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We try to compare the solutions by some numerical techniques when we apply the methods on some mathematical biology
problems.The Runge-Kutta-Fehlberg (RKF) method is a promising method to give an approximate solution of nonlinear ordinary
differential equation systems, such as a model for insect population, one-species Lotka-Volterra model. The technique is described
and illustrated by numerical examples. We modify the population models by taking the Holling type III functional response and
intraspecific competition term and hence we solve it by this numerical technique and show that RKF method gives good results.
We try to compare this method with the Laplace Adomian Decomposition Method (LADM) and with the exact solutions.

1. Introduction

1.1. Population Growth Model. Mathematical models of pop-
ulation growth have been formed to provide a significant
angle of the real ecological situation.Themeaning and impor-
tance of each parameter in the models have been defined
biologically [1, 2]. In case of insect population, birth and
death rate of a species typically are not constant; instead, they
vary periodically with the passage of seasons, whereas the
Lotka-Volterra equations demonstrate an arbitrary number
of ecological competitors (or predator-prey) model which
is dynamic in nature. The population growth model is very
important in mathematical biology which is used basically to
demonstrate a simple nonlinear control system in population
growth.

1.2. Holling Type III Functional Response. For getting exact
population Holling type III functional response plays an
important role in population dynamics. Holling type III
functional response should be taken into the predator-prey
interactions, which is proposed by Holling [3, 4] based on
the fundament of experiment.TheHolling type III functional

response in ecological model is the intake rate of a predator
species as a function of prey density.

1.3. Numerical Techniques. In the field of science and technol-
ogy, numerous significant physical phenomena are frequently
modeled by nonlinear differential equations. Such equations
are often very difficult to solve analytically. Yet, analytical
approximate methods are very important for obtaining the
accurate solutions which have gained much significance in
recent years. There are various methods, undertaken to find
out approximate solutions to nonlinear problems. Homotopy
Perturbation Method (HPM), Homotopy Analysis Method
(HAM), Differential Transform Method (DTM), Variational
Iteration Method (VIM), Adomian Decomposition Method
(ADM), Laplace Adomian DecompositionMethod (LADM),
and Runge-Kutta-Fehlberg (RKF) method are some very
popular methods. The purpose of this paper is to bring
out the numerical solution of various population models by
using the approach, namely, Runge-Kutta-Fehlberg (RKF)
method.

Recently, different scientists use the numerical method in
their different problems. Here we try to give some references
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showing the importance of quasi-numerical methods tech-
niques in present time: Kumar and Baskar [5] consider B-
spline quasi-interpolation basednumericalmethods for some
Sobolev type equations. Analytical and numerical study of
dirty bosons in a quasi-one-dimensional harmonic trap is
discussed by Khellil et al. [6]. Numerical study of a quasi-
hydrodynamic system of equations for flow computation at
smallMach numbers is considered by Balashov and Savenkov
[7]. Quasi-optimal complexity of adaptive finite element
method for linear elasticity problems in two dimensions is
discussed by Liu et al. [8]. Numerical solutions of quasi-two-
dimensional models for laminar water hammer problems are
considered by Zhao [9].

1.4. Motivation. The accurate solutions of population growth
models may become a difficult task if the equations are
highly nonlinear. To overcome the situation there we take the
numerical simulation, until there are no particular numerical
methods for solving such problems. So to fill up the gap,
here we find the approximated solutions of some population
models by applying such some reliable, efficient, and more
comfortable numerical technique (e.g., LADM, RKF) and try
to conclude which one is the best.

1.5. Novelties. The principal aim of this paper is to perform
systematic analysis of the comparisons among exact solution
and some reliable numerical techniques on the dynamics
of the population model. The said numerical methods shall
be more acceptable and reliable for solving such kind of
problem. The issues which are addressed in the paper are
described in the following:

(i) Adding Holling type III functional response in insect
population model and Lotka-Volterra model for bet-
ter formulation

(ii) Applying two numerical methods LADM and RKF
for solution of the models and find the solution

(iii) Analysis of the comparisons among exact solution,
Laplace Adomian Decomposition Method (LADM),
and Runge-Kutta-Fehlberg (RKF) method on the
models

(iv) The solution of the models by different numerical
techniques being illustrated numerically and graph-
ically

(v) The necessary algorithm for numerical techniques
given

Moreover, we can say all these developments can help the
researchers who engage with nonlinear differential equation,
mathematical biology, and numerical techniques.

1.6. Structure of the Paper. The paper is organized as follows.
The basic literature survey on population growth model,
functional response, and numerical techniques is addressed
in Section 1. In Section 2 we discuss the numerical methods,
namely, Runge-Kutta-Felhberg (RKF) method and Laplace
Adomian Decomposition Method (LADM) for nonlinear

equation. The necessary algorithm for finding the numerical
results is also discussed in this section. Section 3 is followed
by a numerical example in different mathematical biology
models. The different biological model is formulated and
we write the general expression of the numerical solution.
Section 4 is illustrated by the comparison study between
the solutions and error terms of these said methods. Finally
conclusions and future research scope of this paper are drawn
in the last section, Section 5.

2. Numerical Solution of Nonlinear
Differential Equation

2.1. Laplace Adomian Decomposition Method (LADM)

2.1.1. LADM for Nonlinear Differential Equation. The Laplace
AdomianDecompositionMethod (LADM) [10, 11] was firstly
introduced by Khuri and has been successfully used to find
the solution of linear and nonlinear differential equations.
The significant advantage of this method is that it is a
combination of two powerful techniques, namely, Laplace
transform andAdomianDecompositionMethod [12–15].The
Laplace transform is an elementary but useful technique for
solving linear ordinary differential equations that is widely
used by scientists and engineers for tackling the linear
models. The main impotence of this method is that the
solution of this method is expressed in ∞-series which
converges to the exact solution and will not take too much
time for computing.

Consider the following nonlinear differential equation:

𝐿𝑢 (𝑡) + 𝑅𝑢 (𝑡) + 𝑁𝑢 (𝑡) = 𝑔 (𝑡) , (1)

where 𝐿 is a linear operator of the highest-order derivative
which is assumed to be invertible easily, 𝑅 is the remaining
linear operator of order less than 𝐿 and 𝑁 is a nonlinear
operator, and 𝑔(𝑡) is a source term.

Taking Laplace transform on both sides of the above
equation, we get

L [𝐿𝑢 (𝑡)] +L [𝑅𝑢 (𝑡)] +L [𝑁𝑢 (𝑡)] = L [𝑔 (𝑡)] . (2)

Using the differential property of Laplace transform and
using the initial condition, we get

𝑠𝑛L [𝑢 (𝑡)] − 𝑠𝑛−1𝑢 (0) − 𝑠𝑛−2𝑢󸀠 (0) − ⋅ ⋅ ⋅ − 𝑢𝑛−1 (0)
+L [𝑅𝑢 (𝑡)] +L [𝑁𝑢 (𝑡)] = L [𝑔 (𝑡)] , (3)

or

L [𝑢 (𝑡)] = 𝑢 (0)𝑠 + 𝑢󸀠 (0)𝑠2 + ⋅ ⋅ ⋅ + 𝑢𝑛−1 (0)𝑠𝑛
− 1𝑠𝑛L [𝑅𝑢 (𝑡)] − 1𝑠𝑛L [𝑁𝑢 (𝑡)]
+ 1𝑠𝑛L [𝑔 (𝑡)] .

