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We consider a nonautonomous 2D Leray-𝛼model of fluid turbulence. We prove the existence of the uniform attractorA𝛼. We also
study the convergence of A𝛼 as 𝛼 goes to zero. More precisely, we prove that the uniform attractor A𝛼 converges to the uniform
attractor of the 2D Navier-Stokes system as 𝛼 tends to zero.

1. Introduction

In the past decades, the study of nonautonomous dynamical
systems has been paid much attention as evidenced by the
references cited in [1–8]. In [9], the author considers some
special classes of nonautonomous dynamical systems and
studies the existence and uniqueness of uniform attractors.
In [10], the authors present a general approach that is well
suited to construct the uniform attractor of some equations
arising in mathematical physics (see also [11, 12]). In this
approach, instead of considering a single process associated
with the dynamical system, the authors consider a family
of processes depending on a parameter (symbol) 𝜎 in some
Banach space. The approach preserves the leading concept
of invariance, which implies the structure of the uniform
attractors.

In this article, we study the following nonautonomous 2D
Leray-𝛼 model:

𝜕V
𝜕𝑡 − ]ΔV + (𝑢 ⋅ ∇) V + ∇𝑝 = 𝑔0 (𝑥, 𝑡) ,

V = 𝑢 − 𝛼2Δ𝑢,
∇ ⋅ 𝑢 = 0,
∇ ⋅ V = 0,
V (𝜏) = V𝜏,

(1)

where 𝑢 is the velocity vector field, 𝑝 is the pressure, and ] is
the viscosity coefficient. The spatial variable 𝑥 belongs to the
two-dimensional torus T2 = [0, 2𝜋𝐿]2 and 𝛼 is a parameter.
Precise assumptions on the external force 𝑔0 are given below.
Formally, the above system is the 2D Navier-Stokes system
when 𝛼 = 0.

The 2D Leray-𝛼 model has received much attention over
the past years (see [13] and the references therein) because
of its importance in the description of fluid motion and
turbulence. The 3D version of (1), namely, the 3D Leray-𝛼
model, was considered in [14] as a large eddy simulation
subgrid scale model of 3D turbulence. In [15], the authors
studied the relations between the long-time dynamics of the
3DLeray-alphamodel and the 3DNavier-Stokes system.They
found that bounded sets of solutions of the 3D Leray-𝛼model
converge to the trajectory attractor of the 3D Navier-Stokes
system as time tends to infinity and 𝛼 approaches zero. In
particular, they showed that the trajectory attractor of the 3D
Leray-𝛼model converges to the trajectory attractor of the 3D
Navier-Stokes system. In [16], analogous results were proven
for the 3DNavier-Stokes-𝛼model. In [17], the authors studied
the convergence of the solution of the 2D stochastic Leray-𝛼 model to the solution of the stochastic 2D Navier-Stokes
equations as 𝛼 approaches 0. In particular, they proved the
convergence in probability with the rate of convergence at
most 𝑂(𝛼).

The 2D Leray-𝛼 model has been studied analytically
in [18] and computationally in [13]. In [18], the authors
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investigated the rate of convergence of four alpha models
(2D Navier-Stokes-𝛼model, 2D Leray-𝛼model, 2Dmodified
Leray-𝛼 model, and 2D simplified Bardina model) in the 2D
case subject to periodic boundary conditions. In particular,
they showed upper bounds in terms of 𝛼 for the difference
between solutions of the 2D 𝛼-models and solutions of
the 2D Navier-Stokes system. They found that all the four𝛼-models have the same order of convergence and error
estimates. We also note that the autonomous and nonau-
tonomous 2D Navier-Stokes-𝛼 models were considered in
[6, 19]. In [19], they proved that the global attractors of
the 2D Navier-Stokes-𝛼 model converge to a subset of the
global attractor of the 2D Navier-Stokes system when 𝛼
approaches 0. In [6], the authors studied the convergence
of the uniform attractors of the 2D Navier-Stokes-𝛼 model
when 𝛼 tends to zero. They found that the uniform attractors
of the 2D Navier-Stokes-𝛼 model converge to the uniform
attractor of the 2D Navier-Stokes system when 𝛼 approaches
zero.

The purpose of this paper is to prove analogous results
for the nonautonomous 2D Leray-𝛼 model. More precisely,
we prove that the uniform attractors for the 2D Leray-𝛼
model converge to the uniform attractor of the 2D Navier-
Stokes system when 𝛼 approaches zero (see Theorem 13).
Uniform attractors are not invariant under the family of
processes; this brings about some difficulties in proving upper
semicontinuous property.The proof of the convergence of the
uniform attractors of the 2DLeray-𝛼model uses the structure
of uniform attractors which says that each uniform attractor
is a union of kernels.

The article is structured as follows. In Section 2, we
recall some properties of the uniform attractor for the 2D
Navier-Stokes equations. In Section 3, we prove the existence
and the structure of the uniform attractor of the 2D Leray-𝛼 model. In Section 4, we prove the convergence of the
uniform attractors of the 2D Leray-𝛼 model to the uniform
attractor of the 2D Navier-Stokes system as 𝛼 approaches
zero.

2. The 2D Navier-Stokes System and
Its Uniform Attractor

We consider the nonautonomous 2D Navier-Stokes system
with periodic boundary conditions:

𝜕𝑢
𝜕𝑡 − ]Δ𝑢 + (𝑢 ⋅ ∇) 𝑢 + ∇𝑝 = 𝑔0 (𝑡, 𝑥) ,

∇ ⋅ 𝑢 = 0.
(2)

In (2), 𝑢 = 𝑢(𝑥, 𝑡) = (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡)) is the unknown
vector field in T2 describing themotion of the fluid.The scalar
function 𝑝(𝑥, 𝑡) is the unknown pressure and 𝑔0(𝑥, 𝑡) is a
given field of external force. LetF be the set of trigonometric
polynomials of two variables with periodic domain T2 and
spatial average zero; that is, for everyΦ ∈ F, ∫

T2
Φ(𝑥)𝑑𝑥 = 0.

We then set

V = {Φ ∈ F
2: ∇ ⋅ Φ = 0} . (3)

We denote by 𝐻 and 𝑉 the closure of V in 𝐿2(T2)2 and𝐻1(T2)2, respectively. The norms in 𝐻 and 𝑉 are denoted,
respectively, by | ⋅ | and ‖ ⋅ ‖.

We denote by P : 𝐿2(T2)2 → 𝐻 the Helmholtz-
Leray orthogonal projection operator and by 𝐴 = −PΔ
the Stokes operator, subject to periodic boundary conditions,
with domain𝐷(𝐴) = 𝐻2(T2)2 ∩ 𝑉. We note that in the space
periodic case

𝐴 = −PΔ = −Δ. (4)

The operator 𝐴−1 is a self-adjoint positive definite compact
operator from𝐻 into𝐻. By 0 < (2𝜋/𝐿)2 = 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ , we
denote the eigenvalues of 𝐴 in the 2𝐷 case. It is well known
that, in two dimensions, the eigenvalues of operator𝐴 satisfy
Weyl’s type formula (see, e.g., [13, 15]); namely, there exists a
constant 𝑐0 > 0 such that

𝑗
𝑐0

≤ 𝜆𝑗

𝜆1

≤ 𝑐0𝑗 for 𝑗 = 1, 2, . . . . (5)

By

((𝑢, V)) = (𝐴1/2𝑢, 𝐴1/2V) = (∇𝑢, ∇V) ,
‖𝑢‖ = 𝐴1/2𝑢

for 𝑢, V ∈ 𝑉,
(6)

we denote the scalar product and the norm in𝑉, respectively.
Let 𝑉 be the dual space of 𝑉. For every V ∈ 𝑉, we denote by⟨V, 𝑢⟩ the value of the functional V from𝑉 on a vector 𝑢 ∈ 𝑉.
The operator𝐴 is an isomorphism from𝑉 to𝑉. In particular((𝑤, 𝑢)) = ⟨𝐴𝑤, 𝑢⟩ for all 𝑤, 𝑢 ∈ 𝑉.

