given byB(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}.

(vi)

C21 : 𝐴1 < 1, Δ 1 > 0,𝐶1 < (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2

There exist five equilibrium points 𝐸1, 𝐸2, 𝐸3 = 𝐸6, 𝐸4, and 𝐸5, where𝐸4 is locally asymptotically stable, 𝐸1 and 𝐸5 are saddle points,𝐸3 = 𝐸6 is nonhyperbolic, and 𝐸2 is a repeller. The stable manifold
W𝑠(𝐸5) of the saddle point 𝐸5 is an increasing separatrix with
endpoint at 𝐸2, and solutions with initial point aboveW𝑠(𝐸5)
converge to 𝐸3 = 𝐸6, while solutions with initial point belowW𝑠(𝐸5)
converge to 𝐸4. All orbits that start onW𝑠(𝐸5) are attracted to 𝐸5.The
basin of attraction of 𝐸1 is given by
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}.

(vii)

P2 : 𝐴1 < 1, Δ 1 > 0,𝐶1 = (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1 ,𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2
There exist four equilibrium points 𝐸1, 𝐸2, 𝐸3 = 𝐸5 = 𝐸6, and 𝐸4,
where 𝐸4 is locally asymptotically stable, 𝐸1 is a saddle point,𝐸3 = 𝐸5 = 𝐸6 is nonhyperbolic, and 𝐸2 is a repeller. There exists a
strictly increasing curveC with endpoint at 𝐸3 = 𝐸5 = 𝐸6, which is
the subset of the basin of attraction of 𝐸3 = 𝐸5 = 𝐸6. All solutions
with initial point aboveC converge to 𝐸3 = 𝐸5 = 𝐸6, while solutions
with initial point belowC converge to 𝐸4.The basin of attraction of𝐸1 is given byB(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}.
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Table 3: Continued.

Case Parameter region Global behavior

(viii)

C22 : 𝐴1 < 1, Δ 1 > 0,𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 ,1 − 𝐴12𝐴2 > 𝐶1 > (1 − 𝐴1)𝐵1(1 − 𝐴1)𝐵2 + 2𝐴2𝐵1
There exist five equilibrium points 𝐸1, 𝐸2, 𝐸3 = 𝐸5, and 𝐸4, where 𝐸4
is locally asymptotically stable, 𝐸1 is a saddle point, 𝐸3 = 𝐸5 is
nonhyperbolic, and 𝐸2 is a repeller. The basins of attraction of 𝐸1 and𝐸3 are given byB(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}
andB(𝐸3) = {(0, 𝑦) : 𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and the basin of
attraction of 𝐸4 isB(𝐸4) = {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 ≥ 0}.

(ix)
C23 : 𝐴1 < 1, Δ 1 > 0,𝐶2 = 𝐶1(1 − 𝐴1 − 𝐴2𝐶1)(1 − 𝐴1)2 , 1 − 𝐴12𝐴2 < 𝐶1

There exist four equilibrium points 𝐸1, 𝐸3, 𝐸2 = 𝐸5, and 𝐸4, where 𝐸3
and 𝐸4 are locally asymptotically stable, 𝐸1 is a saddle point, and𝐸2 = 𝐸5 is nonhyperbolic. There exist continuous increasing curves
C1 andC2 with endpoint at 𝐸2 = 𝐸5, which are the subsets of the
basin of attraction of 𝐸2 = 𝐸5. Further, all solutions with initial point
aboveC2 converge to 𝐸3 and all solutions with initial point aboveC1
and belowC2 converge to 𝐸2, while solutions with initial point below
C1 converge to 𝐸4.The basin of attraction of 𝐸1 is
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}.

(x) 𝐴1 < 1, Δ 1 = 0, 𝐶1 ̸= 1 − 𝐴12𝐴2
There exist three equilibrium points 𝐸1, 𝐸2 = 𝐸3, and 𝐸4, where 𝐸4 is
locally asymptotically stable, 𝐸1 is a saddle point, and 𝐸2 = 𝐸3 is
nonhyperbolic. There exists a continuous increasing curveC with
endpoint at 𝐸2 = 𝐸3 which is a subset of the basin of attraction of𝐸2 = 𝐸3. All solutions with initial point aboveC converge to 𝐸2 = 𝐸3,
while solutions with initial point belowC converge to 𝐸4.The basin
of attraction of 𝐸1 is given by
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}.