(4)
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Now we represent the unknown functions 𝑢(𝑡) by an infinite
series of the form

𝑢 (𝑡) = ∞∑
𝑛=0

𝑢𝑛 (𝑡) . (5)

Here the components 𝑢𝑛(𝑡) are usually determined recur-
rently and the nonlinear operator 𝑁(𝑢) can be decomposed
into an infinite series of polynomials, given by

𝑁(𝑢) = ∞∑
𝑛=0

𝐴𝑛, (6)

where 𝐴𝑛 are Adomian polynomials of 𝑢0, 𝑢1, . . . , 𝑢𝑛 defined
by

𝐴𝑛 = 1𝑛! 𝑑𝑛𝑑𝜆𝑛 [𝑁(∞∑
𝑖=0

𝜆𝑖𝑢𝑖)]
𝜆=0

, 𝑛 = 0, 1, 2, . . . . (7)

Therefore,

L[∞∑
𝑛=0

𝑢𝑛 (𝑡)] = 𝑢 (0)𝑠 + 𝑢󸀠 (0)𝑠2 + ⋅ ⋅ ⋅ + 𝑢𝑛−1 (0)𝑠𝑛
− 1𝑠𝑛L[𝑅{∞∑

𝑛=1

𝑢𝑛 (𝑡)}]
− 1𝑠𝑛L[∞∑

𝑛=1

𝐴𝑛] + 1𝑠𝑛L [𝑔 (𝑡)] .
(8)

In general, the recursive relation is given by

L [𝑢0 (𝑡)] = 𝑢 (0)𝑠 + 𝑢󸀠 (0)𝑠2 + ⋅ ⋅ ⋅ + 𝑢𝑛−1 (0)𝑠𝑛
+ 1𝑠𝑛L [𝑔 (𝑡)] ,

L [𝑢𝑛+1 (𝑡)] = − 1𝑠𝑛L [𝑅 (𝑢𝑛 (𝑡))] − 1𝑠𝑛L [𝐴𝑛] .
(9)

Applying the inverse Laplace transform to both sides of (9),
we obtain 𝑢𝑛, (𝑛 ≥ 0), which is then substituted into (5).

For numerical computation, we get the expression as

𝜙𝑛 (𝑡) = 𝑛∑
𝑘=0

𝑢𝑘 (𝑡) , (10)

which is 𝑛th term approximation of 𝑢(𝑡) and the obtained
series solution which converges to the exact solution.

2.1.2. Algorithm for Finding the Numerical Solution by LADM

Step 1. Split the given equation into two parts. The first part
is

− [𝑅𝑢 (𝑡) + 𝑁𝑢 (𝑡)] (11)

and the second part is

𝐿𝑢 (𝑡) = 𝑔 (𝑡) . (12)

Step 2. Apply the Laplace transform to second part, deter-
mine the coefficient of L[𝑢(𝑡)], and solve this equation for
L[𝑢(𝑡)]. So, you can getL[𝑢0].
Step 3. Calculate the Adomian polynomials for the function𝑁𝑢(𝑡). Apply the Laplace transform to these polynomials.

Step 4. Divide the first part to the coefficient of L[𝑢(𝑡)].
In a loop, calculate L[𝑢𝑛+1(𝑡)] with substituting L[𝐴𝑛] and
L[𝑢𝑛(𝑡)] into the first part.
Step 5. Construct the solution using inverse Laplace trans-
form toL[𝑢𝑛(𝑡)].
Step 6. End

2.2. Runge-Kutta-Fehlberg (RKF) Method

2.2.1. RKF for Nonlinear Differential Equation. One of the
most popular methods with a constant step size is the fourth-
order Runge-Kutta (RK4) method. Reasonably the Runge-
Kutta method can [16] obtain the accuracy of a Taylor
Series approximation without the need of higher derivative
calculations.Thismethod can be considered as the basic form
of other methods. However, in terms of error estimation, the
one-step method with an adaptive step size like the Runge-
Kutta-Fehlberg (RKF) method [17, 18] gives better error
estimation than one-step method with a constant step size
like the Runge-Kutta method. At each step the Runge-Kutta-
Fehlberg method described the calculation of two Runge-
Kutta methods of different order (RK4 and RK5). If the two
answers are close enough then continue for the next step with
the same step size. For a fixed accuracy the step size should be
reduced. If the answers agreewithmore significant digits than
required, the step size is increased. So we conclude that the
one-step algorithm method associated with an adaptive step
size automatically organizes the step size as a recomposition
to the calculation truncation errors. This method has shown
that it works in the case of nonlinear models and, hence,
its application is found in wide range of deterministic and
stochastic problems, linear and nonlinear problems, physics,
biology, and chemical reactions problems, and so forth.

Consider the initial value problem

𝑦󸀠 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,
𝑦 (𝑡0) = 𝑦0. (13)

The RKF is one way to try to resolve this problem.
The problem is to solve the initial value problem in the

above equation by means of Runge-Kutta methods [19, 20] of
order 4 and order 5.

First we need some definitions:

𝑘1 = ℎ𝑓 (𝑡𝑖, 𝑦𝑖) ,
𝑘2 = ℎ𝑓(𝑡𝑖 + 14ℎ, 𝑦𝑖 + 14𝑘1) ,
𝑘3 = ℎ𝑓(𝑡𝑖 + 38ℎ, 𝑦𝑖 + 332𝑘1 + 932𝑘2) ,
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𝑘4 = ℎ𝑓(𝑡𝑖 + 1213ℎ, 𝑦𝑖 + 19322197𝑘1 − 72002197𝑘2
+ 72962197𝑘3) ,

𝑘5 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3
− 8454104𝑘4) ,

𝑘6 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4
− 1140𝑘5) .

(14)

Then an approximation to the solution of initial value
problem is made using Runge-Kutta method of order 4:

𝑦𝑖+1 = 𝑦𝑖 + 25216𝑘1 + 14082565𝑘3 + 21974101𝑘4 − 15𝑘5. (15)

A better value for the solution is determined using a Runge-
Kutta method of order 5:

𝑧𝑖+1 = 𝑦𝑖 + 16135𝑘1 + 665612,825𝑘3 + 28,56156,430𝑘4 − 950𝑘5
+ 255𝑘6.

