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The behaviour of solutions to certain second order nonlinear delay differential equations with variable deviating arguments is
discussed. The main procedure lies in the properties of a complete Lyapunov functional which is used to obtain suitable criteria
to guarantee existence of unique solutions that are periodic, uniformly asymptotically stable, and uniformly ultimately bounded.
Obtained results are new and also complement related ones that have appeared in the literature. Moreover, examples are given to
illustrate the feasibility and correctness of the main results.

1. Introduction

It is well known that the existence of boundedness, stability,
and periodic solutions are among the most attractive topics
in the qualitative behaviour of solutions to ordinary and
functional differential equations. There are many articles
dedicated so far to the qualitative properties of solutions
of second order differential equations. Various authors have
discussed these properties of solutions under numerous
assumptions through different approaches. Some of these
contributions include but are not limited to the works of
Burton [1–3], Hale [4], and Yoshizawa [5–7] which contain
general results on the subject matter and the expository
papers of Ademola [8], Alaba and Ogundare [9], Cahlon
and Schmidt [10], Domoshnitsky [11], Grigoryan [12], Jin and
Zengrong [13], Kroopnick [14], Ogundare and Afuwape [15],
Ogundare andOkecha [16], Tunç [17–21],Wang andZhu [22],
Xianfeng andWei [23], and Yeniçerioğlu [24, 25] and the rich
references cited therein.

In an interesting article, Yeniçerioğlu [24] considered
the behavior of solutions of second order delay differential
equation

𝑦
󸀠󸀠

(𝑡) = 𝑝
1
𝑦
󸀠

(𝑡) + 𝑝
2
𝑦
󸀠

(𝑡 − 𝜏) + 𝑞
1
𝑦 (𝑡) + 𝑞

2
𝑦 (𝑡 − 𝜏) , (1)

where 𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
are real numbers and 𝜏 is positive real

number and obtained criterion for stability of the considered
equation. Furthermore, Yeniçerioğlu [25] discussed the sta-
bility properties of second order delay integrodifferential
equations

𝑥
󸀠󸀠

(𝑡) + 𝑎𝑥 (𝑡) = ∫

𝜏

0

𝑓 (𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠,

𝑥 (𝑡) = 𝜙 (𝑡) ,

− 𝜏 ≤ 𝑡 ≤ 0,

(2)

where 𝑎 is a real number, 𝜏 is positive real number, 𝑓 is a
continuous real-valued function on the interval [0,∞), and
𝜙(𝑡) is a given continuously differentiable initial function on
the interval [−𝜏, 0].

In their contribution, Xianfeng andWei [23] investigated
the stability and boundedness of a retarded Lienard-type
equation

𝑥
󸀠󸀠
+ 𝑓
1
(𝑥) 𝑥
󸀠
+ 𝑓
2
(𝑥) 𝑥
󸀠

(𝑡 − 𝜏) + 𝑓
3
(𝑥) 𝑥
󸀠2
+ 𝜑 (𝑥)

+ 𝑔 (𝑥 (𝑡 − 𝜏)) = 0,

(3)

where 𝜏 is a nonnegative constant, 𝑓
1
, 𝑓
2
, 𝑓
3
and 𝜑 are

continuous functions on R, and 𝑔 is differentiable on R.
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For the case where there are no delay terms, we can
mention some of the recent works of Alaba and Ogundare
[9] and Ademola [8]. Alaba and Ogundare [9] studied the
second order nonautonomous damped and forced nonlinear
ordinary differential equation of the form

[𝑎 (𝑡) 𝑥
󸀠
]
󸀠

+ 𝑏 (𝑡) 𝑓 (𝑥, 𝑥
󸀠
) 𝑥
󸀠
+ 𝑐 (𝑡) 𝑔 (𝑥)

= 𝑝 (𝑡, 𝑥, 𝑥
󸀠
) ,

(4)

where the functions 𝑎, 𝑏, 𝑐, 𝑓, 𝑔, and 𝑝 depend only on
the arguments displayed explicitly. Another work worthy
of mention in this regard is the article of Ademola [8]
where the problem of stability, boundedness, and existence of
periodic solutions of secondorder nonlinear nonautonomous
ordinary differential equation

[𝜙 (𝑥) 𝑥
󸀠
]
󸀠

+ 𝑔 (𝑡, 𝑥, 𝑥
󸀠
) 𝑥
󸀠
+ 𝜑 (𝑡) ℎ (𝑥) = 𝑝 (𝑡, 𝑥, 𝑥

󸀠
) , (5)

where 𝜑 : R+ → R, 𝜙, ℎ : R → R and 𝑔, 𝑝 : R+ × R2 → R,
was considered.

Motivated by the above discussions, in this paper, we
consider the problem of uniform asymptotic stability, uni-
form ultimate boundedness, and existence of unique periodic
solutions to a second order delay differential equation whose
nonlinear functions contain variable deviating arguments. In
effect, we consider

𝑥̈ (𝑡) + 𝜙 (𝑡) 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥̇ (𝑡) , 𝑥̇ (𝑡 − 𝜏 (𝑡)))

+ 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) = 𝑝 (𝑡, 𝑥 (𝑡) , 𝑥̇ (𝑡)) ,