(xi) 𝐴1 < 1, Δ 1 < 0 There exist two equilibrium points 𝐸1, which is a saddle point, and 𝐸4,
which is globally asymptotically stable, where
B(𝐸4) = (0,∞) × [0,∞) andB(𝐸1) = {(0, 𝑦) : 𝑦 ≥ 0}.

(xii) 𝐴1 = 1, Δ 1 > 0
There exist three equilibrium points 𝐸1 = 𝐸4, 𝐸2, and 𝐸3, where𝐸1 = 𝐸4 is nonhyperbolic, 𝐸3 is locally asymptotically stable, and 𝐸2 is
a saddle point. The stable manifoldW𝑠(𝐸2) of the saddle point 𝐸2 is
an increasing separatrix with endpoint at 𝐸2, and solutions with
initial point aboveW𝑠(𝐸2) converge to 𝐸3, while solutions with initial
point belowW𝑠(𝐸2) converge to 𝐸4. All orbits that start onW𝑠(𝐸2)
are attracted to 𝐸2.The basin of attraction of 𝐸1 is given by
B(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}.

(xiii) 𝐴1 = 1, Δ 1 = 0 There exist two equilibrium points 𝐸1 = 𝐸4 and 𝐸2 = 𝐸3 which are
nonhyperbolic. There exists a continuous increasing curveC with
endpoint at 𝐸2 = 𝐸3 which is a subset of the basin of attraction of𝐸2 = 𝐸3. All solutions with initial point aboveC converge to 𝐸2 = 𝐸3,
while solutions with initial point belowC converge to 𝐸1 = 𝐸4.

(xiv) 𝐴1 = 1, Δ 1 < 0 There exists one equilibrium point 𝐸1 = 𝐸4 which is nonhyperbolic
and global attractor. The basin of attraction of 𝐸1 is
B(𝐸1) = [0,∞) × [0,∞)

(xv) 𝐴1 > 1, Δ 1 > 0
There exist three equilibrium points 𝐸1, 𝐸2, and 𝐸3, where 𝐸1 and 𝐸3
are locally asymptotically stable and 𝐸2 is a saddle point. The stable
manifoldW𝑠(𝐸2) of the saddle point 𝐸2 is an increasing separatrix
with endpoint at 𝐸2, and solutions with initial point aboveW𝑠(𝐸2)
converge to 𝐸3, while solutions with initial point belowW𝑠(𝐸2)
converge to 𝐸1. All orbits that start onW𝑠(𝐸2) are attracted to 𝐸2.

(xvi) 𝐴1 > 1, Δ 1 < 0 There exists one equilibrium point 𝐸1 which is globally asymptotically
stable. The basin of attraction of 𝐸1 isB(𝐸1) = [0,∞) × [0,∞)

(xvii) 𝐴1 > 1, Δ 1 = 0
There exist two equilibrium points 𝐸1 and 𝐸2 = 𝐸3, where 𝐸1 is locally
asymptotically stable and 𝐸2 = 𝐸3 is nonhyperbolic. There exists a
continuous increasing curveC with endpoint at 𝐸2 = 𝐸3 which is a
subset of the basin of attraction of 𝐸2 = 𝐸3. All solutions with initial
point aboveC converge to 𝐸2 = 𝐸3, while solutions with initial point
belowC converge to 𝐸1.
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Figure 3: Parameter regions in terms of parameters 𝐶1 and 𝐶2 and corresponding dynamic scenarios for system (1) if 𝐴1 < 1.
𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and W𝑠(𝐸3) ={(0, 𝑦) : 𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}. Take(𝑥0, 𝑦0) ∈ W− ∩ int(𝑄1(0, 0)). By Theorem 8 and
Lemma 21 we have that there exists 𝑛0 > 0 such
that 𝑇𝑛(𝑥0, 𝑦0) ∈ int(𝑄4(𝐸3) ∩ 𝑄2(𝐸5)), 𝑛 > 𝑛0.
In view of Corollary 4 [[𝐸1, 𝐸6]] ⊆ B(𝐸6) and[[𝐸6, 𝐸5]] ⊆ B(𝐸6). Since 𝑇 is competitive, this
implies int(𝑄4(𝐸3) ∩ 𝑄2(𝐸5)) = [[𝐸1, 𝐸5]] ⊆ B(𝐸6).
Take (𝑥0, 𝑦0) ∈ W+ ∩ int(𝑄1(0, 0)). By Theorem 8
and Lemma 21 we have that there exists 𝑛󸀠0 > 0 such
that 𝑇𝑛(𝑥0, 𝑦0) ∈ int(𝑄4(𝐸5) ∩ 𝑄2(𝐸4)), 𝑛 > 𝑛󸀠0. Since𝑇 is competitive, in view of Corollary 4 int(𝑄4(𝐸5) ∩𝑄2(𝐸4)) = [[𝐸5, 𝐸4]] ⊆ B(𝐸4). This completes the
proof of statement (i).