(16)

The numerical approximation of the global (local) discretiza-
tion error at the point 𝑡𝑖+1 is

𝜖 = 󵄨󵄨󵄨󵄨𝑦𝑖+1 − 𝑧𝑖+1󵄨󵄨󵄨󵄨 . (17)

If 𝜖min ≤ 𝜖 ≤ 𝜖max, (where the maximum and minimum
tolerance for local truncation error are 𝜖max and 𝜖min, respec-
tively, which are prescribed at the beginning) then 𝑦𝑖+1 is
an acceptable approximation of 𝑦(𝑡𝑖+1) and the step size is
considerable for the next step. Otherwise, the new step size𝑠ℎ can be determined by multiplying the scalar 𝑠 times the
step size ℎ. The scalar 𝑠 is given by

𝑠 = ( 𝜖ℎ2 󵄨󵄨󵄨󵄨𝑦𝑖+1 − 𝑧𝑖+1󵄨󵄨󵄨󵄨)
1/4

= 0.0840896( 𝜖ℎ󵄨󵄨󵄨󵄨𝑦𝑖+1 − 𝑧𝑖+1󵄨󵄨󵄨󵄨)
1/4 ,

(18)

where 𝜖 is the specified error control tolerance.

Note. RK4 requires four functions for finding the result and
RK5 requires six; that is total of ten for RK4 and RK5.
Fehlberg devised a method to get RK4 and RK5 results using
only six function evaluations by using some of 𝑘 values in
both methods where 𝑘 = 𝜕𝑓/𝜕𝑦.
2.2.2. Algorithm for Finding the Numerical Solution by RKF

Step 1. 𝐹(𝑡, 𝑦1) ← “Function to be supplied”.

Step 2. Read 𝑡(0), 𝑦1(0), ℎ, limit, 𝜖min, 𝜖max.

Step 3. For 𝑖 = 0(1) limit

𝐾1 ←󳨀 ℎ𝑓 (𝑡𝑖, 𝑦1 (𝑡𝑖))
𝐾2 ←󳨀 ℎ ⋅ 𝑓 (𝑡𝑖 + 14ℎ, 𝑦1 (𝑡𝑖) + 14𝐾1)
𝐾3 ←󳨀 ℎ ⋅ 𝑓 (𝑡𝑖 + 38ℎ, 𝑦1 (𝑡𝑖) + 332𝐾1 + 932𝐾2)
𝐾4 ←󳨀 ℎ ⋅ 𝑓 (𝑡𝑖 + 1213ℎ, 𝑦1 (𝑡𝑖) + 19322197𝐾1 − 72002197𝐾2

+ 72962197𝐾3)
𝐾5 ←󳨀 ℎ𝑓(𝑡𝑖 + ℎ, 𝑦1 (𝑡𝑖) + 439216𝐾1 − 8𝐾2 + 3680513 𝐾3

− 8454104𝐾4)
𝐾6 ←󳨀 ℎ𝑓(𝑡𝑖 + ℎ, 𝑦1 (𝑡𝑖) − 827𝐾1 + 2𝐾2 − 35442565𝐾3

+ 18594104𝐾4 − 1140𝐾5) .

(19)

Step 4.

𝑦𝑖+1 = 𝑦𝑖 + 25216𝑘1 + 14082565𝑘3 + 21974101𝑘4 − 15𝑘5. (20)

Step 5.

𝑧𝑖+1 (𝑡𝑖+1) = 𝑦𝑖 (𝑡𝑖) + 16135𝐾1 + 665612,825𝐾3 + 28,56156,430𝐾4
− 950𝐾5 + 255𝐾6.

(21)

Step 6.

𝜖 = 󵄨󵄨󵄨󵄨𝑦𝑖+1 − 𝑧𝑖+1󵄨󵄨󵄨󵄨 . (22)

Step 7. Consider 𝜖min ≤ 𝜖 ≤ 𝜖max.

Step 8. 𝑡𝑖+1 = 𝑡𝑖 + ℎ. Write 𝑧𝑖(𝑡𝑖+1), 𝑡𝑖.
Step 9. Repeat for better approximation.

Step 10. End the programme.

Step 11. Otherwise, ℎ = 𝑠ℎ with 𝑠 = (𝜖ℎ/2|𝑦𝑖+1 − 𝑧𝑖+1|)1/4 =0.0840896(𝜖ℎ/|𝑦𝑖+1 − 𝑧𝑖+1|)1/4.
Step 12. Repeat Steps 8–10 for better accuracy; any one can
stop here. For better accuracy the process can be run.
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3. Solution of Some Population Model by
Numerical Techniques

3.1. Insect PopulationModel (Model I). Suppose that an insect
population 𝑃 shows the seasonal growth model which is
discussed by Erbe et al. [21]. The differential equation of the
insect population model is given by

𝑑𝑃𝑑𝑡 = 𝐾𝑃 cos 𝜆𝑡, (23)

where𝐾 and 𝜆 are positive constants.
We now solve (23) by LADM with initial condition 𝑃(0)

using the Laplace transform and Adomian Decomposition
Method.

∞∑
𝑛=0

𝑃𝑛 (𝑡) = 𝑃 (0) + 𝐾𝐿−1 [1𝑠 𝐿(
∞∑
𝑛=0

𝑃𝑛 (𝑡) cos 𝜆𝑡)] . (24)

Now, we have the following recursive algorithm by applying
LADM,

𝑃0 = 𝑃 (0) ,
𝑃𝑛+1 (𝑡) = 𝐾𝐿−1 [1𝑠 𝐿 (𝑃𝑛 (𝑡) cos 𝜆𝑡)] , 𝑛 ≥ 0 (25)

We now solve (23) by Runge-Kutta-Fehlberg (RKF) method.
Consider the initial value problem 𝑃󸀠(𝑡) = 𝑓(𝑡, 𝑃(𝑡)) =𝐾𝑃 cos 𝜆𝑡, 𝑃(𝑡0) = 𝑃0.
First we define

𝑘1 = ℎ𝐾𝑃0 cos 𝜆𝑡0,
𝑘2 = ℎ𝐾(𝑃0 + 14𝑘1) cos 𝜆(𝑡0 + ℎ4) ,
𝑘3 = ℎ𝐾(𝑃0 + 332𝑘1 + 932𝑘2) cos 𝜆 (𝑡0 + 38ℎ) ,
𝑘4 = ℎ𝐾(𝑃0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3) cos 𝜆

⋅ (𝑡0 + 1213ℎ) ,
𝑘5 = ℎ𝐾(𝑃0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4)

⋅ cos 𝜆 (𝑡0 + ℎ) ,
𝑘6 = ℎ𝐾(𝑃0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4

− 1140𝑘5) cos 𝜆 (𝑡0 + ℎ) .

(26)

Then an approximation to the solution of initial value
problem is made by using Runge-Kutta method of order 4:

𝑃𝑛+1 = 𝑃𝑛 + 25216𝑘1 + 14082565𝑘3 + 21974101𝑘4 − 15𝑘5. (27)

A better value for the solution is determined by using a
Runge-Kutta method of order 5:

𝑍𝑛+1 = 𝑃𝑛 + 16135𝑘1 + 665612,825𝑘3 + 28,56156,430𝑘4 − 950𝑘5
+ 255𝑘6.