(6)

where 𝑓, 𝑔, 𝑝, and 𝜙 are continuous functions in their respec-
tive arguments on R4, R, R+ × R2 and R+, respectively,
with R = (−∞,∞) and R+ = [0,∞). The continuity of
these functions is sufficient for the existence of the solutions
of (6). Furthermore, it is assumed that the functions 𝑓, 𝑔,
and 𝑝 in (6) satisfy a Lipschitz condition in their respective
arguments.The dots denote differentiationwith respect to the
independent variable 𝑡. If 𝑥̇(𝑡) = 𝑦(𝑡), then (6) is equivalent
to the system

𝑥̇ (𝑡) = 𝑦 (𝑡) ,

𝑦̇ (𝑡)

= 𝑝 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

− 𝜙 (𝑡) 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡)))

− 𝑔 (𝑥 (𝑡)) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑔
󸀠

(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠,

(7)

where 0 ≤ 𝜏(𝑡) ≤ 𝛼, 𝛼 > 0 is a constant to be determined
later, and the derivative of the function 𝑔 (i.e., 𝑔󸀠) exists and
is continuous for all 𝑥. To the best of our knowledge from
the relevant literature, we are yet to come across any work
with the above framework despite the practical importance
of (6). This may not be unconnected with the practical diffi-
culties associated with the construction of suitable complete

Lyapunov functional. Thus, the prime purpose of this paper
is to fill the vacuum. An equally interesting problem is the
situation where only the function 𝑔 in (6) is with a constant
deviating argument. This has already been considered by us
and the results arising in this direction will be advertized
through another outlet.

The obtained results in the present paper are completely
new and they extend previously known results in [8, 9] on
second order ordinary differential equations and the works in
[23–25] where the deviating arguments are constants. Some
mathematical tools that will be needed in the sequel are
discussed in Section 2. The main results of this paper are
presented in Section 3 while examples are given in the last
section to validate our results.

2. Preliminary Results

Consider the following general nonlinear nonautonomous
delay differential equation:

𝑋̇ =
𝑑𝑋

𝑑𝑡
= 𝐹 (𝑡, 𝑋

𝑡
) ,

𝑋
𝑡
= 𝑋 (𝑡 + 𝜃) ,

− 𝑟 ≤ 𝜃 < 0, 𝑡 ≥ 0,

(8)

where 𝐹 : R+ ×𝐶
𝐻
→ R𝑛 is a continuous mapping and 𝐹(𝑡 +

𝜔, 𝜙) = 𝐹(𝑡, 𝜙) for all 𝜙 ∈ 𝐶 and for some positive constant
𝜔.We assume that 𝐹 takes closed bounded sets into bounded
sets inR𝑛. (𝐶, ‖⋅‖) is the Banach space of continuous function
𝜑 : [−𝑟, 0] → R𝑛 with supremum norm, 𝑟 > 0; for𝐻 > 0, we
define 𝐶

𝐻
⊂ 𝐶 by 𝐶

𝐻
= {𝜑 ∈ 𝐶 : ‖𝜑‖ < 𝐻}; 𝐶

𝐻
is the open

𝐻-ball in 𝐶, 𝐶 = 𝐶([−𝑟, 0],R𝑛).

Definition 1 (see [3]). A continuous function𝑊 : R+ → R+

with𝑊(0) = 0,𝑊(𝑠) > 0 if 𝑠 ̸= 0, and𝑊 strictly increasing is
awedge. (Wedenotewedges by𝑊 or𝑊

𝑖
, where 𝑖 is an integer.)

Definition 2 (see [3]). The zero solution of (8) is asymptoti-
cally stable if it is stable and if for each 𝑡

0
≥ 0 there is an 𝜂 > 0

such that ‖𝜙‖ ≤ 𝜂 implies that

𝑋(𝑡, 𝑡
0
, 𝜙) 󳨀→ 0 as 𝑡 󳨀→ ∞. (9)

Definition 3 (see [2]). An element 𝜓 ∈ 𝐶
𝐻
is in the 𝜔-limit

set of 𝜙, say Ω(𝜙), if𝑋(𝑡, 0, 𝜙) is defined on R+ and there is a
sequence {𝑡

𝑛
}, 𝑡
𝑛
→ ∞ as 𝑛 → +∞, with ‖𝑋

𝑡
𝑛

(𝜙) − 𝜓‖ → 0

as 𝑛 → ∞, where𝑋
𝑡
𝑛

(𝜙) = 𝑋(𝑡
𝑛
+ 𝜃, 0, 𝜙) for −𝑟 ≤ 𝜃 < 0.

Definition 4 (see [26]). A set𝑄 ⊂ 𝐶
𝐻
is an invariant set if for

any 𝜙 ∈ 𝑄, the solution 𝑋(𝑡, 0, 𝜙) of the system (8) is defined
on R+, and𝑋

𝑡
(𝜙) ∈ 𝑄 for 𝑡 ∈ R+.

Lemma5 (see [7]). Suppose that𝐹(𝑡, 𝜙) ∈ 𝐶
0
(𝜙) and𝐹(𝑡, 𝜙) is

periodic in 𝑡 of period𝜔,𝜔 ≥ 𝑟, and consequently for any 𝛼 > 0
there exists an 𝐿(𝛼) > 0 such that 𝜙 ∈ 𝐶

𝛼
implies |𝐹(𝑡, 𝜙)| ≤

𝐿(𝛼). Suppose that a continuous Lyapunov functional 𝑉(𝑡, 𝜙)
exists, defined on 𝑡 ∈ R+,𝜙 ∈ 𝑆∗, 𝑆∗ is the set of𝜙 ∈ 𝐶 such that
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|𝜙(0)| ≥ 𝐻 (𝐻may be large), and𝑉(𝑡, 𝜙) satisfies the following
conditions:

(i) 𝑎(|𝜙(0)|) ≤ 𝑉(𝑡, 𝜙) ≤ 𝑏(‖𝜙‖), where 𝑎(𝑟) and 𝑏(𝑟)
are continuous, increasing, and positive for 𝑟 ≥ 𝐻 and
𝑎(𝑟) → ∞ as 𝑟 → ∞;

(ii) 𝑉̇
(8)
(𝑡, 𝜙) ≤ −𝑐(|𝜙(0)|), where 𝑐(𝑟) is continuous and

positive for 𝑟 ≥ 𝐻.