The Poincaré inequalities read

|𝑢|2 ≤ 𝜆−1
1 ‖𝑢‖2 , ∀𝑢 ∈ 𝑉, (7)

‖𝑢‖2
𝑉 ≤ 𝜆−1

1 |𝑢|2 , ∀𝑢 ∈ 𝐻. (8)

For every 𝑤1, 𝑤2 ∈ V, we define the bilinear operator

𝐵 (𝑤1, 𝑤2) = P ((𝑤1 ⋅ ∇)𝑤2) . (9)

In the following lemma, we list certain relevant inequalities
and properties of 𝐵 (see, e.g., [11]).

Lemma 1. The bilinear operator B defined in (9) satisfies the
following.𝐵 can be extended as a continuous bilinear map 𝐵 : 𝑉 ×𝑉 → 𝑉. In particular, 𝐵 satisfies the following inequalities:

⟨𝐵 (𝑢, V) , 𝑤⟩𝑉
 ≤ 𝑐 |𝑢|1/2 ‖𝑢‖1/2 ‖V‖ |𝑤|1/2 ‖𝑤‖1/2

∀𝑢, V, 𝑤 ∈ 𝑉, (10)

⟨𝐵 (𝑢, V) , 𝑤⟩𝑉
 ≤ 𝑐 |𝑢|1/2 ‖𝑢‖1/2 |V|1/2 ‖V‖1/2 ‖𝑤‖

∀𝑢, V, 𝑤 ∈ 𝑉, (11)

|(𝐵 (𝑢, V) , 𝑤)| ≤ 𝑐 ‖𝑢‖∞ ‖V‖ |𝑤| ,
∀𝑢 ∈ 𝐷 (𝐴) , V ∈ 𝑉, 𝑤 ∈ 𝐻, (12)
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|(𝐵 (𝑢, V) , 𝑤)| ≤ 𝑐 |𝑢| ‖∇V‖ |𝑤| ,
∀𝑢 ∈ 𝐻, V ∈ 𝐷 (𝐴3/2) , 𝑤 ∈ 𝐻, (13)

⟨𝐵 (𝑢, V) , 𝑤⟩𝐷(𝐴)
 ≤ 𝑐 |𝑢| ‖V‖ ‖𝑤‖∞ ,

∀𝑢 ∈ 𝐻, V ∈ 𝑉, 𝑤 ∈ 𝐷 (𝐴) . (14)

Moreover, for every 𝑤1, 𝑤2, 𝑤3 ∈ 𝑉, we have
⟨𝐵 (𝑤1, 𝑤2) , 𝑤3⟩𝑉 = − ⟨𝐵 (𝑤1, 𝑤3) , 𝑤2⟩𝑉 , (15)

and in particular

⟨𝐵 (𝑤1, 𝑤2) , 𝑤2⟩𝑉 = 0. (16)

We apply the operator P to both sides of (2) and obtain an
equivalent system:

𝜕𝑢
𝜕𝑡 + ]𝐴𝑢 + 𝐵 (𝑢, 𝑢) = 𝑔0 (𝑥, 𝑡) . (17)

The initial condition is posed at 𝑡 = 𝜏, 𝜏 ∈ R:

𝑢 (𝜏) = 𝑢𝜏 ∈ 𝐻. (18)

In order to clarify the assumptions on the external force𝑔0, we introduce the following notation. Given a Banach
space𝑋, we denote by 𝐿2

𝑏(R; 𝑋) the subspace of 𝐿2
loc(R; 𝑋) of

translation bounded functions; that is, for Ψ(𝑠) ∈ 𝐿2
𝑏(R; 𝑋),

we have

‖Ψ‖2
𝐿2
𝑏
(R;𝑋) = sup

𝑡∈R

∫𝑡+1

𝑡
‖Ψ (𝑠)‖2

𝑋 𝑑𝑠 < ∞. (19)

We now give from [10] the definition and some properties of
translation compact functions.

Definition 2. A function Ψ ∈ 𝐿2
loc(R; 𝑋) is said to be

translation compact in 𝐿2
loc(R; 𝑋) if the set of its translations

{Ψ(𝑡 + ℎ), ℎ ∈ R} is precompact in 𝐿2
loc(R; 𝑋) for the local

convergence topology.

The set

H (Ψ) = [{Ψ (𝑡 + ℎ) , ℎ ∈ R}]𝐿2loc(R;𝑋) (20)

is called the hull of the function Ψ in the space 𝐿2
loc(R; 𝑋),

where [⋅]𝑋 denotes the closure in the space 𝑋. Note that ifΨ is translation compact in 𝐿2
loc(R; 𝑋), then its hullH(Ψ) is

compact in 𝐿2
loc(R; 𝑋). The hull H(𝑔) of 𝑔(𝑥, 𝑡) in the space

𝐿2
loc(R; 𝐻) is

H (𝑔) = [{𝑔 (⋅, 𝑡 + ℎ) , ℎ ∈ R}]𝐿2loc(R;𝐻) . (21)

The following proposition gives the existence and uniqueness
of weak solutions of problems (17)-(18) (see [10] for the
proof).

Proposition 3. Let 𝑔0 ∈ 𝐿2
𝑏(R; 𝐻) and let 𝑢𝜏 ∈ 𝐻. Problems

(17)-(18) have unique solutions 𝑢 ∈ 𝐶(R𝜏; 𝐻) ∩ 𝐿2
loc(R𝜏; 𝑉)

and 𝜕𝑢/𝜕𝑡 ∈ 𝐿2
𝑙𝑜𝑐(R𝜏; 𝑉), where R𝜏 = [𝜏, +∞). The following

estimates hold:

|𝑢 (𝑡)|2 ≤ |𝑢 (𝜏)|2 𝑒−𝜆(𝑡−𝜏) + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿2
𝑏
,

|𝑢 (𝑡)|2 + ]∫𝑡

𝜏
‖𝑢 (𝑠)‖2 𝑑𝑠

≤ |𝑢 (𝜏)| + 𝜆−1 ∫𝑡

𝜏

𝑔0 (𝑠)2 𝑑𝑠,
(22)

where 𝜆 = ]𝜆1.

From Proposition 3, we can define a process {𝑈𝑔0
(𝑡, 𝜏)} :𝑈𝑔0

(𝑡, 𝜏)𝑢𝜏 = 𝑢(𝑡), 𝑡 ≥ 𝜏, where 𝑢(𝑡) is a solution of (17)-(18).
Now, we are given a field external force 𝑔0 that is

translation compact function in 𝐿loc
2 (R; 𝐻). In particular, 𝑔0

is translation bounded in 𝐿2
loc(R; 𝐻).

Let H(𝑔0) be the hull of 𝑔0 ∈ 𝐿2
loc(R; 𝐻). Consider the

family of Cauchy problems

𝜕𝑢
𝜕𝑡 + ]𝐴𝑢 + 𝐵 (𝑢, 𝑢) = 𝑔 (𝑥, 𝑡) ,

𝑢 (𝜏) = 𝑢𝜏,
𝑔 ∈ H (𝑔0) .

(23)

For all 𝑔 ∈ H(𝑔0), problem (23) has a unique solution 𝑢(𝑡)
and estimates in (22) hold. Thus the family of processes{𝑈𝑔(𝑡, 𝜏)}, 𝑔 ∈ H(𝑔0) acting on 𝐻 corresponds to problem
(23).

We denote byK𝑔 the kernel of the process {U𝛼
𝑔(𝑡, 𝜏)}with

the external force 𝑔 ∈ H(𝑔0). Let us recall that K𝑔 is the
family of all complete solutions 𝑢(𝑡), 𝑡 ∈ R, of (23) which
are bounded in the norm of 𝐻. The set K𝑔(𝑠) = {𝑢(𝑠), 𝑢 ∈
K𝑔} ⊂ 𝐻 is called the kernel section at 𝑡 = 𝑠.