(28)

3.2. Modified Insect Population Model (Model II). Now we
modify the above model by introducing Holling type III
functional response which is defined in the following:

𝑑𝑃𝑑𝑡 = 𝐾𝑃 cos 𝜆𝑡 − 𝛼𝑃2𝛽 + 𝑃2 . (29)

The term 𝛼𝑃2/(𝛽 + 𝑃2) is a Holling type III functional
response, where 𝛼 and 𝛽 are positive constants and 𝛼
denotes the maximum capture rate of insects by a predator
species.

The feeding rate saturates at the maximal feeding rate𝛼. This is intended to model that, for small densities,
preys are able to evade predators by taking refuge. Such
a functional response is known as sigmoidal. Biologically,
a sigmoid functional response explains the fact that, at
low densities of prey population, the effect of predation is
low, but if the population size increases, predation is then
more intensive. This phenomenon appears in a number of
interactions in the real world and in this case it is said
that the predator is generalist, because if the prey popula-
tion size is low, it would then seek other food alternatives
[22].

We now solve (29) by LADM with initial condition𝑁(0)
using the Laplace transform and Adomian Decomposition
Method.

Now applying LADM, we have the following recursive
algorithm:

𝑃0 = 𝑃 (0) − 𝛼𝑡,
𝑃𝑛+1 (𝑡) = 𝐾𝐿−1 [1𝑠 𝐿 (𝑃𝑛 cos 𝜆𝑡)]

+ 𝛼𝛽𝐿−1 [1𝑠 𝐿 (𝐴𝑛)] , 𝑛 ≥ 0.
(30)

Therefore𝑃 can be represented as a series𝑃 = ∑∞𝑛=0 𝑃𝑛 and the
Adomian Polynomial is calculating by formula given below:

𝐴𝑛 = 1𝑛! [ 𝑑𝑛𝑑𝜆𝑛𝑁( 𝑛∑
𝑘=0

𝜆𝑘𝑃𝑘)]
𝜆=0

. (31)

We now solve (29) by Runge-Kutta-Fehlberg (RKF) method.
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Consider the initial value problem 𝑃󸀠(𝑡) = 𝑓(𝑡, 𝑃(𝑡)) =𝐾𝑃 cos 𝜆𝑡 − 𝛼𝑃2/(𝛽 + 𝑃2), 𝑃(𝑡0) = 𝑃0. First we define

𝑘1 = ℎ𝐾𝑃0 cos 𝜆𝑡0 − 𝛼𝑃02𝛽 + 𝑃02 ,
𝑘2 = ℎ𝐾(𝑃0 + 14𝑘1) cos 𝜆(𝑡0 + ℎ4) − 𝛼 (𝑃0 + (1/4) 𝑘1)2𝛽 + (𝑃0 + (1/4) 𝑘1)2 ,
𝑘3 = ℎ𝐾(𝑃0 + 332𝑘1 + 932𝑘2) cos 𝜆 (𝑡0 + 38ℎ) − 𝛼 (𝑃0 + (3/32) 𝑘1 + (9/32) 𝑘2)2𝛽 + (𝑃0 + (3/32) 𝑘1 + (9/32) 𝑘2)2 ,
𝑘4 = ℎ𝐾(𝑃0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3) cos 𝜆 (𝑡0 + 1213ℎ)

− 𝛼 (𝑃0 + (1932/2197) 𝑘1 − (7200/2197) 𝑘2 + (7296/2197) 𝑘3)2𝛽 + (𝑃0 + (1932/2197) 𝑘1 − (7200/2197) 𝑘2 + (7296/2197) 𝑘3)2 ,
𝑘5 = ℎ𝐾(𝑃0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4) cos 𝜆 (𝑡0 + ℎ)

− 𝛼 (𝑃0 + (439/216) 𝑘1 − 8𝑘2 + (3680/513) 𝑘3 − (845/4104) 𝑘4)2𝛽 + (𝑃0 + (439/216) 𝑘1 − 8𝑘2 + (3680/513) 𝑘3 − (845/4104) 𝑘4)2 ,
𝑘6 = ℎ𝐾(𝑃0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4 − 1140𝑘5) cos 𝜆 (𝑡0 + ℎ)

− 𝛼 (𝑃0 − (8/27) 𝑘1 + 2𝑘2 − (3544/2565) 𝑘3 + (1859/4104) 𝑘4 − (11/40) 𝑘5)2𝛽 + (𝑃0 − (8/27) 𝑘1 + 2𝑘2 − (3544/2565) 𝑘3 + (1859/4104) 𝑘4 − (11/40) 𝑘5)2 .

(32)

Then an approximation to the solution of initial value
problem is made by using Runge-Kutta method of order 4:

𝑃𝑛+1 = 𝑃𝑛 + 25216𝑘1 + 14082565𝑘3 + 21974101𝑘4 − 15𝑘5. (33)

A better value for the solution is determined by using a
Runge-Kutta method of order 5:

𝑍𝑛+1 = 𝑃𝑛 + 16135𝑘1 + 665612,825𝑘3 + 28,56156,430𝑘4 − 950𝑘5
+ 255𝑘6.

(34)

3.3. Introducing Interspecific Competition Term in Modified
Insect Population Model (Model III). Here we consider inter-
specific competition term in the insect population model.
Interspecific competition is the most important aspect in the
population growth dynamics model [23, 24]. It is assumed to
be additional instantaneous deaths to the insect population
and the increased death rate is proportional to the square
of the predator density. This competition ennoble the death
rate of the species; it is expected that the growth rate will
considerably differ from the growth rate in a simple insect
population model. Hence, we study the insect population

model having interspecific competition in the population
growth dynamics when either prey or predator or both the
prey and predator populations are subject to harvest.

𝑑𝑃𝑑𝑡 = 𝐾𝑃 cos 𝜆𝑡 − 𝛼𝑃2𝛽 + 𝑃2 − 𝜇𝑃2, (35)

where 𝜇 is the coefficient of interspecific competition term.
Solving (35) by LADM yields the following recursive

algorithm:

𝑃0 = 𝑃 (0) − 𝛼𝑡,
𝑃𝑛+1 (𝑡) = 𝐾𝐿−1 [1𝑠 𝐿 (𝑃𝑛 cos 𝜆𝑡)] − 𝜇𝐿−1 [1𝑠 𝐿 (𝑃2𝑛 )]

+ 𝛼𝛽𝐿−1 [1𝑠 𝐿( 1𝛽 + 𝑃𝑛2)] , 𝑛 ≥ 0.
(36)

Therefore𝑃 can be represented as a series𝑃 = ∑∞𝑛=0 𝑃𝑛 and the
Adomian Polynomial is calculating by formula given below:

𝐴𝑛 = 1𝑛! [ 𝑑𝑛𝑑𝜆𝑛𝑁( 𝑛∑
𝑘=0

𝜆𝑘𝑃𝑘)]
𝜆=0

. (37)