Suppose that there exists an𝐻
1
> 0,𝐻

1
> 𝐻, such that

ℎ𝐿 (𝛾
∗
) < 𝐻

1
− 𝐻, (10)

where 𝛾∗ > 0 is a constant which is determined in the following
way: By the condition on 𝑉(𝑡, 𝜙) there exist 𝛼 > 0, 𝛽 > 0,
and 𝛾 > 0 such that 𝑏(𝐻

1
) ≤ 𝑎(𝛼), 𝑏(𝛼) ≤ 𝑎(𝛽), and 𝑏(𝛽) ≤

𝑎(𝛾). 𝛾∗ is defined by 𝑏(𝛾) ≤ 𝑎(𝛾∗). Under the above conditions,
there exists a periodic solution of (8) of period 𝜔. In particular,
inequality (10) can always be satisfied if ℎ is sufficiently small.

Lemma 6 (see [7]). Suppose that 𝐹(𝑡, 𝜙) is defined and
continuous on 0 ≤ 𝑡 ≤ 𝑐, 𝜙 ∈ 𝐶

𝐻
and that there exists a

continuous Lyapunov functional 𝑉(𝑡, 𝜙, 𝜑) defined on 0 ≤ 𝑡 ≤

𝑐, 𝜙, 𝜑 ∈ 𝐶
𝐻
which satisfy the following conditions:

(i) 𝑉(𝑡, 𝜙, 𝜑) = 0 if 𝜙 = 𝜑;
(ii) 𝑉(𝑡, 𝜙, 𝜑) > 0 if 𝜙 ̸= 𝜑;
(iii) for the associated system

𝑥̇ (𝑡) = 𝐹 (𝑡, 𝑥
𝑡
) ,

𝑦̇ (𝑡) = 𝐹 (𝑡, 𝑦
𝑡
)

(11)

one has 𝑉󸀠
(11)

(𝑡, 𝜙, 𝜑) ≤ 0, where for ‖𝜙‖ = 𝐻 or ‖𝜑‖ =
𝐻, one understands that the condition𝑉󸀠

(11)
(𝑡, 𝜙, 𝜑) ≤ 0

is satisfied in the case 𝑉󸀠 can be defined.

Then, for given initial value 𝜙 ∈ 𝐶
𝐻
1

, 𝐻
1
< 𝐻, there exists a

unique solution of system (8).

Lemma 7 (see [7]). Suppose that a continuous Lyapunov
functional 𝑉(𝑡, 𝜙) exists, defined on 𝑡 ∈ R+, ‖𝜙‖ < 𝐻, 0 <

𝐻
1
< 𝐻 which satisfies the following conditions:

(i) 𝑎(‖𝜙‖) ≤ 𝑉(𝑡, 𝜙) ≤ 𝑏(‖𝜙‖), where 𝑎(𝑟) and 𝑏(𝑟) are
continuous, increasing, and positive;

(ii) 𝑉̇
(8)
(𝑡, 𝜙) ≤ −𝑐(‖𝜙‖), where 𝑐(𝑟) is continuous and

positive for 𝑟 ≥ 0.

Then the zero solution of the system (8) is uniformly asymptot-
ically stable.

Lemma 8 (see [2]). Let 𝑉 : R+ × 𝐶 → R be continuous and
locally Lipschitz in 𝜙. If

(i) 𝑊
0
(|𝑋
𝑡
|) ≤ 𝑉(𝑡, 𝑋

𝑡
) ≤ 𝑊

1
(|𝑋
𝑡
|) +

𝑊
2
(∫
𝑡

𝑡−𝑟(𝑡)
𝑊
3
(𝑋
𝑡
(𝑠))𝑑𝑠),

(ii) 𝑉̇
(8)
(𝑡, 𝑋
𝑡
) ≤ −𝑊

4
(|𝑋
𝑡
|) + 𝑁, for some 𝑁 > 0 where

𝑊
𝑖
(𝑖 = 0, 1, 2, 3, 4) are wedges,

then 𝑋
𝑡
of system (8) is uniformly bounded and uniformly

ultimately bounded for bound 𝐵.

3. Main Results

Wewill give the following notations before we state our main
results. Let 𝑥(𝑡) = 𝑥, 𝑦(𝑡) = 𝑦, and

𝑓 (𝑥, 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑦, 𝑦 (𝑡 − 𝜏 (𝑡))) = 𝑓 (⋅) . (12)

Let (𝑥
𝑡
, 𝑦
𝑡
) be any solution of system (7); the main tool

to proofs of our results is the continuously differentiable
functional 𝑉 = 𝑉(𝑥

𝑡
, 𝑦
𝑡
) defined as

2𝑉 = 𝑏 (𝑏𝑥
2
+ 𝑦
2
) + (𝑎𝑥 + 𝑦)

2

+ 2∫

𝑥

0

𝑔 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝑠

(𝜆
1
𝑥
2
+ 𝜆
2
𝑦
2
) 𝑑𝑠 𝑑𝜃,

(13)

where 𝜆
𝑗
, 𝑗 = 1, 2, are constants to be determined. Next, we

present the main results of this work.