(ii) Suppose (𝐶1, 𝐶2) ∈ C31. By Proposition 11, in𝑄1(0, 0)
there exist five equilibria 𝐸1, 𝐸2, 𝐸3, 𝐸4, and 𝐸5 = 𝐸6.
By Theorem 19 𝐸1 and 𝐸3 are the saddle points, 𝐸2
is repeller, and 𝐸5 = 𝐸6 is nonhyperbolic. Similarly

as in the proof of the statement (i), all conditions of
Theorems 7, 8, and 9 are satisfied, which yields the
existence of the invariant curveC with one endpoint
at 𝐸2 and which is passing through 𝐸5 = 𝐸6, and it is
graph of an increasing function. Let W− = {(𝑥, 𝑦) |(𝑥, 𝑦) ⪯se (𝑥0, 𝑦0) for some (𝑥0, 𝑦0) ∈ C} and W+ ={(𝑥, 𝑦) | (𝑥1, 𝑦1) ⪯se (𝑥, 𝑦) for some (𝑥1, 𝑦1) ∈ C}.
By Lemma 21 and uniqueness of the global stable
manifold we have W𝑠(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 <(1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and W𝑠(𝐸3) = {(0, 𝑦) :𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}. Take (𝑥0, 𝑦0) ∈ W− ∩
int(𝑄1(0, 0)). By Theorem 8 we have that there exists𝑛0 > 0 such that 𝑇𝑛(𝑥0, 𝑦0) ∈ int(𝑄4(𝐸3) ∩ 𝑄2(𝐸5 =𝐸6)), 𝑛 > 𝑛0. In view of Corollary 4 int(𝑄4(𝐸3) ∩𝑄2(𝐸5 = 𝐸6)) = [[𝐸1, 𝐸5 = 𝐸6]] ⊆ B(𝐸5 = 𝐸6).
Take (𝑥0, 𝑦0) ∈ W+ ∩ int(𝑄1(0, 0)). By Theorem 8
and Lemma 21 we have that there exists 𝑛󸀠0 > 0 such
that 𝑇𝑛(𝑥0, 𝑦0) ∈ int(𝑄4(𝐸5) ∩ 𝑄2(𝐸4)), 𝑛 > 𝑛󸀠0. Since
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𝑇 is competitive, in view of Corollary 4 int(𝑄4(𝐸5) ∩𝑄2(𝐸4)) = [[𝐸5, 𝐸4]] ⊆ B(𝐸4). This completes the
proof of statement (ii)

(iii) The proof is similar to the proof of case (i) andwe skip
it.

(iv) Suppose (𝐶1, 𝐶2) ∈ R21 ∪ R25 ∪ C32. By Propo-
sition 11, in 𝑄1(0, 0) there exist four equilibria 𝐸1,𝐸2, 𝐸3, and 𝐸4. By Theorem 19 𝐸1 and 𝐸3 are saddle
points; 𝐸2 is repeller; 𝐸4 is locally asymptotically
stable. By Lemma 21 and uniqueness of the global
stable manifold we have B(𝐸1) = W𝑠(𝐸1) = {(0, 𝑦) :0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and B(𝐸3) =
W𝑠(𝐸3) = {(0, 𝑦) : 𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}.
Since, by Theorem 23, every solution of system (1)
converges to an equilibrium point, we have that
B(𝐸4) = (0,∞) × [0,∞).