We now solve (35) by Runge-Kutta-Fehlberg (RKF) method.
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Consider the initial value problem 𝑃󸀠(𝑡) = 𝑓(𝑡, 𝑃(𝑡)) =𝐾𝑃 cos 𝜆𝑡 − 𝛼𝑃2/(𝛽 + 𝑃2) − 𝜇𝑃2, 𝑃(𝑡0) = 𝑃0. First we define

𝑘1 = ℎ𝐾𝑃0 cos 𝜆𝑡0 − 𝛼𝑃02𝛽 + 𝑃02 − 𝜇𝑃02,
𝑘2 = ℎ𝐾(𝑃0 + 14𝑘1) cos 𝜆(𝑡0 + ℎ4) − 𝛼 (𝑃0 + (1/4) 𝑘1)2𝛽 + (𝑃0 + (1/4) 𝑘1)2 − 𝜇(𝑃0 + 14𝑘1)

2 ,
𝑘3 = ℎ𝐾(𝑃0 + 332𝑘1 + 932𝑘2) cos 𝜆 (𝑡0 + 38ℎ) − 𝛼 (𝑃0 + (3/32) 𝑘1 + (9/32) 𝑘2)2𝛽 + (𝑃0 + (3/32) 𝑘1 + (9/32) 𝑘2)2 − 𝜇(𝑃0 + 332𝑘1 + 932𝑘2)

2 ,
𝑘4 = ℎ𝐾(𝑃0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3) cos 𝜆 (𝑡0 + 1213ℎ)

− 𝛼 (𝑃0 + (1932/2197) 𝑘1 − (7200/2197) 𝑘2 + (7296/2197) 𝑘3)2𝛽 + (𝑃0 + (1932/2197) 𝑘1 − (7200/2197) 𝑘2 + (7296/2197) 𝑘3)2 − 𝜇(𝑃0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3)
2 ,

𝑘5 = ℎ𝐾(𝑃0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4) cos 𝜆 (𝑡0 + ℎ)
− 𝛼 (𝑃0 + (439/216) 𝑘1 − 8𝑘2 + (3680/513) 𝑘3 − (845/4104) 𝑘4)2𝛽 + (𝑃0 + (439/216) 𝑘1 − 8𝑘2 + (3680/513) 𝑘3 − (845/4104) 𝑘4)2
− 𝜇(𝑃0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4)

2 ,
𝑘6 = ℎ𝐾(𝑃0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4 − 1140𝑘5) cos 𝜆 (𝑡0 + ℎ)

− 𝛼 (𝑃0 − (8/27) 𝑘1 + 2𝑘2 − (3544/2565) 𝑘3 + (1859/4104) 𝑘4 − (11/40) 𝑘5)2𝛽 + (𝑃0 − (8/27) 𝑘1 + 2𝑘2 − (3544/2565) 𝑘3 + (1859/4104) 𝑘4 − (11/40) 𝑘5)2
− 𝜇(𝑃0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4 − 1140𝑘5)

2 .

(38)

Then an approximation to the solution of initial value
problem is made by using Runge-Kutta method of order 4:

𝑃𝑛+1 = 𝑃𝑛 + 25216𝑘1 + 14082565𝑘3 + 21974101𝑘4 − 15𝑘5. (39)

A better value for the solution is determined by using a
Runge-Kutta method of order 5:

𝑍𝑛+1 = 𝑃𝑛 + 16135𝑘1 + 665612,825𝑘3 + 28,56156,430𝑘4 − 950𝑘5
+ 255𝑘6.

(40)

3.4. Lotka-Volterra Model. We define the Lotka-Volterra
model into different ways as follows.

3.4.1. Multispecies Lotka-Volterra Model. Mathematical mod-
els of population growth have been formed to provide an
inconceivable significant angle of true ecological situation.

The meaning of each parameter in the models has been
defined biologically. For n species, we consider the following
[25, 26] general Lotka-Volterra model:

𝑑𝑁𝑖𝑑𝑡 = 𝑁𝑖(𝑏𝑖 − 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑁𝑗) , 𝑖 = 1, 2, . . . , 𝑛. (41)

These equations may represent either predator-prey or com-
petition cases.

3.4.2. Single Species Lotka-Volterra Model (Model IV). In case
of one species, (41) is written for a given limited source of
food:

𝑑𝑁𝑑𝑡 = 𝑁 (𝑏 − 𝑎𝑁) , 𝑏 > 0, 𝑎 > 0, 𝑁 (0) > 0, (42)
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where 𝑎 and 𝑏 are positive constants. This equation has an
exact solution

𝑁(𝑡) = 𝑏𝑒𝑏𝑡((𝑏 − 𝑎𝑁 (0)) /𝑁 (0)) + 𝑎𝑒𝑏𝑡 for 𝑏 ̸= 0,
= 𝑁0 (𝑡)1 + 𝑎𝑡𝑁0 (𝑡) for 𝑏 = 0,

(43)

where𝑁(0) is the initial condition.
Solving (42) by LADM yields the following recursive

algorithm:

𝑁0 = 𝑁 (0) ,
𝑁𝑛+1 (𝑡) = 𝑏𝐿−1 {1𝑠 𝐿 (𝑁𝑛 (𝑡))} − 𝑎𝐿−1 {1𝑠 𝐿 (𝐴1,𝑛)} ,

𝑛 ≥ 0,
(44)

where the Adomian Polynomials 𝐴1,𝑛 are given by

𝐴1,𝑛 = 𝑛∑
𝑖=0

𝑁𝑖𝑁𝑛−𝑖. (45)

We now solve (42) by Runge-Kutta-Fehlberg (RKF) method.
Consider the initial value problem 𝑁󸀠(𝑡) = 𝑓(𝑡,𝑁(𝑡)) =𝑁(𝑏 − 𝑎𝑁),𝑁(𝑡0) = 𝑁0 = 0.1.
First we define

𝑘1 = ℎ𝑁0 (𝑏 − 𝑎𝑁0) ,
𝑘2 = ℎ (𝑁0 + 14𝑘1) {𝑏 − 𝑎 (𝑁0 + 14𝑘1)} ,
𝑘3 = ℎ (𝑁0 + 332𝑘1 + 932𝑘2) {𝑏

− 𝑎 (𝑁0 + 332𝑘1 + 932𝑘2)} ,
𝑘4 = ℎ (𝑁0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3) {𝑏

− 𝑎 (𝑁0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3)} ,
𝑘5 = ℎ (𝑁0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4) {𝑏

− 𝑎 (𝑁0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4)} ,
𝑘6 = ℎ (𝑁0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4

− 1140𝑘5){𝑏
− 𝑎 (𝑁0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4)} .

(46)

Then an approximation to the solution of initial value
problem is made by using Runge-Kutta method of order 4:

𝑁𝑛+1 = 𝑁𝑛 + 25216𝑘1 + 14082565𝑘3 + 21974101𝑘4 − 15𝑘5. (47)

A better value for the solution is determined by using a
Runge-Kutta method of order 5:

𝑍𝑛+1 = 𝑁𝑛 + 16135𝑘1 + 665612,825𝑘3 + 28,56156,430𝑘4 − 950𝑘5
+ 255𝑘6.