The following result gives the existence and the structure
of the uniform attractor of the process {𝑈𝑔0

(𝑡, 𝜏)} (see [10] for
the proof).

Proposition 4. If 𝑔0 is translation compact function in 𝐿2
𝑙𝑜𝑐(R;𝐻), then the process {𝑈𝑔0

(𝑡, 𝜏)} corresponding to (17) with
external force 𝑔0(𝑥, 𝑠) has the uniform (𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜏 ∈
R) attractor A0 that coincides with the uniform (𝑤.𝑟.𝑡 𝑔 ∈
H(𝑔0)) attractor AH(𝑔0)

of the family of processes {𝑈𝑔(𝑡, 𝜏)},𝑔 ∈ H(𝑔0) and

A0 = AH(𝑔0)
= ⋃

𝑔∈H(𝑔0)

K𝑔 (0) , (24)

whereK𝑔 is the kernel of the process {𝑈𝑔(𝑡, 𝜏)}. The kernelK𝑔

is nonempty for all 𝑔 ∈ H(𝑔0).
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3. The 2D Leray-𝛼Model and
Its Uniform Attractor

3.1.The 2D Leray-𝛼Model. We consider the following system
with periodic boundary conditions:

𝜕V
𝜕𝑡 − ]ΔV + (𝑢 ⋅ ∇) V + ∇𝑝 = 𝑔0 (𝑥, 𝑡) , 𝑥 ∈ T

2,
V = 𝑢 − 𝛼2Δ𝑢,

∇ ⋅ 𝑢 = 0,
∇ ⋅ V = 0.

(25)

This system is an approximation of the 2D Navier-Stokes
system discussed in the previous section. The unknown
functions are the vector fields V = V(𝑥, 𝑡) = (V1, V2) or𝑢 = 𝑢(𝑥, 𝑡) = (𝑢1, 𝑢2) and the scalar function 𝑝 = 𝑝(𝑥, 𝑡). In
(25),𝛼 is a fixed positive parameterwhich is called the subgrid
length scale of the model. For 𝛼 = 0, the function V = 𝑢 and
we obtain exactly the 2D Navier-Stokes system.

We can rewrite system (25) in an equivalent form using
the standard projectorP in 𝐻 and excluding the pressure as
in the previous section,where all the necessary notationswere
defined. We obtain the system

𝜕V
𝜕𝑡 + ]𝐴V + 𝐵 (𝑢, V) = 𝑔0 (𝑥, 𝑡) ,

V = 𝑢 + 𝛼2𝐴𝑢.
(26)

We supplement system (26) with the initial data

V (𝜏) = V𝜏 ∈ 𝐻. (27)

It follows from the embedding theorem in R2 that 𝐻2(T2) ⊂𝐿∞(T2). In particular, we have the energy inequality

‖𝑢‖𝐿∞(T2)2 ≤ 𝑐 (𝛼) 𝑢 + 𝛼2𝐴𝑢 ≤ 𝑐 (𝛼) |V| , (28)

∀𝑢 ∈ 𝐻2 ∩ 𝑉, where V = 𝑢 + 𝛼2𝐴𝑢 and 𝑐(𝛼) is a constant that
depends on 𝛼. We obtain from inequality (28) that

|𝐵 (𝑢, V)| ≤ 𝑐 ‖𝑢‖𝐿∞(T2)2 ‖V‖ ≤ 𝑐1 (𝛼) |V| ‖V‖ , (29)

where V = 𝑢 + 𝛼2𝐴𝑢.
Consider an arbitrary function V(⋅) ∈ 𝐿2

loc(R𝜏; 𝑉) ∩𝐿∞(R𝜏; 𝐻). Then, from (29), we conclude that

𝐵 (𝑢 (⋅) , V (⋅)) ∈ 𝐿2
loc (R𝜏; 𝐻) . (30)

We study weak solutions V(𝑥, 𝑡) of system (25) belonging to
the space 𝐿2

loc(R𝜏; 𝑉) ∩ 𝐿∞(R𝜏; 𝐻). Then

𝐴V ∈ 𝐿2
loc (R𝜏; 𝑉) ,

𝜕𝑡V ∈ 𝐿2
loc (R𝜏; 𝑉) . (31)

We now formulate the theorem on the existence and unique-
ness of weak solutions of problems (26)-(27).

Theorem 5. Let 𝛼 > 0, let 𝑔0 ∈ 𝐿2
𝑏(R; 𝐻), and let V𝜏 ∈ 𝐻.

Systems (26)-(27) have unique weak solutions V ∈ 𝐶(R𝜏; 𝐻) ∩𝐿2
𝑙𝑜𝑐(R𝜏; 𝑉) and 𝜕𝑡V ∈ 𝐿2

𝑙𝑜𝑐(R𝜏; 𝑉). The following estimates
hold:

|𝑢 (𝑡)|2 ≤ |V (𝑡)|2
≤ |V (𝜏)|2 𝑒−𝜆(𝑡−𝜏) + 𝜆−1 (1 + 𝜆−1) 𝑔0

2

𝐿2
𝑏
(R;𝐻) ,

(32)

|V (𝑡)|2 + ]∫𝑡

𝜏
‖V (𝑠)‖2 𝑑𝑠

≤ |V (𝜏)|2 + 𝜆−1 ∫𝑡

𝜏

𝑔0 (𝑠)2 𝑑𝑠,
(33)

(𝑡 − 𝜏) ‖V (𝑡)‖2 ≤ 𝐶(𝑡 − 𝜏, |V (𝜏)|2 , ∫𝑡

𝜏

𝑔0 (𝑠)2 𝑑𝑠) , (34)

where 𝜆 = ]𝜆1 and 𝐶(𝑧, 𝑅, 𝑅1) is a monotone continuous
function of 𝑧 = 𝑡 − 𝜏, 𝑅 and 𝑅1.

To prove the estimates in (32)-(34), we will need the
following lemma whose proof is given in [10].

Lemma 6. Let a real function 𝑧(𝑡), 𝑡 ≥ 0, be uniformly
continuous and satisfy the inequality

𝑑𝑧
𝑑𝑡 + 𝜆𝑧 (𝑡) ≤ 𝑓 (𝑡) , 𝑡 ≥ 0, (35)

where 𝜆 > 0, 𝑓(𝑡) ≥ 0 for all 𝑡 ≥ 0, and 𝑓 ∈ 𝐿1
𝑙𝑜𝑐(R+). Suppose

also that

∫𝑡+1

𝑡
𝑓 (𝑠) 𝑑𝑠 ≤ 𝑀, ∀𝑡 ≥ 0. (36)

Then 𝑧(𝑡) ≤ 𝑧(0)𝑒−𝜆𝑡 + 𝑀(1 + 𝜆−1), ∀𝑡 ≥ 0.
Proof of Theorem 5. The existence and uniqueness of weak
solutions are quite analogous to the proof of the existence and
uniqueness theorem for the 2DNavier-Stokes system [10]. Let
us prove the estimate in (32). We take the scalar product of
(26) with V and use relation (16); we obtain

1
2

𝑑
𝑑𝑡 |V (𝑡)|2 + ] ‖V (𝑡)‖2 = (𝑔0 (𝑡) , V (𝑡))
≤ ]

2 ‖V (𝑡)‖2 + 1
2] 𝑔0 (𝑡)2

𝑉

≤ ]
2 ‖V (𝑡)‖2 + 1

2]𝜆1

𝑔0 (𝑡)2 .
(37)

Using Poincaré inequality (7), we arrive at

𝑑
𝑑𝑡 |V (𝑡)|2 + 𝜆 |V (𝑡)|2 ≤ 𝜆−1 𝑔0 (𝑡)2 , (38)
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where 𝜆 = ]𝜆1. Applying Lemma 6 with