(v) Suppose (𝐶1, 𝐶2) ∈ R23.ByProposition 11, in𝑄1(0, 0)
there exist four equilibrium points 𝐸1, 𝐸2, 𝐸3, and 𝐸4.
By Theorem 19 𝐸1 and 𝐸2 are the saddle points; 𝐸3
and 𝐸4 are locally asymptotically stable. By Lemma 21
and uniqueness of the global stable manifold we
have B(𝐸1) = W𝑠(𝐸1) = {(0, 𝑦) : 0 ≤ 𝑦 <(1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}, and {(0, 𝑦) : 𝑦 > (1 −√1 − 4𝐴2𝐶2)/(2𝐴2)} ⊆ B(𝐸3) and {(𝑥, 0) : 𝑥 > 0} ⊆
B(𝐸4). Similarly as in the proof of case (i), all condi-
tions ofTheorems 7, 8, and 9 are satisfied, which yields
the existence of the global stable manifold W𝑠(𝐸2),
which is a graph of an increasing function. The rest
of the proof follows from the facts thatW− = {(𝑥, 𝑦) |(𝑥, 𝑦) ⪯se (𝑥0, 𝑦0) for some (𝑥0, 𝑦0) ∈ W𝑠(𝐸2)} and
W+ = {(𝑥, 𝑦) | (𝑥1, 𝑦1) ⪯se (𝑥, 𝑦) for some (𝑥1, 𝑦1) ∈
W𝑠(𝐸2)} are invariant sets, 𝐸4 ∈ W−, 𝐸3 ∈ W+,
uniqueness of the global stable manifoldW𝑠(𝐸2) and
Theorem 23.

(vi) The proof is similar to the proof of case (i) andwe skip
it.

(vii) The proof is the same as the proof of case (viii) and we
skip it.

(viii) Suppose (𝐶1, 𝐶2) ∈ C22. By Proposition 11, in𝑄1(0, 0) there exist four equilibrium points 𝐸1, 𝐸3 =𝐸5, 𝐸2, and 𝐸4. By Theorem 19 we have that 𝐸4 is
locally asymptotically stable; 𝐸1 is a saddle point;𝐸3 = 𝐸5 is nonhyperbolic; and 𝐸2 is repeller.
By Lemma 21 and uniqueness of the global stable
manifold we have B(𝐸1) = W𝑠(𝐸1) = {(0, 𝑦) :0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}. In view of
Lemma 18, for 𝐸3 = 𝐸5 we have that the eigenspace𝐸𝜆2 associated with 𝜆2 is a coordinate axis, so we
can not use Theorem 6. By Lemma 21 we obtain{(0, 𝑦) : 𝑦 > (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} ⊆ B(𝐸3 =𝐸5). Similarly as in the proof of Theorem 8 (see
[1] for more details) one can prove that for every𝑥 ∈ int(𝑄1(𝐸3)) there exists 𝑛0 ∈ N such that𝑇𝑛(𝑥) ∈ int(𝑄4(𝐸3)) for 𝑛 ≥ 𝑛0. By Lemmas 21
and 22 for (𝑥0, 𝑦0) ∈ int(𝑄4(𝐸3)), there exists 𝑡󸀠0 and𝑡󸀠󸀠0 such that 𝐸3 ⪯se 𝑀(𝑡󸀠0) ⪯se (𝑥0, 𝑦0) ⪯se (𝑡󸀠󸀠0 , 0). Since

𝐸3 ⪯se 𝑇𝑛(𝑀(𝑡󸀠0)) ⪯se 𝑇𝑛+1(𝑀(𝑡󸀠0)) ⪯ 𝐸4 we have that𝑇𝑛(𝑀(𝑡󸀠0)) → 𝐸4. Since 𝑇𝑛(𝑡󸀠󸀠0 , 0) → 𝐸4 we obtain𝑇𝑛(𝑥0, 𝑦0) → 𝐸4. This implies int(𝑄4(𝐸3)) ⊆ B(𝐸4),
which completes the proof.