(48)

3.5. Lotka-Volterra Equation with Holling Type III Functional
Response (Model V). Now we modify the Lotka-Volterra
model by introducing Holling type III functional response
which is defined as

𝑑𝑁𝑑𝑡 = 𝑁 (𝑏 − 𝑎𝑁) − 𝛼𝑁2𝛽 + 𝑁2 . (49)

The term 𝛼𝑁2/(𝛽+𝑁2) is a Holling type III functional, where𝛼 and 𝛽 are positive constants and 𝛼 denotes the predation
rate and 𝛽 denotes half-saturation constant.

Solving (49) by LADM yields the following recursive
algorithm:

𝑁0 = 𝑁 (0) ,
𝑁𝑛+1 (𝑡) = 𝑏𝐿−1 {1𝑠 𝐿 (𝑁𝑛 (𝑡))} − 𝑎𝐿−1 {1𝑠 𝐿 (𝐴2,1,𝑛)}

− 𝛼𝐿−1 {1𝑠 𝐿 (𝐴2,2,𝑛)} , 𝑛 ≥ 0,
(50)

where the Adomian polynomials 𝐴2,𝑘,𝑛 are given by

𝐴2,𝑘,𝑛 = [ 𝑑𝑛𝑑𝜆𝑛𝑁( 𝑛∑
𝑖=0

𝜆𝑖𝑁𝑖)]
𝜆=0

, 𝑘 = 0, 1. (51)

We now solve (49) by Runge-Kutta-Fehlberg (RKF) method:
Consider the initial value problem

𝑁󸀠 (𝑡) = 𝑓 (𝑡,𝑁 (𝑡)) = 𝑁 (𝑏 − 𝑎𝑁) − 𝛼𝑁2𝛽 + 𝑁2 ,
𝑁 (𝑡0) = 𝑁0 = 0.1,

(52)

where we know that
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𝑘1 = ℎ[𝑁0 (𝑏 − 𝑎𝑁0) − 𝛼𝑁02𝛽 + 𝑁02] ,
𝑘2 = ℎ[(𝑁0 + 14𝑘1) {𝑏 − 𝑎 (𝑁0 + 14𝑘1)} − 𝛼 (𝑁0 + (1/4) 𝑘1)2𝛽 + (𝑁0 + (1/4) 𝑘1)2] ,
𝑘3 = ℎ[(𝑁0 + 332𝑘1 + 932𝑘2) {𝑏 − 𝑎 (𝑁0 + 332𝑘1 + 932𝑘2)} − 𝛼 (𝑁0 + (3/32) 𝑘1 + (9/32) 𝑘2)2𝛽 + (𝑁0 + (3/32) 𝑘1 + (9/32) 𝑘2)2] ,
𝑘4 = ℎ[(𝑁0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3)(𝑏 − 𝑎 (𝑁0 + 19322197𝑘1 − 72002197𝑘2 + 72962197𝑘3))

− 𝛼 (𝑁0 + (1932/2197) 𝑘1 − (7200/2197) 𝑘2 + (7296/2197) 𝑘3)2𝛽 + (𝑁0 + (1932/2197) 𝑘1 − (7200/2197) 𝑘2 + (7296/2197) 𝑘3)2] ,
𝑘5 = ℎ[(𝑁0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4)(𝑏 − 𝑎 (𝑁0 + 439216𝑘1 − 8𝑘2 + 3680513 𝑘3 − 8454104𝑘4))

− 𝛼 (𝑁0 + (439/216) 𝑘1 − 8𝑘2 + (3680/513) 𝑘3 − (845/4104) 𝑘4)2𝛽 + (𝑁0 + (439/216) 𝑘1 − 8𝑘2 + (3680/513) 𝑘3 − (845/4104) 𝑘4)2] ,
𝑘6 = ℎ[(𝑁0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4 − 1140𝑘5)(𝑏 − 𝑎 (𝑁0 − 827𝑘1 + 2𝑘2 − 35442565𝑘3 + 18594104𝑘4 − 1140𝑘5))

− 𝛼 (𝑁0 − (8/27) 𝑘1 + 2𝑘2 − (3544/2565) 𝑘3 + (1859/4104) 𝑘4 − (11/40) 𝑘5)2𝛽 + (𝑁0 − (8/27) 𝑘1 + 2𝑘2 − (3544/2565) 𝑘3 + (1859/4104) 𝑘4 − (11/40) 𝑘5)2] .

(53)

Then an approximation to the solution of initial value
problem is made by using Runge-Kutta method of order 4:

𝑁𝑛+1 = 𝑁𝑛 + 25216𝑘1 + 14082565𝑘3 + 21974101𝑘4 − 15𝑘5. (54)

A better value for the solution is determined using a Runge-
Kutta method of order 5:

𝑍𝑛+1 = 𝑁𝑛 + 16135𝑘1 + 665612,825𝑘3 + 28,56156,430𝑘4 − 950𝑘5
+ 255𝑘6.

(55)

4. Results and Discussion

The numerical solutions obtained by using the RKF, LADM
method and are compared with the exact solution for differ-
ent population models.

Remark 1. From Table 1 and Figure 1, we see the comparison
among the RKF method, three-iterate LADM, and exact
solutions for model I for particular numerical value of
parameters and initial condition.The numerical results show
that RKF method is of good accuracy.

Remark 2. In Table 2 and Figure 2, we show the comparison
among the RKF method, three-iterate LADM, and exact
solutions for model II in the case when 𝛼 = 0.5, 𝛽 = 0.03,𝐾 = 2, 𝜆 = 𝜋, ℎ = 0.05, and 𝑃(0) = 100. Again, the numerical
results show that RKF method is of good accuracy.

Remark 3. In Table 3 and Figure 3, we show the comparison
among the RKF method, three-iterate LADM, and exact
solutions for model III in the case when 𝛼 = 0.5, 𝛽 = 0.03,𝐾 = 2, 𝜆 = 𝜋, ℎ = 0.05, 𝜇 = 0.00001, and 𝑃(0) = 100. We
conclude that RKF method is of good accuracy.

Remark 4. From Table 4 and Figure 4, it shows comparison
among the RKF method, three-iterate LADM, and the exact
solution for the single species Lotka-Volterra model in the
case when 𝑏 = 1, 𝑎 = 3, and 𝑁(0) = 0.1, ℎ = 0.1. The
results show error-free calculation between exact solution
and RKF method whereas there are some amount of error in
the calculation between exact solution and LADM.

Remark 5. From Table 5 and Figure 5, we show the compari-
son between the RKF, two-iterate LADM, and exact solutions
for model V in the case when 𝑁(0) = 0.1, 𝑎 = 3, 𝑏 = 1,𝛼 = 0.5,𝛽 = 1, and ℎ = 0.1. Again, the numerical results show
that RKF is of high accuracy. The graphical representations
of the 5 models reveal that the exact solution and RKF are
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Figure 1: Comparison among the exact solution and the solutions obtained by using RKF method and LADM for model I.
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Figure 2: Evaluation among the exact solution and the solutions obtained by using LADM and RKF method for model II.
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Figure 3: Evaluation among the exact solution and the solutions obtained by using LADM and RKF method for model III.
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Figure 4: Evaluation between the exact solution and the solutions obtained by using LADM and RKF method for model IV.
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Figure 5: Evaluation between the exact solution and the solutions obtained by using LADM and RKF method for model V.