𝑧 (𝑡) = |V (𝑡 + 𝜏)|2 ;
𝑓 (𝑡) = 𝜆−1 𝑔0 (𝑡)2 ;

∫𝑡+1

𝑡
𝑓 (𝑠) 𝑑𝑠 ≤ 𝜆−1 ∫𝑡+1

𝑡

𝑔0 (𝑠)2 𝑑𝑠 ≤ 𝜆−1 𝑔0
2

𝐿2
𝑏
(R;𝐻)

= 𝑀,

(39)

we get

|V (𝑡 + 𝜏)|2 ≤ |V (𝜏)|2 𝑒−𝜆𝑡 + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿2
𝑏
(R;𝐻) ; (40)

that is,

|V (𝑡)|2 ≤ |V (𝜏)|2 𝑒−𝜆(𝑡−𝜏) + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿2
𝑏
(R;𝐻) . (41)

This proves (32). Multiplying (26) by 𝑡𝐴V, we have
1
2

𝑑
𝑑𝑡 (𝑡 ‖V (𝑡)‖2) − 1

2 ‖V (𝑡)‖2 + ]𝑡 |𝐴V (𝑡)|2
+ 𝑡 (𝐵 (𝑢, V) , 𝐴V) = 𝑡 (𝑔0 (𝑡) , 𝐴V) .

(42)

Recall that

(𝑔0 (𝑡) , 𝐴V) ≤ ]
4 |𝐴V (𝑡)|2 + 1

]
𝑔0 (𝑡)2 . (43)

From (29), we have

|(𝐵 (𝑢, V) , 𝐴V)| ≤ |𝐵 (𝑢, V)| |𝐴V| ≤ 𝑐1 (𝛼) |V| ‖V‖ |𝐴V|
≤ ]

4 |𝐴V (𝑡)|2 + 𝑐2
1 (𝛼)
]

|V|2 ‖V‖2 . (44)

Replacing (43) and (44) in (42), we get

𝑑
𝑑𝑡 {𝑡 ‖V (𝑡)‖2} + ]𝑡 |𝐴V (𝑡)|2

≤ ‖V (𝑡)‖2 + 2𝑡
]

𝑔0 (𝑡)2 + 2𝑐2
1 (𝛼)
]

𝑡 |V (𝑡)|2 ‖V (𝑡)‖2 .
(45)

Let us set 𝑦(𝑡) = 𝑡‖V(𝑡)‖2 and obtain

𝑑𝑦
𝑑𝑡 ≤ 2𝑐2

1 (𝛼)
]

|V (𝑡)|2 𝑦 + ‖V (𝑡)‖2 + 2𝑡
]

𝑔0 (𝑡)2 . (46)

Using Gronwall’s lemma, we obtain

𝑡 ‖V (𝑡)‖2 ≤ (∫𝑡

0
(‖V (𝑠)‖2 + 𝑠2

]
𝑔0 (𝑠)2)𝑑𝑠)

⋅ exp(∫𝑡

0

2𝑐2
1 (𝛼)
]

|V (𝑠)|2 𝑑𝑠) .
(47)

From the estimate in (33), we deduce from (47) that

𝑡 ‖V (𝑡)‖2 ≤ 1
]
(|V (0)|2 + (𝜆−1 + 2𝑡) ∫𝑡

0

𝑔0 (𝑠)2 𝑑𝑠)

⋅ exp(2𝑐2
1 (𝛼)
]2

|V (0)|2

+ 2𝑐2
1 (𝛼) 𝜆−1

]2
∫𝑡

0

𝑔0 (𝑠)2 𝑑𝑠) ≤ 𝐶(𝑡, |V (0)|2 ,

∫𝑡

0

𝑔0 (𝑠)2 𝑑𝑠) ,

(48)

where

𝐶 (𝑧, 𝑅, 𝑅1) = 1
]
(𝑅 + (𝜆−1 + 2𝑧) 𝑅1)

⋅ exp(2𝑐2
1 (𝛼)
]2

𝑅 + 2𝑐2
1 (𝛼) 𝜆−1

]2
𝑅1) .

(49)

This ends the proof of Theorem 5.

Remark 7. We note that the estimates in (32) and (33) are
independent of 𝛼. This fact plays the key role in the proof of
the convergence of solutions of the 2D Leray-𝛼model to the
solution of the 2D Navier-Stokes system as 𝛼 → 0+.

3.2. The Uniform Attractor A𝛼 of the 2D Leray-𝛼 Model. In
this subsection, we prove the existence of the uniform at-
tractor for the 2D Leray-𝛼 model. We consider the process{U𝛼

𝑔0
(𝑡, 𝜏)}, 𝑡 ≥ 𝜏, 𝜏 ∈ R corresponding to problems (26)-

(27). More precisely, the mapping U𝛼
𝑔0
(𝑡, 𝜏) : 𝐻 → 𝐻 is

defined by

U
𝛼
𝑔0

(𝑡, 𝜏) V𝜏 = V (𝑡) , (50)

for all V𝜏 ∈ 𝐻, 𝑡 ≥ 𝜏, 𝜏 ∈ R, where V is solution of (26)-
(27). It follows from (32) that the process {U𝛼

𝑔0
(𝑡, 𝜏)} has the

uniform (w.r.t. 𝜏 ∈ R) absorbing set
𝐵0 = {V ∈ 𝐻: |V|2 ≤ 2𝑅2

0} , (51)

where 𝑅2
0 = 𝜆−1(1+𝜆−1)‖𝑔0‖2

𝐿2
𝑏
(R;𝐻) and the set 𝐵0 is bounded

in 𝐻. Therefore, for any bounded (in 𝐻) set O, there exists a
time 𝑡(O) such that

U
𝛼
𝑔0

(𝑡 + 𝜏, 𝜏)O ⊂ 𝐵0, (52)

for all 𝑡 > 𝑡(O) and 𝜏 ∈ R.

Proposition 8. The process {U𝛼
𝑔0
(𝑡, 𝜏)} associated with (26)-

(27) is uniformly compact in𝐻 and has a uniformly absorbing
set 𝐵1 (bounded in 𝑉) defined by

𝐵1 = ⋃
𝜏∈R

U
𝛼
𝑔0

(𝜏 + 1, 𝜏) 𝐵0, (53)

where 𝐵0 is given by (51). Moreover, the process {U𝛼
𝑔0
(𝑡, 𝜏)} has

a uniform attractorA𝛼 which satisfies

A
𝛼 ⊂ 𝐵0 ∪ 𝐵1. (54)
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Proof. From (34) and (51), it is clear that 𝐵1 is bounded in 𝑉
and hence is relatively compact in𝐻. From (34), it is also clear
that 𝐵1 is uniform (with respect to 𝜏 ∈ R) absorbing set for
the process {U𝛼

𝑔0
(𝑡, 𝜏)}.The rest of the proof of the proposition

follows the general theory on uniform global attractors [10].
This ends the proof of the proposition.

From the general theory on uniform global attractors in
[10], the global attractor A𝛼 given in Proposition 8 satisfies
the following:

(i) For any bounded (in 𝐻) set O, sup𝜏∈Rdist𝐻(U𝛼
𝑔0
(𝑡 +

𝜏, 𝜏)O,A𝛼) → 0 as 𝑡 → ∞.
(ii) A𝛼 is the minimal set that satisfies (i).

3.3. The Structure of the Uniform Attractor of the 2D Leray-𝛼
Model. We consider the system

𝜕V
𝜕𝑡 + ]𝐴V + 𝐵 (𝑢, V) = 𝑔0,

V (𝜏) = V𝜏,
V = 𝑢 + 𝛼2𝐴𝑢.