Theorem 9. In addition to the assumptions on the functions
𝑓, 𝑔, 𝑝, and 𝜙, suppose that 𝑎, 𝑏, 𝜙

0
, 𝐵, 𝛼, 𝛽, 𝐿,𝑀 are positive

constants and that for all 𝑡 ≥ 0

(i) 𝑎 ≤ 𝑓(⋅)/𝑦 for all 𝑥 and 𝑦 ̸= 0;
(ii) 𝑏 ≤ 𝑔(𝑥)/𝑥 ≤ 𝐵 for all 𝑥 ̸= 0;
(iii) |𝑔󸀠(𝑥)| ≤ 𝐿 for all 𝑥;
(iv) 1 < 𝜙

0
≤ 𝜙(𝑡) for all 𝑡 ≥ 0;

(v) 0 ≤ 𝜏(𝑡) ≤ 𝛼, 𝜏󸀠(𝑡) ≤ 𝛽, 0 < 𝛽 < 1, where

𝛼 < min{
𝑎𝑏 (1 − 𝛽)

𝐿 [𝑎 (1 − 𝛽) + 𝑎 + 𝑏 + 1]
,

[𝑎𝜙
0
(𝑏 + 2) − 2𝑎] (1 − 𝛽)

𝐿 [(𝑏 + 1) (1 − 𝛽) + 𝑎 + 𝑏 + 1]
} ;

(14)

(vi) |𝑝(𝑡, 𝑥, 𝑦)| ≤ 𝑀, 0 < 𝑀 < ∞.

Then the solutions of the system (7) are uniformly bounded and
uniformly ultimately bounded.

Remark 10. Below are some observations from previous
results which the current results are addressing:

(i) When 𝜙(𝑡)𝑓(⋅) = 𝑎𝑥̇, 𝑔(𝑥(𝑡 − 𝜏(𝑡))) = 𝑏𝑥 and
𝑝(𝑡, 𝑥, 𝑦) = 0, then system (7) reduces to linear
constant coefficients differential equation 𝑥̈+𝑎𝑥̇+𝑏𝑥 =
0, and conditions (i) to (vi) ofTheorem 9 specialize to
the corresponding Routh Hurwitz criteria 𝑎 > 0 and
𝑏 > 0.

(ii) When 𝜙(𝑡)𝑓(⋅) = 𝑐𝑥
󸀠, 𝑔(𝑥(𝑡 − 𝜏(𝑡))) = 𝑔(𝑡, 𝑥), and

𝑝(𝑡, 𝑥, 𝑦) = ℎ(𝑡), system (7) specializes to ordinary
differential equation discussed in [22]. Our result
includes and extends the results in [22].

(iii) If 𝜏(𝑡) = 𝜏 (a constant),𝜙(𝑡)𝑓(⋅) = 𝑝
1
𝑦
󸀠
(𝑡)+𝑝
2
𝑦
󸀠
(𝑡−𝜏),

and 𝑔(𝑥(𝑡 − 𝜏(𝑡))) = 𝑞
1
𝑦(𝑡) + 𝑞

2
𝑦(𝑡 − 𝜏), system (7) is

trimmed down to that discussed in [10, 24]. Thus our
results improve the results in [10, 24].
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(iv) If 𝜏(𝑡) = 0, 𝜙(𝑡)𝑓(⋅) = 𝑐(𝑡, 𝑥, 𝑥
󸀠
), 𝑔(𝑥(𝑡 − 𝜏(𝑡))) =

𝑞(𝑡)𝑏(𝑥), and𝑝(𝑡, 𝑥, 𝑦) = 𝑓(𝑡) then system (7) reduces
to that considered in [17]. Thus the result in [17] is a
special case of Theorem 9.

(v) Whenever 𝜏(𝑡) = 0, (6) reduces to the cases discussed
in [8, 9].

In what follows, our purpose now is to state and prove the
following result thatwould be used in the proofs ofTheorem9
and the subsequent ones.

Lemma 11. Under the hypotheses of Theorem 9, there exist
positive constants 𝐷

0
= 𝐷
0
(𝑏, 1), 𝐷

1
= 𝐷
1
(𝑎, 𝑏, 𝐵), and

𝐷
2
= 𝐷
2
(𝜆
1
, 𝜆
2
) such that

𝐷
0
(𝑥
2

(𝑡) + 𝑦
2

(𝑡)) ≤ 𝑉 (𝑥
𝑡
, 𝑦
𝑡
)

≤ 𝐷
1
(𝑥
2

(𝑡) + 𝑦
2

(𝑡))

+ 𝐷
2
∫

𝑡

𝑡−𝜏(𝑡)

(𝑥
2

(𝑠) + 𝑦
2

(𝑠)) 𝑑𝑠,

(15)

for all 𝑡 ≥ 0, 𝑥 and 𝑦.
Furthermore, there exist positive constants 𝐷

3
=

𝐷
3
(𝑎, 𝑏, 𝜙

0
, 𝛼, 𝛽, 𝐿, 1) and 𝐷

4
= 𝐷
4
(𝑎, 𝑏, 1) such that

𝑉̇
(7)
=

𝑑

𝑑𝑡
𝑉 (𝑥
𝑡
, 𝑦
𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(7)

= −𝐷
3
(𝑥
2

(𝑡) + 𝑦
2

(𝑡))

+ 𝐷
4
(|𝑥 (𝑡)| +

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

󵄨󵄨󵄨󵄨 ,

(16)

for all 𝑡 ≥ 0, 𝑥 and 𝑦.