Table 1: Numerical comparison when initial condition is 𝑃(0) = 1000 and 𝐾 = 2, 𝜆 = 𝜋, ℎ = 0.1.
𝑡 Exact solution Solution by RKF method Solution by LADM (three iterates) ERKF ELADM
0 1000.0000000 1000.0000000 1000.00000000 0.00𝐸 + 00 0.00𝐸 + 00
0.1 1217.4076457 1217.4447223 1216.07381402 3.71𝐸 − 02 1.33𝐸 + 00
0.2 1453.7920776 1453.8275070 1444.17894316 3.54𝐸 − 02 9.61𝐸 + 00
0.3 1673.5897680 1673.6084290 1647.56834151 1.87𝐸 − 02 2.60𝐸 + 01
0.4 1831.8331881 1831.8125036 1788.52160650 2.07𝐸 − 02 4.33𝐸 + 01
0.5 1889.5969624 1889.5159617 1838.84276708 8.10𝐸 − 02 5.08𝐸 + 01
0.6 1831.3776006 1831.2908389 1788.12230677 8.68𝐸 − 02 4.33𝐸 + 01
0.7 1672.7981525 1672.7809816 1646.85165910 1.72𝐸 − 02 2.59𝐸 + 01
0.8 1452.8457426 1452.9182247 1443.28432644 7.25𝐸 − 02 9.56𝐸 + 00
0.9 1216.4762073 1216.5807034 1215.15811427 1.04𝐸 − 01 1.32𝐸 + 00
1 999.1956876 999.2604905 999.19564898 6.48𝐸 − 02 3.86𝐸 − 05
ELADM→ Error term compared to the exact solution on LADM.
ERKF→ Error term compared to the exact solution on RKF.
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Table 2: Numerical comparison of solutions when 𝑃(0) = 100, 𝛼 = 0.5, 𝛽 = 0.03, 𝐾 = 2, 𝜆 = 𝜋, ℎ = 0.05.
𝑡 Exact solution Solution by RKF method Solution by LADM (three iterates) ERKF ELADM
0 100.00000000 100.0000000 100.0000000 0.00𝐸 + 00 0.00𝐸 + 00
0.05 110.44538789 110.1789856 110.4297547 2.66𝐸 − 01 1.56𝐸 − 02
0.1 121.68557418 121.108106 121.5572303 5.77𝐸 − 01 1.28𝐸 − 01
0.15 133.42386083 132.497513 133.0020711 9.26𝐸 − 01 4.22𝐸 − 01
0.2 145.25872028 143.9584501 144.3172756 1.30𝐸 + 00 9.41𝐸 − 01
0.25 156.69395306 155.0138903 155.0163121 1.68𝐸 + 00 1.68𝐸 + 00
0.3 167.16677455 165.1252092 164.6053933 2.04𝐸 + 00 2.56𝐸 + 00
0.35 176.09213446 173.7346800 172.6181278 2.36𝐸 + 00 3.47𝐸 + 00
0.4 182.92083874 180.3198596 178.6494928 2.60𝐸 + 00 4.27𝐸 + 00
0.45 187.20173364 184.4522441 182.3860869 2.75𝐸 + 00 4.82𝐸 + 00
0.5 188.63838966 185.8501193 183.6299329 2.79𝐸 + 00 5.01𝐸 + 00
0.55 187.1284265 184.4153954 182.3136691 2.71𝐸 + 00 4.81𝐸 + 00
0.6 182.7773689 180.2468100 178.5057434 2.53𝐸 + 00 4.27𝐸 + 00
0.65 175.8845511 173.6266764 172.4051363 2.26𝐸 + 00 3.48𝐸 + 00
0.7 166.9030599 164.9840041 164.3260955 1.92𝐸 + 00 2.58𝐸 + 00
0.75 156.3834523 154.8416109 154.6742722 1.54𝐸 + 00 1.71𝐸 + 00
0.8 144.9109052 143.7574377 143.9164278 1.15𝐸 + 00 9.94𝐸 − 01
0.85 133.047794 132.2701488 132.5464437 7.78𝐸 − 01 5.01𝐸 − 01
0.9 121.2890397 120.8566363 121.0506779 4.32𝐸 − 01 2.38𝐸 − 01
0.95 110.0347113 109.90535847 109.8757207 1.29𝐸 − 01 1.59𝐸 − 01
1 99.57968623 99.70572240 99.4013312 1.26𝐸 − 01 1.78𝐸 − 01