(55)

We assume that 𝑔0 is translation compact in the space𝐿2
loc(R; 𝐻). LetH(𝑔0) be the hull of 𝑔0 in 𝐿2

loc(R; 𝐻). For all𝑔 ∈ H(𝑔0), the problem
𝜕V
𝜕𝑡 + ]𝐴V + 𝐵 (𝑢, V) = 𝑔 (𝑡, 𝑥) ,

V = 𝑢 + 𝛼2𝐴𝑢,
V (𝜏) = V𝜏

(56)

has a unique solution V(𝑡) and the estimates in (32)–(34) hold.
For 𝑔 ∈ H(𝑔0), system (56) generates a process {U𝛼

𝑔(𝑡, 𝜏)}
that satisfies the same properties as the process {U𝛼

𝑔0
(𝑡, 𝜏)}.

The family of processes {U𝛼
𝑔(𝑡, 𝜏)}, 𝑔 ∈ H(𝑔), acting on 𝐻

corresponds to (56).

Proposition 9. The family of processes {U𝛼
𝑔(𝑡, 𝜏)}, 𝑔 ∈

H(𝑔0), corresponding to (56) is uniformly (with respect to 𝑔 ∈
H(𝑔0)) bounded, uniformly compact, and (𝐻 × H(𝑔0),𝐻)-
continuous.

Proof. The uniform boundedness of the family of processes{U𝛼
𝑔(𝑡, 𝜏)}, 𝑔 ∈ H(𝑔0), follows from (32) and the fact that

𝑔2

𝐿2
𝑏
(R;𝐻) ≤ 𝑔0

2

𝐿2
𝑏
(R;𝐻) , ∀𝑔 ∈ H (𝑔0) . (57)

This estimate also implies that the set 𝐵0 = {V ∈ 𝐻; |V|2 ≤2𝑅2
0}, where 𝑅2

0 = 𝜆−1(1 + 𝜆−1)‖𝑔0‖2
𝐿2
𝑏
(R;𝐻), is uniformly (with

respect to 𝑔 ∈ H(𝑔0) absorbing. The set

𝐵1 = ⋃
𝑔∈H(𝑔0)

⋃
𝜏∈R

U𝑔 (𝜏 + 1, 𝜏) 𝐵0 (58)

is also uniformly absorbing. By (34), the set 𝐵1 is bounded in𝑉 and therefore, by the compactness of the embedding 𝑉 →𝐻, 𝐵1 is precompact in 𝐻. Hence the family {U𝛼
𝑔(𝑡, 𝜏)}, 𝑔 ∈

H(𝑔0), is uniformly compact.
Let us verify the (𝐻 × H(𝑔0),𝐻)-continuity of the pro-

cesses {U𝛼
𝑔(𝑡, 𝜏)}, 𝑔 ∈ H(𝑔0). We consider two symbols 𝑔1

and 𝑔2 and the corresponding solutions V1 and V2 of problem
(56) with initial data V1𝜏 and V2𝜏, respectively. Denote

𝑤 (𝑡) = V1 (𝑡) − V2 (𝑡) = U𝑔1
(𝑡, 𝜏) V1𝜏 −U𝑔2

(𝑡, 𝜏) V2𝜏,
𝑞 = 𝑔1 − 𝑔2.

(59)

The function 𝑤 satisfies the equation

𝜕𝑤
𝜕𝑡 + ]𝐴𝑤 + 𝐵 (𝑢1, V1) − 𝐵 (𝑢2, V2) = 𝑞. (60)

We take the inner product of (60) with 𝑤; we obtain
1
2

𝑑
𝑑𝑡 |𝑤|2 + ] ‖𝑤‖2 + ⟨𝐵 (𝑢1 − 𝑢2, V2) , 𝑤⟩ = (𝑞, 𝑤) . (61)

Using the estimate in (10), we arrive at
⟨𝐵 (𝑢1 − 𝑢2, V2) , 𝑤⟩

≤ 𝑐 𝑢1 − 𝑢2
1/2 𝑢1 − 𝑢2

1/2 V2
 |𝑤|1/2 ‖𝑤‖1/2

≤ 𝑐 |𝑤|1/2 |𝑤|1/2 ‖𝑤‖1/2 ‖𝑤‖1/2 V2


≤ 𝑐 |𝑤| ‖𝑤‖ V2
 ≤ ]

4 ‖𝑤‖2 + 𝑐 |𝑤|2 V2
2 .

(62)

Also we have

(𝑞, 𝑤) ≤ 𝑞 |𝑤| ≤ √𝜆−1 𝑞 ‖𝑤‖ ≤ ]
4 ‖𝑤‖2 + 𝑐1

𝑞2 . (63)

Using (62) and (63) in (61), we get

𝑑
𝑑𝑡 |𝑤|2 + ] ‖𝑤‖2 ≤ 𝑐 |𝑤|2 V2

2 + 𝑐1
𝑞2 . (64)

Let us set 𝑦(𝑡) = |𝑤(𝑡)|2 and we obtain

𝑑
𝑑𝑡𝑦 (𝑡) ≤ 𝑐 V2

2 𝑦 (𝑡) + 𝑐1
𝑞2 . (65)

Using Gronwall’s lemma, we obtain

|𝑤 (𝑡)|2 ≤ (|𝑤 (𝜏)|2 + ∫𝑡

𝜏
𝑐1

𝑞 (𝑠)2 𝑑𝑠)

⋅ exp(∫𝑡

𝜏
𝑐 V2 (𝑠)2 𝑑𝑠) .

(66)

With the estimate in (33), we get

∫𝑡

𝜏

V2 (𝑠)2 𝑑𝑠 ≤ 1
]
(V2 (𝜏)2 + 𝜆−1 ∫𝑡

𝜏

𝑔2 (𝑠)2 𝑑𝑠) . (67)

The estimate in (67) proves that ∫𝑡

𝜏
‖V2(𝑠)‖2𝑑𝑠 is bounded, and

(66) implies the (𝐻 × H(𝑔0),𝐻)-continuity of the family of
processes {U𝛼

𝑔(𝑡, 𝜏)}, 𝑔 ∈ H(𝑔0). This ends the proof of the
proposition.
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Theorem 10. If 𝑔0 is translation compact in 𝐿𝑙𝑜𝑐
2 (R; 𝐻), then

the process {U𝑔0
(𝑡, 𝜏)} corresponding to (55) with external force

𝑔0(𝑥, 𝑡) has the uniform (with respect to 𝜏 ∈ R) attractor A𝛼

that coincides with the uniform (with respect to 𝑔 ∈ H(𝑔0))
attractor A𝛼

H(𝑔0)
of the family of processes {U𝛼

𝑔(𝑡, 𝜏)}, 𝑔 ∈
H(𝑔0).

Moreover,

A
𝛼 = A

𝛼
H(𝑔0)

= ⋃
𝑔∈H(𝑔0)

K
𝛼
𝑔 (0) , (68)

whereK𝛼
𝑔 is the kernel of the process {U𝛼

𝑔(𝑡, 𝜏)}.The kernelK𝛼
𝑔

is nonempty for all 𝑔 ∈ H(𝑔0).
In the next section, we study the asymptotic behavior of

the uniform attractor of the 2D Leray-𝛼 model.

4. Convergence of the Uniform
Attractors of the 2D Leray-𝛼Model

In the previous sections, we have proven the existence and the
structure of the uniform attractor:

(a) A𝛼 of the process {U𝛼
𝑔0
(𝑡, 𝜏)} generated by the solu-

tions of the 2D Leray-𝛼 model.
(b) A0 of the process {U𝑔0

(𝑡, 𝜏)} generated by the solu-
tions of the 2D Navier-Stokes system.
Our aim in this section is to prove the convergence
of the uniform attractorsA𝛼 to the uniform attractor
A0 as 𝛼 approaches 0; that is,

lim
𝑛→∞

dist𝐻 (A𝛼𝑛 ,A0) = 0, (69)

if 𝛼𝑛 → 0+.

The following proposition is the key.