Proof. Let (𝑥
𝑡
, 𝑦
𝑡
) be any solution of system (7). It is clear from

(13) that 𝑉(0, 0) = 0. Since the double integrals terms are
nonnegative, 𝑔(𝑥) ≥ 𝑏𝑥 for all 𝑥 ̸= 0, and (𝑎𝑥 + 𝑦)2 ≥ 0

for all 𝑥 and 𝑦, then there exists a positive constant 𝛿
0
such

that

𝑉 ≥ 𝛿
0
(𝑥
2
+ 𝑦
2
) , (17)

𝑡 ≥ 0, 𝑥 and 𝑦, where

𝛿
0
fl
𝑏

2
. (18)

Thus the lower inequality in (15) holds with 𝛿
0
= 𝐷
0
. Also,

from inequality (17) we deduced that

𝑉 (𝑥
𝑡
, 𝑦
𝑡
) = 0 ⇐⇒ 𝑥

2
+ 𝑦
2
= 0; (19)

𝑉 (𝑥
𝑡
, 𝑦
𝑡
) > 0 ⇐⇒ 𝑥

2
+ 𝑦
2

̸= 0, (20)

𝑉 (𝑥
𝑡
, 𝑦
𝑡
) 󳨀→ +∞ as 𝑥2 + 𝑦2 󳨀→ ∞. (21)

Furthermore, since 𝑔(𝑥) ≤ 𝐵𝑥 for all 𝑥 ̸= 0, and the fact that
2𝑥
1
𝑥
2
≤ 𝑥
2

1
+ 𝑥
2

2
, then it follows from (13) that there exist

positive constants 𝛿
1
and 𝛿
2
such that

𝑉 ≤ 𝛿
1
(𝑥
2
+ 𝑦
2
) + 𝛿
2
∫

𝑡

𝑡−𝜏(𝑡)

(𝑥
2

(𝑠) + 𝑦
2

(𝑠)) 𝑑𝑠, (22)

for all 𝑡 ≥ 0, 𝑥 and 𝑦, where

𝛿
1
=
1

2
max {𝑎2 + 𝑏2 + 𝑎 + 𝐵, 𝑎 + 𝑏 + 1} ,

𝛿
2
fl
1

2
max {𝜆

1
, 𝜆
2
} .

(23)

Inequality (22) establishes the upper inequality in (15) where
𝛿
1
= 𝐷
1
and 𝛿
2
= 𝐷
2
. Hence from inequalities (17) and (22),

inequality (15) is established.
Next, let (𝑥

𝑡
, 𝑦
𝑡
) be any solution of the system (7). The

time derivative of the function 𝑉, defined in (13), along a
solution path of the system (7) is

𝑉̇
(8)

= −𝑎
𝑔 (𝑥)

𝑥
𝑥
2
− [(𝑏 + 1) 𝜙 (𝑡)

𝑓 (⋅)

𝑦
− 𝑎] 𝑦

2

− {𝑎 [𝜙 (𝑡)
𝑓 (⋅)

𝑦
− 𝑎] + 𝑏 [

𝑔 (𝑥)

𝑥
− 𝑏]}𝑥𝑦

+ [𝑎𝑥 + (𝑏 + 1) 𝑦] 𝑝 (𝑡, 𝑥, 𝑦)

+ [𝑎𝑥 + (𝑏 + 1) 𝑦] ∫

𝑡

𝑡−𝜏(𝑡)

𝑔
󸀠

(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

+
𝜏 (𝑡)

2
[𝜆
1
𝑥
2
+ 𝜆
2
𝑦
2
]

−
1

2
(1 − 𝜏

󸀠

(𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

[𝜆
1
𝑥
2

(𝜃) + 𝜆
2
𝑦
2

(𝜃)] 𝑑𝜃.

(24)

Now, from the hypotheses of Theorem 9, 𝑔(𝑥) ≥ 𝑏𝑥 for all
𝑥 ̸= 0, 𝑓(⋅) ≥ 𝑎𝑦 for all 𝑥 and 𝑦 ̸= 0, 𝜙(𝑡) ≥ 𝜙

0
> 1 for all

𝑡 ≥ 0, |𝑔󸀠(𝑥)| ≤ 𝐿 for all 𝑥, and the fact that 2𝑥
1
𝑥
2
≤ 𝑥
2

1
+ 𝑥
2

2
,

then from (24) it follows that

𝑉̇
(8)

≤ −𝑎𝑏𝑥
2
− [

1

2
𝑎𝑏𝜙
0
+ 𝑎 (𝜙

0
− 1)] 𝑦

2

+max {𝑎, 𝑏 + 1} (|𝑥| + 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨

+
𝐿

2
[𝑎𝑥
2
+ (𝑏 + 1) 𝑦

2
] 𝜏 (𝑡)

+
𝐿

2
(𝑎 + 𝑏 + 1) ∫

𝑡

𝑡−𝜏(𝑡)

[𝑥
2

(𝑠) + 𝑦
2

(𝑠)] 𝑑𝑠

−
1

2
(1 − 𝜏

󸀠

(𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

[𝜆
1
𝑥
2

(𝜃) + 𝜆
2
𝑦
2

(𝜃)] 𝑑𝜃

+
1

2
[𝜆
1
𝑥
2
+ 𝜆
2
𝑦
2
] 𝜏 (𝑡) −

2

∑

𝑗=1

𝑊
𝑗
,

(25)

where

𝑊
1
fl
1

4
𝑎𝑏𝑥
2
+ 𝑎 [𝜙 (𝑡)

𝑓 (⋅)

𝑦
− 𝑎] 𝑥𝑦 +

1

4
𝜙
0
𝑎𝑏𝑦
2
,

𝑊
2
fl
1

4
𝑎𝑏𝑥
2
+ 𝑏 [

𝑔 (𝑥)

𝑥
− 𝑏] 𝑥𝑦 +

1

4
𝜙
0
𝑎𝑏𝑦
2
.