(ix) Suppose (𝐶1, 𝐶2) ∈ C23. By Proposition 11, there
exist four equilibrium points 𝐸1, 𝐸2 = 𝐸5, 𝐸3, and𝐸4. By Theorem 19 we have that 𝐸3 and 𝐸4 are locally
asymptotically stable; 𝐸1 is a saddle point; 𝐸2 = 𝐸5 is
nonhyperbolic. By Lemma 21 and uniqueness of the
global stable manifold we have B(𝐸1) = W𝑠(𝐸1) ={(0, 𝑦) : 0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}. In view
of Lemma 18, for 𝐸3, we have that 𝜆1 = 1 and 𝜆2 > 1,
so we can not use Theorem 6. By Lemmas 21 and
22 for (𝑥0, 𝑦0) ∈ int(𝑄4(𝐸3)), there exists 𝑡󸀠0 and 𝑡󸀠󸀠0
such that 𝐸3 ⪯se 𝑀(𝑡󸀠0) ⪯se (𝑥0, 𝑦0) ⪯se (𝑡󸀠󸀠0 , 0). Since𝐸3 ⪯se 𝑇𝑛(𝑀(𝑡󸀠0)) ⪯se 𝑇𝑛+1(𝑀(𝑡󸀠0)) ⪯ 𝐸4 we have that𝑇𝑛(𝑀(𝑡󸀠0)) → 𝐸4. Since 𝑇𝑛(𝑡󸀠󸀠0 , 0) → 𝐸4 we obtain𝑇𝑛(𝑥0, 𝑦0) → 𝐸4. This implies int(𝑄4(𝐸3)) ⊆ B(𝐸4).
Let C1 denote the boundary of B(𝐸4) considered
as a subset of int(𝑄1(𝐸2)) and let C2 denote the
boundary of B(𝐸3) considered as a subset of
int(𝑄1(𝐸2)). It is easy to see by using Lemmas 21 and
22 that 𝐸2 ∈ C1 ∩ C2. Since 𝑇(int(R)) ⊂ int(R),
following the proof of Claims 1 and 2 [20], one can
see that 𝑇(C𝑖) ⊆ C𝑖 and 𝑇𝑛(𝑥0, 𝑦0) → 𝐸2 ∈ C𝑖 for(𝑥0, 𝑦0) ∈ C𝑖 for 𝑖 = 1, 2. Further,C𝑖 are graphs of the
continuous strictly increasing functions. If (𝑥0, 𝑦0)
is point above the curve C1 and below the curve C2
then there exists (𝑥󸀠0, 𝑦󸀠0) ∈ C1 and (𝑥󸀠󸀠0 , 𝑦󸀠󸀠0 ) ∈ C2
such that (𝑥󸀠󸀠0 , 𝑦󸀠󸀠0 ) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥󸀠0, 𝑦󸀠0). Since𝑇𝑛(𝑥󸀠󸀠0 , 𝑦󸀠󸀠0 ) ⪯se 𝑇𝑛(𝑥0, 𝑦0) ⪯se 𝑇𝑛(𝑥󸀠0, 𝑦󸀠0) and𝑇𝑛(𝑥󸀠󸀠0 , 𝑦󸀠󸀠0 ) → 𝐸2 and 𝑇𝑛(𝑥󸀠0, 𝑦󸀠0) → 𝐸2 as 𝑛 → ∞ we
have 𝑇𝑛(𝑥0, 𝑦0) → 𝐸2 as 𝑛 → ∞.