Table 3: Numerical comparison when 𝑃(0) = 100, 𝛼 = 0.5, 𝛽 = 0.03, 𝐾 = 2, 𝜆 = 𝜋, ℎ = 0.05, 𝜇 = 0.00001.
𝑡 Exact solution Solution by RKF method Solution by LADM (three iterates) ERKF ELADM
0 100.00000 100.00000 100.0000000 0.00𝐸 + 00 0.00𝐸 + 00
0.05 110.43960 110.43957 110.4247550 3.00𝐸 − 05 1.48𝐸 − 02
0.1 121.67210 121.67914 121.5472313 7.04𝐸 − 03 1.25𝐸 − 01
0.15 133.40060 133.41682 132.9870734 1.62𝐸 − 02 4.14𝐸 − 01
0.2 145.22320 145.25102 144.2972796 2.77𝐸 − 02 9.26𝐸 − 01
0.25 156.64390 156.68567 154.9913184 4.18𝐸 − 02 1.65𝐸 + 00
0.3 167.09980 167.15791 164.5754023 5.81𝐸 − 02 2.52𝐸 + 00
0.35 176.00650 176.08282 172.5831401 7.63𝐸 − 02 3.42𝐸 + 00
0.4 182.81540 182.91116 178.6095088 9.58𝐸 − 02 4.21𝐸 + 00
0.45 187.07650 187.19184 182.3411071 1.15𝐸 − 01 4.74𝐸 + 00
0.5 188.49450 188.62843 183.5799579 1.34𝐸 − 01 4.91𝐸 + 00
0.55 186.96800 187.11853 182.2586994 1.50𝐸 − 01 4.71𝐸 + 00
0.6 182.60380 182.76773 178.4457794 1.64𝐸 − 01 4.16𝐸 + 00
0.65 175.70170 175.87525 172.3401786 1.73𝐸 − 01 3.36𝐸 + 00
0.7 166.71530 166.89424 164.2561445 1.79𝐸 − 01 2.46𝐸 + 00
0.75 156.19490 156.37518 154.5993285 1.80𝐸 − 01 1.60𝐸 + 00
0.8 144.72520 144.90324 143.8364918 1.78𝐸 − 01 8.89𝐸 − 01
0.85 132.86810 133.04075 132.4615159 1.73𝐸 − 01 4.07𝐸 − 01
0.9 121.11750 121.28263 120.9607589 1.65𝐸 − 01 1.57𝐸 − 01
0.95 109.87270 110.02889 109.7808110 1.56𝐸 − 01 9.19𝐸 − 02
1 99.42780 99.57443 99.3014312 1.47𝐸 − 01 1.26𝐸 − 01
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Table 4: Numerical comparison when𝑁(0) = 0.1, 𝑎 = 3, 𝑏 = 1, ℎ = 0.1.
𝑡 Exact solution Solution by RKF method Solution by LADMmethod (three iterates) ERKF ELADM
0 0.10000000 0.10000000 0.10000000 0.00𝐸 + 00 0.00𝐸 + 00
0.1 0.10713679 0.10713679 0.10714000 0.00𝐸 + 00 0.00𝐸 + 00
0.2 0.11453291 0.11453291 0.11456000 0.00𝐸 + 00 0.00𝐸 + 00
0.3 0.12216385 0.12216385 0.12226000 0.00𝐸 + 00 9.61𝐸 − 05
0.4 0.13000114 0.13000114 0.13024000 0.00𝐸 + 00 2.39𝐸 − 04
0.5 0.13801261 0.13801261 0.13850000 0.00𝐸 + 00 4.87𝐸 − 04
0.6 0.14616290 0.14616290 0.14704000 0.00𝐸 + 00 8.77𝐸 − 04
0.7 0.15441399 0.15441399 0.15586000 0.00𝐸 + 00 1.45𝐸 − 03
0.8 0.16272591 0.16272591 0.16496000 0.00𝐸 + 00 2.23𝐸 − 03
0.9 0.17105750 0.17105750 0.17434000 0.00𝐸 + 00 3.28𝐸 − 03
1 0.17936718 0.17936718 0.17936718 0.00𝐸 + 00 4.63𝐸 − 03
1.1 0.18761383 0.18761383 0.19394000 0.00𝐸 + 00 6.33𝐸 − 03
1.2 0.19575756 0.19575756 0.20416000 1.00𝐸 − 10 8.40𝐸 − 03
1.3 0.20376050 0.20376050 0.21466000 0.00𝐸 + 00 1.09𝐸 − 02
1.4 0.21158743 0.21158743 0.22544000 1.00𝐸 − 10 1.39𝐸 − 02
1.5 0.21920638 0.21920638 0.23650000 0.00𝐸 + 00 1.73𝐸 − 02
1.6 0.22658907 0.22658907 0.24784000 0.00𝐸 + 00 2.13𝐸 − 02
1.7 0.23371122 0.23371122 0.25946000 0.00𝐸 + 00 2.57𝐸 − 02
1.8 0.24055276 0.24055276 0.27136000 0.00𝐸 + 00 3.08𝐸 − 02
1.9 0.24709782 0.24709782 0.28354000 0.00𝐸 + 00 3.64𝐸 − 02
2 0.25333471 0.25333471 0.29600000 0.00𝐸 + 00 4.27𝐸 − 02

Table 5: Numerical comparison when𝑁(0) = 0.1, 𝑎 = 3, 𝑏 = 1, 𝛼 = 0.5, 𝛽 = 1, ℎ = 0.1.
𝑡 Exact solution Solution by RKF method Solution by LADM (two iterates) ERKF ELADM
0 0.1000000000 0.1000000000 0.1000000000 0.00𝐸 + 00 0.00𝐸 + 00
0.1 0.1065991220 0.1065991220 0.1065049505 0.00𝐸 + 00 9.42𝐸 − 05
0.2 0.1133693593 0.1133693590 0.1130099010 3.00𝐸 − 10 3.59𝐸 − 04
0.3 0.1202826611 0.1202826611 0.1195148515 0.00𝐸 + 00 7.68𝐸 − 04
0.4 0.1273083819 0.1273083815 0.1260198020 4.00𝐸 − 10 1.29𝐸 − 03
0.5 0.1344137893 0.1344137893 0.1325247525 0.00𝐸 + 00 1.89𝐸 − 03
0.6 0.1415646647 0.1415646643 0.1390297030 4.00𝐸 − 10 2.53𝐸 − 03
0.7 0.1487259514 0.1487259514 0.1455346535 0.00𝐸 + 00 3.19𝐸 − 03
0.8 0.1558624471 0.1558624468 0.1520396040 3.00𝐸 − 10 3.82𝐸 − 03
0.9 0.1629394898 0.1629394898 0.1585445545 0.00𝐸 + 00 4.39𝐸 − 03
1 0.1699236292 0.1699236290 0.1650495050 2.00𝐸 − 10 4.87𝐸 − 03
1.1 0.1767832382 0.1767832382 0.1715544554 0.00𝐸 + 00 5.23𝐸 − 03
1.2 0.1834890574 0.1834890572 0.1780594059 2.00𝐸 − 10 5.43𝐸 − 03
1.3 0.1900146405 0.1900146404 0.1845643564 1.00𝐸 − 10 5.45𝐸 − 03
1.4 0.1963367003 0.1963367001 0.1910693069 2.00𝐸 − 10 5.27𝐸 − 03
1.5 0.2024353397 0.2024353396 0.1975742574 1.00𝐸 − 10 4.86𝐸 − 03
1.6 0.2082941773 0.2082941768 0.2040792079 5.00𝐸 − 10 4.21𝐸 − 03
1.7 0.2139003623 0.2139003624 0.2105841584 1.00𝐸 − 10 3.32𝐸 − 03
1.8 0.2192445053 0.2192445047 0.2170891089 6.00𝐸 − 10 2.16𝐸 − 03
1.9 0.2243205144 0.2243205144 0.2235940594 0.00𝐸 + 00 7.26𝐸 − 04
2 0.2291253839 0.2291253840 0.2300990099 1.00𝐸 − 10 9.74𝐸 − 04
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overlapping each other whereas there is a little difference
between exact solution and that of LADM. So fromFigures 1–
5, we can also say that RKF is a reliable numerical technique.

5. Conclusion

In this paper, we describe the method for finding numerical
solution of insect population model and Lotka-Volterra
model.Herewe apply twonumericalmethods calledRKF and
LADM for solutions of the said models. Here the numerical
solutions obtained by using the RKF show high accuracy
and these are compared with the LADM solution. So we
can say that these numerical results show that the RKF
method is an acceptable and reliable numerical technique
for the solution of linear and nonlinear differential equation
models on population models. It can be seen clearly from the
graphical representations that RKF gives quite good results
after a certain considerable time intervals.This is a very useful
method,whichwill be undoubtedly found applicable in broad
applications. The advantage of the RKF over the LADM is
that there is no need for the evaluations of the Adomian
polynomials and the advantage of RKF over RK4 is that it has
a good accuracy using variable step size. Hence it provides an
efficient numerical solution.
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