(26)
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Employing the inequalities

16𝑎
−2
[
𝑔 (𝑥)

𝑥
− 𝑏]

2

< 𝜙
0
,

16𝑎
−2
[𝜙 (𝑡)

𝑓 (⋅)

𝑦
− 𝑎]

2

< 𝜙
0
,

(27)

for all 𝑥 ̸= 0 and 𝑦 ̸= 0, respectively, it follows that

𝑊
1
= 𝑊
2
≥
𝑎𝑏

4
[|𝑥| − √𝜙

0

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨]

2

> 0,

∀𝑡 ≥ 0, (𝑥, 𝑦) ∈ R
2
.

(28)

From inequality (28) and the fact that 0 ≤ 𝜏(𝑡) ≤ 𝛼 and 𝜏(𝑡)󸀠 ≤
𝛽 for all 𝑡 ≥ 0, the inequality in (25) yields

𝑉̇
(8)

≤ −
1

2
𝑎𝑏𝑥
2
− [

1

2
𝑎𝑏𝜙
0
+ 𝑎 (𝜙

0
− 1)] 𝑦

2

+max {𝑎, 𝑏 + 1} (|𝑥| + 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨

+
𝛼

2
[(𝑏 + 1) 𝐿 + 𝜆

2
] 𝑦
2

−
1

2
[𝜆
1
(1 − 𝛽) − (𝑎 + 𝑏 + 1) 𝐿] ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
2

(𝜁) 𝑑𝜁

+
𝛼

2
(𝑎𝐿 + 𝜆

1
) 𝑥
2

−
1

2
[𝜆
2
(1 − 𝛽) − (𝑎 + 𝑏 + 1) 𝐿] ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
2

(𝜁) 𝑑𝜁.

(29)

If we choose

𝜆
1
= 𝜆
2
= (1 − 𝛽)

−1

(𝑎 + 𝑏 + 1) 𝐿 > 0, (30)

and in view of inequality (14), there exist positive constants
𝛿
3
and 𝛿
4
such that inequality (29) becomes

𝑉̇
(8)
≤ −𝛿
3
(𝑥
2
+ 𝑦
2
) + 𝛿
4
(|𝑥| +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨 , (31)

for all 𝑡 ≥ 0, 𝑥 and 𝑦, where

𝛿
3
fl
1

2
min {𝑎𝑏

− [𝑎𝐿 + (1 − 𝛽)
−1

(𝑎 + 𝑏 + 1) 𝐿] 𝛼, 𝜙
0
𝑎 (𝑏 + 2)

− 2𝑎 − [(𝑏 + 1) 𝐿 + (1 − 𝛽)
−1

(𝑎 + 𝑏 + 1) 𝐿] 𝛼} ,

𝛿
4
fl max {𝑎, 𝑏 + 1} .

(32)

Estimate (31) establishes the inequality in (16) with 𝛿
3
and 𝛿
4

equal to𝐷
3
and𝐷

4
, respectively. This completes the proof of

Lemma 11.

Next, we will give the proof of Theorem 9.

Proof of Theorem 9. Let (𝑥
𝑡
, 𝑦
𝑡
) be any solution of system (7),

hypothesis (vi) of Theorem 9, and the fact that |𝑥| < 1 + 𝑥
2,

and then there exist positive constants 𝛿
5
and 𝛿

6
such that

inequality (31) yields

𝑉̇
(8)
≤ −𝛿
5
(𝑥
2
+ 𝑦
2
) + 𝛿
6
, (33)

for all 𝑡 ≥ 0, 𝑥 and 𝑦, where 𝛿
5

fl 𝛿
3
− 𝛿
4
𝑀 > 0 and

𝛿
6

fl 2𝛿
4
𝑀 > 0. From inequalities (17), (22), and (33)

the hypotheses of Lemma 8 hold. Thus by Lemma 8, the
solution (𝑥

𝑡
, 𝑦
𝑡
) of the system (7) is uniformly bounded and

uniformly ultimately bounded. This completes the proof of
Theorem 9.

Next, suppose that 𝑝(𝑡, 𝑥, 𝑥̇) = 0 and 𝑝(𝑡, 𝑥, 𝑦) = 0 in
(6) and system (7), respectively; we have the following delay
differential equation:

𝑥̈ + 𝜙 (𝑡) 𝑓 (⋅) + 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) = 0. (34)

If 𝑥̇ = 𝑦, (34) is equivalent to the system

𝑥̇ = 𝑦,

𝑦̇ = −𝜙 (𝑡) 𝑓 (⋅) − 𝑔 (𝑥) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑔
󸀠

(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠,

(35)

where the functions𝑓, 𝑔, and 𝜙 are as defined in Section 1.We
have the following result for system (35).