Proposition 11. Let {𝑔𝑛}, 𝑔 ∈ H(𝑔0), and a sequence of func-
tions V𝛼𝑛

(𝑡) ∈ K𝛼𝑛
𝑔𝑛
(𝑡) satisfy the following conditions:

(1) 𝛼𝑛 → 0+ as 𝑛 → ∞.
(2) 𝑔𝑛 ⇀ 𝑔 inH(𝑔0) as 𝑛 → ∞.
(3) V𝛼𝑛

(𝑡) ⇀ V(𝑡) in 𝐻 as 𝑛 → ∞.

Then V is a weak solution of the 2D Navier-Stokes system with
external force 𝑔; that is, V ∈ K𝑔.

For the proof of this proposition, we need an estimate for
the derivative 𝜕𝑡V in which constants are independent of 𝛼
similar to that proven for V in (32)-(33).

Proposition 12. Let 𝑔0 ∈ 𝐿2
𝑏(R; 𝐻) and let V𝜏 ∈ 𝐻. Then any

solution V(𝑡) of (26)-(27) satisfies the following inequalities:
(∫𝑇

𝜏

𝜕𝑡V (𝑠)4/3

𝑉∗ 𝑑𝑠)
3/4 ≤ 𝑐 V𝜏

2 + 𝑅2
2, (70)

(∫𝑇

𝜏

𝜕𝑡V (𝑠)2

𝑉∗ 𝑑𝑠)
1/2 ≤ 𝑐 V𝜏

2 + 𝑅2
2, (71)

where 𝑐 depends on 𝜆1, ]. 𝑅2 depends on 𝜆1, ] and ‖𝑔0‖𝐿2
𝑏
(R;𝐻).

The numbers 𝑐 and 𝑅2 are independent of 𝛼.
Proof. Consider the operator 𝐵(𝑢(𝑡), V(𝑡)), where V = 𝑢 +𝛼2𝐴𝑢. We note that

|𝑢| ≤ |V| ,
‖𝑢‖ ≤ ‖V‖ . (72)

From inequalities (10) and (72), we get

‖𝐵 (𝑢, V)‖𝑉∗ ≤ 𝑐 |𝑢|1/2 ‖𝑢‖1/2 ‖V‖ ≤ 𝑐 |V|1/2 ‖V‖3/2 . (73)

We deduce that

(∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖4/3

𝑉∗ 𝑑𝑠)
3/4

≤ 𝑐 (∫𝑇

𝜏
|V (𝑠)|2/3 ‖V (𝑠)‖2 𝑑𝑠)3/4 ≤ 𝑐

⋅ ess sup
𝑠∈[𝜏,𝑇]

|V (𝑠)|1/2 (∫𝑇

𝜏
‖V (𝑠)‖2 𝑑𝑠)3/4

≤ 𝑐 (|V (𝜏)|2 𝑒−𝜆𝑇 + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿2
𝑏
(R;𝐻))1/4

⋅ (1
]
|V (𝜏)|2 + 𝜆−1

]
∫𝑇

𝜏

𝑔0 (𝑠)2 𝑑𝑠)
3/4

≤ 𝑐 (|V (𝜏)|2 𝑒−𝜆𝑇 + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿2
𝑏
(R;𝐻))1/4

⋅ (1
]
|V (𝜏)|2 + 𝜆−1

]
(𝑇 + 1) 𝑔0

2

𝐿2
𝑏
(R;𝐻))

3/4

≤ 𝑐 (|V (𝜏)|2 + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿2
𝑏
(R;𝐻)

+ 𝜆−1 (𝑇 + 1) 𝑔0
2

𝐿2
𝑏
(R;𝐻)) ≤ 𝑐 |V (𝜏)|2 + (𝑅

2)2 ,

(74)

where (𝑅
2)2 = 𝑐𝜆−1(1+𝜆−1)‖𝑔0‖2

𝐿2
𝑏
(R;𝐻)+𝜆−1(𝑇+1)‖𝑔0‖2

𝐿2
𝑏
(R;𝐻).

Using the triangle inequality, it follows from (26) that

(∫𝑇

𝜏

𝜕𝑡V (𝑠)4/3

𝑉∗ 𝑑𝑠)
3/4

≤ ](∫𝑇

𝜏
‖𝐴V (𝑠)‖4/3

𝑉∗ 𝑑𝑠)
3/4

+ (∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖4/3

𝑉∗ 𝑑𝑠)
3/4

+ (∫𝑇

𝜏

𝑔0 (𝑠)4/3

𝑉∗ 𝑑𝑠)
3/4
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≤ ](∫𝑇

𝜏
‖V (𝑠)‖4/3 𝑑𝑠)3/4

+ (∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖4/3

𝑉∗ 𝑑𝑠)
3/4

+ 𝜆−1/2 (∫𝑇

𝜏

𝑔0 (𝑠)4/3 𝑑𝑠)3/4

≤ ](∫𝑇

𝜏
‖V (𝑠)‖2 𝑑𝑠)1/2

+ (∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖4/3

𝑉∗ 𝑑𝑠)
3/4

+ 𝜆−1/2 (∫𝑇

𝜏

𝑔0 (𝑠)2 𝑑𝑠)1/2

≤ ](1
]
|V (𝜏)|2 + 𝜆−1

]
∫𝑇

𝜏

𝑔0 (𝑠)2 𝑑𝑠)
1/2

+ 𝑐 |V (𝜏)|2 + (𝑅
2)2

+ (𝑇 + 1) 𝜆−frac 12 𝑔0
𝐿2
𝑏
((𝑅);𝐻)

≤ 𝑐 |V (𝜏)|2 + 𝜆−1 (𝑇 + 1) 𝑔0
2

𝐿2
𝑏
(R;𝐻) + (𝑅

2)2

+ (𝑇 + 1) 𝜆−1/2 𝑔0
𝐿2
𝑏
(R;𝐻) + 1 ≤ 𝑐 |V (𝜏)|2 + 𝑅2

2,
(75)

where 𝑅2
2 = 𝜆−1(𝑇 + 1)‖𝑔0‖2

𝐿2
𝑏
(R;𝐻) + (𝑅

2)2 + (𝑇 + 1)𝜆−1/2

‖𝑔0‖𝐿2
𝑏
(R;𝐻) + 1. This proves (70).

For the proof of (71), we use inequalities (11) and (72) and
we get

‖𝐵 (𝑢, V)‖𝑉∗ ≤ 𝑐 |𝑢|1/2 ‖𝑢‖1/2 |V|1/2 ‖V‖1/2

≤ |V|1/2 ‖V‖1/2 |V|1/2 ‖V‖1/2 ≤ 𝑐 |V| ‖V‖ .
(76)

We then have

(∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖2

𝑉∗ 𝑑𝑠)
1/2

≤ 𝑐(∫𝑇

𝜏
|V (𝑠)|2 ‖V (𝑠)‖2 𝑑𝑠)1/2 ≤ 𝑐

⋅ ess sup
𝑠∈[𝜏,𝑇]

|V (𝑠)| (∫𝑇

𝜏
‖V (𝑠)‖2 𝑑𝑠)1/2

≤ 𝑐 (|V (𝜏)|2 𝑒−𝜆𝑇 + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿𝑏2(R;𝐻))1/2

⋅ (1
]
|V (𝜏)|2 + 𝜆−1

]
∫𝑇

𝜏

𝑔0 (𝑠)2 𝑑𝑠)
1/2

≤ 𝑐 (|V (𝜏)|2 𝑒−𝜆𝑇 + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿𝑏2(R;𝐻))1/2

⋅ (1
]
|V (𝜏)|2 + 𝜆−1

]
(𝑇 + 1) 𝑔0

2

𝐿2
𝑏
(R;𝐻))

1/2

≤ 𝑐 (|V (𝜏)|2 + 𝜆−1 (1 + 𝜆−1) 𝑔0
2

𝐿2
𝑏
(R;𝐻)