(x) Suppose (𝐶1, 𝐶2) ∈ C23. By Proposition 11, in𝑄1(0, 0)
there exist three equilibrium points 𝐸1, 𝐸2 = 𝐸3,
and 𝐸4. By Theorem 19 𝐸2 = 𝐸3 is nonhyperbolic,𝐸1 is a saddle point, and 𝐸4 is locally asymptotically
stable. By Lemma 21 and uniqueness of the global
stable manifold we haveB(𝐸1) = W𝑠(𝐸1) = {(0, 𝑦) :0 ≤ 𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)}. In view of
Lemma 18 we have that 𝜆1 = 1 and 𝜆2 < 1 if 𝐶1 >(1 − 𝐴1)/(2𝐴2) and 𝜆2 > 1 if 𝐶1 < (1 − 𝐴1)/(2𝐴2),
so we can use Theorem 6 if 𝐶1 > (1 − 𝐴1)/(2𝐴2). In
this case there exists strictly increasing curve C with
endpoint at 𝐸2 = 𝐸3. The rest of the proof follows
from Theorems 7, 8, and 9 and Lemma 21. Now, we
assume that 𝐶1 < (1 − 𝐴1)/(2𝐴2). By Lemmas 21
and 22 for (𝑥0, 𝑦0) ∈ int(𝑄4(𝐸3)), there exists 𝑡󸀠0 and𝑡󸀠󸀠0 such that 𝐸3 ⪯se 𝑀(𝑡󸀠0) ⪯se (𝑥0, 𝑦0) ⪯se (𝑡󸀠󸀠0 , 0). Since𝐸3 ⪯se 𝑇𝑛(𝑀(𝑡󸀠0)) ⪯se 𝑇𝑛+1(𝑀(𝑡󸀠0)) ⪯ 𝐸4 we have that𝑇𝑛(𝑀(𝑡󸀠0)) → 𝐸4. Since 𝑇𝑛(𝑡󸀠󸀠0 , 0) → 𝐸4 we obtain𝑇𝑛(𝑥0, 𝑦0) → 𝐸4. This implies int(𝑄4(𝐸3)) ⊆ B(𝐸4).
Let C denote the boundary of B(𝐸4) considered as
a subset of 𝑄1(𝐸3). It is easy to see by using Lemmas
21 and 22 that 𝐸3 ∈ C. Since 𝑇(int(R)) ⊂ int(R),
following the proof of Claims 1 and 2 [20], one can
see that 𝑇(C) ⊆ C. Further, C is graph of strictly
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increasing function. By Theorem 23 if (𝑥0, 𝑦0) ∈ C
then 𝑇𝑛(𝑥0, 𝑦0) → 𝐸3 ∈ C. If (𝑥0, 𝑦0) is point
above the curve C then there exists (𝑥󸀠0, 𝑦󸀠0) and𝑦󸀠󸀠0 > 𝑦3 such that (0, 𝑦󸀠󸀠0 ) ⪯se (𝑥0, 𝑦) ⪯se (𝑥󸀠0, 𝑦󸀠0). Since𝑇𝑛(0, 𝑦󸀠󸀠0 ) ⪯se 𝑇𝑛(𝑥0, 𝑦0) ⪯se 𝑇𝑛(𝑥󸀠0, 𝑦󸀠0), 𝑇𝑛(0, 𝑦󸀠󸀠0 ) →𝐸3, and 𝑇𝑛(𝑥󸀠0, 𝑦󸀠0) → 𝐸3 as 𝑛 → ∞ we have𝑇𝑛(𝑥0, 𝑦0) → 𝐸3 as 𝑛 → ∞.

Based on a series of numerical simulationswe propose the
following conjectures.

Conjecture 26. Suppose that all assumptions of the statement
(ix) of Theorem 25 are satisfied; then the following holds:

B (𝐸2) = C1 = C2. (83)

Conjecture 27. Assume that 𝐶1, 𝐶2 ∈ P1. There exist three
equilibrium points 𝐸1, 𝐸3 = 𝐸2 = 𝐸5, and 𝐸4, where 𝐸4 is
locally asymptotically stable; 𝐸1 is a saddle point; and 𝐸3 =𝐸2 = 𝐸5 is nonhyperbolic. The basins of attraction of 𝐸1 and𝐸3 = 𝐸2 = 𝐸5 are given by B(𝐸1) = {(0, 𝑦) : 0 ≤𝑦 < (1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and B(𝐸3) = {(0, 𝑦) : 𝑦 >(1 − √1 − 4𝐴2𝐶2)/(2𝐴2)} and the basin of attraction of 𝐸4 is
B(𝐸4) = {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 ≥ 0}.
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[3] M. R. Kulenović and O. Merino, “Competitive-exclusion versus
competitive-coexistence for systems in the plane,” Discrete and
Continuous Dynamical Systems. Series B. A Journal Bridging
Mathematics and Sciences, vol. 6, no. 5, pp. 1141–1156, 2006.

[4] A. Brett and M. R. Kulenovic, “Two species competitive model
with the Allee effect,” Advances in Difference Equations, vol.
2014, article 307, 2014.

[5] A. Brett and M. R. Kulenović, “Basins of attraction for two-
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[20] V. Hadžiabdić, M. R. Kulenović, and E. Pilav, “Dynamics of
a two-dimensional competitive system of rational difference
equations with quadratic terms,” Advances in Difference Equa-
tions, vol. 301, p. 32, 2014.