Theorem 12. Suppose that hypotheses (i) to (v) of Theorem 9
hold; then the zero solution of system (35) is uniformly
asymptotically stable.

Remark 13. (i) The stability results in [2, 8–10] are special
cases of Theorem 12.

(ii) When 𝜙(𝑡)𝑓(⋅) = 𝑝(𝑡)𝜙
󸀠
(𝑡) and 𝑔(𝑥(𝑡 − 𝜏(𝑡))) =

𝑞(𝑡)𝜙(𝑡) (34) reduces to the one discussed in [12].
(iii) Whenever 𝜙(𝑡)𝑓(⋅) = 𝑐𝑥󸀠 and 𝑔(𝑥(𝑡 − 𝜏(𝑡))) = 𝑔(𝑡, 𝑥)

then (34) is a case studied in [22].
(iv) If 𝜙(𝑡)𝑓(⋅) = 0 and 𝑔(𝑥(𝑡 − 𝜏(𝑡))) = 𝑎𝑥(𝑡) then (34)

reduces to the one discussed in [25].

Proof of Theorem 12. Let (𝑥
𝑡
, 𝑦
𝑡
) be any solution of system

(35), with hypotheses of Theorem 12; estimates (17), (21), and
(22) hold. Furthermore, the derivative of the functional 𝑉
defined in (13) with respect to the independent variable 𝑡
along the solution path of the system (35) is

𝑉̇
(35)

≤ −𝛿
3
(𝑥
2
+ 𝑦
2
) , (36)

for all 𝑡 ≥ 0,𝑥 and𝑦, where 𝛿
3
is defined after the inequality in

(31). From inequalities (17), (21), (22), and (36) all hypotheses
of Lemma 7 hold. Thus by Lemma 7 the zero solution of
system (35) is uniformly asymptotically stable.

Theorem 14. If hypotheses (i) to (vi) of Theorem 9 hold, then
there exists a unique periodic solution of period𝜔 for the system
(7).
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Proof. Let (𝑥
𝑡
, 𝑦
𝑡
) be any solution of system (7). In view of

the hypotheses of Theorem 14 (19) and inequality (20) hold.
Moreover, from hypothesis (vi) and the fact that

|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ 2
1/2
(𝑥
2
+ 𝑦
2
)
1/2

, (37)

for all 𝑥 and 𝑦, it follows from inequality (31) that

𝑉̇
(7)
≤ −𝛿
3
(𝑥
2
+ 𝑦
2
) + 2
1/2
𝛿
4
𝑀(𝑥
2
+ 𝑦
2
)
1/2

, (38)

𝑡 ≥ 0, 𝑥 and 𝑦. Choose

(𝑥
2
+ 𝑦
2
)
1/2

≥ 2
3/2
𝛿
−1

3
𝛿
4
, (39)

and then there exists a positive constant 𝛿
7
such that

𝑉̇
(7)
≤ −𝛿
7
(𝑥
2
+ 𝑦
2
) ≤ 0, (40)

for all 𝑡 ≥ 0, 𝑥 and 𝑦, where 𝛿
7
fl (1/2)𝛿

3
. Now from (19)

and inequalities (20) and (40), all hypotheses of Lemma 7
hold. By Lemma 7, the existence of a unique solution for the
system (7) is assured. Furthermore, from inequalities (17),

(21), (22), and (40) all hypotheses of Lemma 6 hold. Hence by
Lemma 6 the existing unique solution is periodic of period𝜔.
This completes the proof of Theorem 14.

4. Examples

In this section, we present examples to check the validity and
effectiveness of our results.

Example 1. Consider a second order delay differential equa-
tion

𝑥̈ + (1 +
1 + cos 3𝑡
1 + 𝑡2

)

⋅ [1 +
cos (𝑥 (𝑡 − 𝜏 (𝑡))) cos (𝑥̇ (𝑡 − 𝜏 (𝑡)))
1 + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑥̇

2
(𝑡 − 𝜏 (𝑡))

] 𝑥̇

+ [2 +
1/2 + sin (𝑥 (𝑡 − 𝜏 (𝑡)))

1 + 𝑥2 (𝑡 − 𝜏 (𝑡))
] 𝑥 (𝑡 − 𝜏 (𝑡))

= (
3 + 2𝑡 + 3𝑥

2
+ 𝑥̇
2

2 [1 + 2𝑡 + 3𝑥2 + 𝑥̇
2
]
) .

(41)

Equation (41) is equivalent to system of first order delay
differential equation

𝑥̇ = 𝑦,

𝑦̇ = (
1

2
+

1

1 + 2𝑡 + 3𝑥2 + 𝑦2
) − [2 +

1/2 + sin𝑥
1 + 𝑥2

] 𝑥 − (1 +
1 + cos 3𝑡
1 + 𝑡2

)[1 +
cos (𝑥 (𝑡 − 𝜏 (𝑡))) cos (𝑦 (𝑡 − 𝜏 (𝑡)))
1 + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑦2 (𝑡 − 𝜏 (𝑡))

] 𝑦

+ ∫

𝑡

𝑡−𝜏(𝑡)

[
2𝑥 (𝑠) [𝑥

2
(𝑠) + 1] cos𝑥 (𝑠) + 2 [1 − 𝑥2 (𝑠)] sin𝑥 (𝑠) + 4𝑥4 (𝑠) + 7𝑥2 (𝑠) + 5

2 [𝑥2 (𝑠) + 1]
2

]𝑑𝑠.