+ 𝜆−1 (𝑇 + 1) 𝑔0
2

𝐿2
𝑏
(R;𝐻)) ≤ 𝑐 |V (𝜏)|2 + (𝑅

2)2 .
(77)

It follows from (26) that

(∫𝑇

𝜏

𝜕𝑡V (𝑠)2

𝑉∗ 𝑑𝑠)
1/2

≤ ](∫𝑇

𝜏
‖𝐴V (𝑠)‖2

𝑉∗ 𝑑𝑠)
1/2

+ (∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖2

𝑉∗ 𝑑𝑠)
1/2

+ (∫𝑇

𝜏

𝑔0 (𝑠)2

𝑉∗ 𝑑𝑠)
1/2

≤ ](∫𝑇

𝜏
‖V (𝑠)‖2 𝑑𝑠)1/2

+ (∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖2

𝑉∗ 𝑑𝑠)
1/2

+ 𝜆−1/2 (∫𝑇

𝜏

𝑔0 (𝑠)2 𝑑𝑠)1/2

≤ ](∫𝑇

𝜏
‖V (𝑠)‖2 𝑑𝑠)1/2

+ (∫𝑇

𝜏
‖𝐵 (𝑢 (𝑠) , V (𝑠))‖2

𝑉∗ 𝑑𝑠)
1/2

+ 𝜆−1/2 (∫𝑇

𝜏

𝑔0 (𝑠)2 𝑑𝑠)1/2

≤ ](1
]
|V (𝜏)|2 + 𝜆−1

]
∫𝑇

𝜏

𝑔0 (𝑠)2 𝑑𝑠)
1/2

+ 𝑐 |V (𝜏)|2 + (𝑅
2)2 + (𝑇 + 1) 𝜆−1/2 𝑔0

𝐿2
𝑏
((𝑅);𝐻)

≤ 𝑐 |V (𝜏)|2 + 𝜆−1 (𝑇 + 1) 𝑔0
2

𝐿2
𝑏
(R;𝐻) + (𝑅

2)2

+ (𝑇 + 1) 𝜆−1/2 𝑔0
𝐿2
𝑏
(R;𝐻) + 1 ≤ 𝑐 |V (𝜏)|2 + 𝑅2

2.

(78)

This ends the proof of the proposition.
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Proof of Proposition 11. We prove that V is a weak solution
of the 2D Navier-Stokes system on every interval (𝜏, 𝑇). The
function V𝛼𝑛

satisfies the equation

𝜕𝑡V𝛼𝑛
+ ]𝐴V𝛼𝑛

+ 𝐵 (𝑢𝛼𝑛
, V𝛼𝑛

) = 𝑔𝑛. (79)

From the estimates in (32)-(33) and (71), we have

V𝛼𝑛
(𝑡)2

≤ |V (𝜏)|2 𝑒−𝜆(𝑡−𝜏) + 𝜆−1 (1 + 𝜆−1) 𝑔𝑛
2

𝐿2
𝑏
(R;𝐻) ,

]∫𝑡

𝜏

V𝛼𝑛
(𝑠)2 𝑑𝑠 ≤ |V (𝜏)|2 + 𝜆−1 ∫𝑡

𝜏

𝑔𝑛 (𝑠)2 𝑑𝑠,

(∫𝑇

𝜏

𝜕𝑡V𝛼𝑛
(𝑠)2

𝑉∗
𝑑𝑠)1/2

≤ 𝑐 |V (𝜏)|2 + 2𝜆−1 (𝑇 + 1) 𝑔𝑛
2

𝐿2
𝑏
(R;𝐻)

+ 𝑐𝜆−1 (1 + 𝜆−1) 𝑔𝑛
2

𝐿2
𝑏
(R;𝐻)

+ (𝑇 + 1) 𝜆−1/2 𝑔𝑛
𝐿2
𝑏
(R;𝐻) + 1.

(80)

Since each bounded sequence in a reflexive Banach space has
a weakly convergent subsequence (see [20],Theorem 21.D, p.
255), we can choose a subsequence {V𝛼𝑛

(𝑡)} of {V𝛼𝑛
(𝑡)} such

that

V𝛼𝑛
(𝑡) ⇀ V (𝑡) in 𝐻, (81)

𝜕V𝛼𝑛𝜕𝑡 ⇀ V (𝑡) in 𝐿2 (𝜏, 𝑇; 𝑉) , (82)

V𝛼𝑛
⇀ V in 𝐿2 (𝜏, 𝑇; 𝑉) , (83)

as 𝑛 → ∞. The convergence (82) uses the fact that the
generalized derivatives are compatible with the weak limits
(see [20], Proposition 23.19, p. 419). From (83), we obtain

𝐴V𝛼𝑛
⇀ 𝐴V in 𝐿2 (𝜏, 𝑇; 𝑉) . (84)

In order to establish the equality, it is sufficient to prove
that the sequence 𝐵(𝑢𝛼𝑛

, V𝛼𝑛
) converges to 𝐵(V(⋅), V(⋅)) in

D(𝜏, 𝑇; 𝑉) as 𝑛 → ∞. Notice that

𝑢𝛼𝑛
⇀ V weakly in 𝐿2 (𝜏, 𝑇; 𝑉) . (85)

Indeed, the function 𝑢𝛼𝑛
satisfies the equation

𝑢𝛼𝑛
+ 𝛼2

𝑛𝐴𝑢𝛼𝑛
= V𝛼𝑛

. (86)

Since 𝑢𝛼𝑛
is bounded in 𝐿2(𝜏, 𝑇; 𝑉), then, passing to a

subsequence, wemay assume that 𝑢𝛼𝑛
converges to a function

𝑤(⋅) weakly in 𝐿2(𝜏, 𝑇; 𝑉); that is,
𝑢𝛼𝑛

⇀ 𝑤 in 𝐿2 (𝜏, 𝑇; 𝑉) . (87)

Then the sequence 𝐴𝑢𝛼𝑛
⇀ 𝐴𝑤 weakly in 𝐿2(𝜏, 𝑇; 𝑉) and

𝛼𝑛𝐴𝑢𝛼𝑛
⇀ 0 weakly in 𝐿2 (𝜏, 𝑇 : 𝑉) . (88)

Therefore, in equality (86), we may pass to the limit in the
space 𝐿2(𝜏, 𝑇 : 𝑉) and obtain that

𝑤 = lim
𝑛→∞

𝑢𝛼𝑛
= lim

𝑛→∞
V𝛼𝑛

= V. (89)

Then, (87) and (89) imply (85).
From (71), the sequences 𝜕𝑡V𝑛 and 𝜕𝑡𝑢𝑛 are bounded

in 𝐿2(𝜏, 𝑇; 𝑉). Then the Aubin compactness theorem [21]
implies that, passing to a subsequence, we may assume that
V𝛼𝑛

and 𝑢𝛼𝑛
converge to V(⋅) strongly in 𝐿2(𝜏, 𝑇;𝐻).Therefore,

we may assume that

V𝛼𝑛
(𝑥, 𝑡) → V (𝑥, 𝑡) for a.e. (𝑥, 𝑡) ∈ T

2 × ]𝜏, 𝑇[ ,
𝑢𝛼𝑛

(𝑥, 𝑡) → V (𝑥, 𝑡) for a.e. (𝑥, 𝑡) ∈ T
2 × ]𝜏, 𝑇[ . (90)

We recall that

𝐵 (𝑢𝛼𝑛
, V𝛼𝑛

) = P
2∑

𝑖=1

𝜕𝑖 (𝑢𝑖
𝛼𝑛
V𝛼𝑛

) . (91)

It follows from (90) that

𝑢𝑖
𝛼𝑛

(𝑥, 𝑡) V𝛼𝑛
(𝑥, 𝑡) → V𝑖 (𝑥, 𝑡) V (𝑥, 𝑡)

for a.e. (𝑥, 𝑡) ∈ T
2 × ]𝜏, 𝑇[ . (92)

Using the estimate in (11), we deduce that

𝑢𝑖
𝛼𝑛
V𝛼𝑛

is bounded in 𝐿2 (𝜏, 𝑇;𝐻) , 𝐿2 (T2 × ]𝜏, 𝑇[)2 . (93)

Applying the known lemma on weak convergence from [21],
we conclude from (92) and (93) that

𝑢𝑖
𝛼𝑛
V𝛼𝑛

⇀ V𝑖V (94)

weakly in 𝐿2(T2×]𝜏, 𝑇[)2 and weakly in 𝐿2(𝜏, 𝑇;𝐻). We then
deduce from (91) that

𝐵 (𝑢𝛼𝑛
, V𝛼𝑛

) ⇀ 𝐵 (V, V) weakly in 𝐿2 (𝜏, 𝑇; 𝑉) . (95)

We have then proven that V(⋅) is a weak solution of the 2D
Navier-Stokes equationswith external force𝑔.This completes
the proof of the proposition.

Now we present and prove the main result of this paper.

Theorem 13. LetA𝛼𝑛 be the uniform attractor of the 2DLeray-𝛼 model and letA0 be the uniform attractor of the 2D Navier-
Stokes system. Then one has

A
𝛼𝑛 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 A0 𝑎𝑠 𝑛 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 ∞; (96)

that is,

lim
𝑛→∞

dist𝐻 (A𝛼𝑛 ,A0) = 0. (97)
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Remark 14. In (97), dist𝐻 denotes theHausdorff semidistance
defined by

dist𝐻 (𝑋, 𝑌) = sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑥 − 𝑦 . (98)

Proof of Theorem 13. Assume that dist𝐻(A𝛼𝑛 ,A0)  0.
Hence, by the compactness of A0, we can choose a positive
constant 𝛿 > 0 and a subsequence {𝑚} of {𝑛} and 𝜓𝑚 ∈ A𝛼𝑚

satisfying

dist𝐻 (𝜓𝑚,A0) ≥ 𝛿, ∀𝑚 ≥ 1. (99)

We recall that

A
𝛼𝑚 = ⋃

𝑔∈H(𝑔0)

K
𝛼𝑚
𝑔 (0) . (100)

Therefore, since 𝜓𝑚 ∈ A𝛼𝑚 , there exist 𝜎𝑚 ∈ H(𝑔0) and V𝑚 ∈
K𝛼𝑚

𝜎𝑚
such that 𝜓𝑚 = V𝑚(0).

Since (𝑡 → V𝑚(𝑡 + ℎ)) ∈ K
𝛼𝑚
𝜎𝑚(⋅+ℎ)

∀ℎ ∈ R, it follows that
V𝑚(𝑡) ∈ A𝛼𝑚 ⊂ 𝐵0 ∀𝑡 ∈ R. Since 𝐵0 is an absorbing set for the
processU𝛼𝑚

𝜎𝑚
(𝑡, 𝜏) (see (51)), we have

V𝑚 (𝑡)2 ≤ 2𝑅2
0, (101)

where 𝑅0 is independent of 𝑚 and 𝛼 (‖𝜎𝑚‖2
𝐿2
𝑏
(R;𝐻) ≤

‖𝑔0‖2
𝐿2
𝑏
(R;𝐻)). Also, sinceH(𝑔0) is compact in 𝐿2

loc(R; 𝐻) and
{𝜎𝑚} ⊂ H(𝑔0), there exists a subsequence of V𝑚 and 𝑔 ∈
H(𝑔0) such that

𝜎𝑚 ⇀ 𝑔 in H (𝑔0) . (102)

Using the fact that each bounded sequence in a reflexive
Banach space has a weakly convergent subsequence (see [20],
Theorem 21.D, p. 255) and the boundedness (101), we deduce
that

V𝑚 (𝑡) converges weakly in 𝐻. (103)

Then, using the standard Cantor diagonal procedure as in [8,
15, 16], we can deduce a function 𝜙(𝑠), 𝑠 ∈ R, and a sequence{𝑚𝑗} such that

V𝑚𝑗
(𝑡) ⇀ 𝜙 (𝑡) weakly in 𝐻 as 𝑗 → ∞. (104)

From Proposition 11, we have that 𝜙 is a weak solution of the
2D Navier-Stokes equations. For 𝑡 = 0, we have

𝜓𝑚𝑗
⇀ 𝜙 (0) in 𝐻. (105)

Using the fact thatA𝛼𝑚 ⊂ 𝐵1, where 𝐵1 is given by (53) (𝐵1 is
uniformly absorbing set), we have

𝜓𝑚𝑗
→ 𝜙 (0) in 𝐻, (106)

since 𝜓𝑚𝑗
is bounded in𝑉. Also, sinceA0 = ⋃𝑔∈H(𝑔0)

K𝑔(0),
we get 𝜙(0) ∈ K𝑔(0) ⊂ A0. Passing to the limit in (99), we
obtain 𝛿 = 0; and this contradicts the fact that 𝛿 > 0. This
ends the proof of the theorem.
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Recherches en Mathématiques Appliqueés, vol. 17, Mason, Paris,
1991.

[10] V. V. Chepyzhov and M. I. Vishik, in Attractors for equations
of mathematical physics, vol. 49, American Mathematical Soci-
ety Colloquium Publications, American Mathematical Society,
Providence, RI, USA, 2002.

[11] R. Temam, Infinite Dynamical Dimensional Dynamical Systems
in Mechanics and Physics, vol. 68, Springer-Verlag, New York,
NY, USA, 2nd edition, 1988.

[12] A. V. Babin and M. I. Vishik, “Attractors of evolutions equa-
tions,” in Studies in Mathematics and Its Applications, vol. 25,
North-Holland, Publishing Co, Amsterdam, The Netherlands,
1992.

[13] E. Lunasin, S. Kurien, and E. S. Titi, “Spectral scaling of the
Leray-𝛼 model for the two-dimensional turbulence,” Journal
of Physics. A. Mathematical and Theoretical, vol. 41, Article ID
344014, 2008.

[14] A. Cheskidov, D. D. Holm, E. Olson, and E. S. Titi, “On a
Leray-𝛼 model of turbulence,” Proceedings of The Royal Society
of London. Series A. Mathematical, Physical and Engineering
Sciences, vol. 461, pp. 629–649, 2005.

[15] V. V. Chepyzhov, E. S. Titi, and M. I. Vishik, “On the conver-
gence of solutions of the Leray-𝛼model to the trajectory attrac-
tor of the 3D Navier-stokes system,” Discrete and Continuous
Dynamical Systems, vol. 17, no. 3, pp. 481–500, 2007.



Abstract and Applied Analysis 11

[16] V. V. Chepyzhov, E. S. Titi, and M. I. Vishik, “On convergence
of trajectory attractors of the 3D Navier-Stokes-𝛼 model as 𝛼
approaches,” Sb. Math, vol. 198, pp. 1703–1736, 2007.

[17] H. Bessaih and P. A. Razafimandimby, “On the rate of conver-
gence of the 2D stochastic Leray-𝛼 model to the 2D stochastic
Navier-Stokes equations with multiplicative noise,” Applied
Mathematics and Optimization, vol. 74, no. 1, pp. 1–25, 2016.

[18] Y. Cao and E. S. Titi, “On the rate of convergence of the
two-dimensional 𝛼-models of turbulence to the Navier-Stokes
equations,” Numerical Functional Analysis and Optimization,
vol. 30, no. 11-12, pp. 1231–1271, 2009.

[19] A. A. Ilyin and E. S. Titi, “Attractors for the two-dimensional
Navier-Stokes-𝛼 model: an 𝛼-dependence study,” Journal of
Dynamics and Differential Equations, vol. 14, pp. 751–778, 2003.

[20] E. Zeidler, Nonlinear Functional Analysis and Its applications
II/A: Linear Monotone Operators, Springer–Verlag, New York,
NY, USA, 1990.
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