(42)

Comparing system (7) with (42), we obtain the following
relations.

(i) The function

𝜙 (𝑡) fl 1 +
1 + cos 3𝑡
1 + 𝑡2

. (43)

Since
1 + cos 3𝑡
1 + 𝑡2

≥ 2 (44)

for all 𝑡 ≥ 0, it follows that

𝜙 (𝑡) = 1 +
1 + cos 3𝑡
1 + 𝑡2

≥ 3 = 𝜙
0
> 1 (45)

for all 𝑡 ≥ 0.Thebehaviour of𝜙(𝑡) is shown in Figure 1.
(ii) The function

𝑓 (⋅) fl [1 +
cos (𝑥 (𝑡 − 𝜏 (𝑡))) cos (𝑦 (𝑡 − 𝜏 (𝑡)))
1 + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑦2 (𝑡 − 𝜏 (𝑡))

] 𝑦. (46)

It is not difficult to show that

𝑓 (⋅)

𝑦
= 1 +

cos (𝑥 (𝑡 − 𝜏 (𝑡))) cos (𝑦 (𝑡 − 𝜏 (𝑡)))
1 + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑦2 (𝑡 − 𝜏 (𝑡))

≥ 2

= 𝑎 > 0

(47)

for all 𝑡 ≥ 0, 𝑥 and 𝑦 ̸= 0. See the behaviour of 𝑓(⋅) in
Figure 2.
(iii) The function

𝑔 (𝑥) fl [2 +
1/2 + sin𝑥
1 + 𝑥2

] 𝑥. (48)

Since

−1 ≤
1/2 + sin𝑥
1 + 𝑥2

≤ 1 (49)

for all 𝑥, then we assert that

1 = 𝑏 ≤
𝑔 (𝑥)

𝑥
≤ 𝐵 = 3, ∀𝑥 ̸= 0. (50)
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Figure 1: Functions 𝜙(𝑡).
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Figure 2: Functions 𝑓(⋅).

(iv) The function

𝑔
󸀠

(𝑥)

fl
2𝑥 [𝑥
2
+ 1] cos𝑥 + 2 [1 − 𝑥2] sin𝑥 + 4𝑥4 + 7𝑥2 + 5

2 [𝑥2 + 1]
2

.

(51)

Clearly, 𝑔󸀠(𝑥) is a bounded function; thus it is not
difficult to show that

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 3 = 𝐿. (52)

The boundedness of 𝑔 and 𝑔󸀠 is shown in Figure 3.
(v) The function

𝑝 (𝑡, 𝑥, 𝑦) fl
1

2
+

1

1 + 2𝑡 + 3𝑥2 + 𝑦2
. (53)

Since

1

1 + 2𝑡 + 3𝑥2 + 𝑦2
≤ 1 (54)

for all 𝑡 ≥ 0, 𝑥 and 𝑦, it follows that

󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

3

2
= 𝑀 < ∞ (55)

for all 𝑡 ≥ 0, 𝑥 and 𝑦; and if

(vi) 𝛽 = 1/2, and with the values of 𝑎, 𝑏, 𝐵, 𝐿,𝑀 as
above, then inequality (14) becomes

0 < 𝛼 = min { 1
15
,
7

15
} =

1

15
. (56)

All hypotheses of Theorems 9, 12, and 14 are satisfied; hence
the conclusions of Theorems 9, 12, and 14 follow.

Example 2. Consider the second order delay differential
equation

...
𝑥 + (

5 + 2𝑡 + sin 6𝑡
2 + 𝑡2

) (3 + 𝑄 (𝑥, 𝑥̇)) 𝑥̇

+ [𝑃 (𝑥)] 𝑥 (𝑡 − 𝜏 (𝑡))

=
1 + 𝑥
2
+ 𝑥̇
2
+ 2 cos (𝑥 + 𝑥̇)

2 [1 + 𝑥2 + 𝑥̇
2
]

,

(57)

where

𝑄 (𝑥, 𝑥̇)

fl
cos𝑥 + cos (𝑥 (𝑡 − 𝜏 (𝑡))) + 1/2 cos 𝑥̇ + 1/2 cos (𝑥̇ (𝑡 − 𝜏 (𝑡)))

5 + cos2𝑥 + cos2𝑥̇ + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑥̇2 (𝑡 − 𝜏 (𝑡))
,

𝑃 (𝑥) fl
4 + 18𝑥 (𝑡 − 𝜏 (𝑡)) + cos (3𝑥 (𝑡 − 𝜏 (𝑡)))

2 + 9𝑥2 (𝑡 − 𝜏 (𝑡))
.

(58)

Equation (57) is equivalent to system of first order
differential equation

𝑥̇ = 𝑦,

𝑦̇ =
1 + 𝑥
2
+ 𝑦
2
+ 2 cos (𝑥 + 𝑦)

2 [1 + 𝑥2 + 𝑦2]

− (
5 + 2𝑡 + sin 6𝑡

2 + 𝑡2
) (3 + 𝑄 (𝑥, 𝑦)) 𝑦

− (
4𝑥 + 18𝑥

3
+ 𝑥 cos 3𝑥

2 + 9𝑥2
)

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑅 (𝑥 (𝑠)) 𝑑𝑠,

(59)
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where

𝑄 (𝑥, 𝑦) fl
cos𝑥 + cos (𝑥 (𝑡 − 𝜏 (𝑡))) + 1/2 cos𝑦 + 1/2 cos (𝑦 (𝑡 − 𝜏 (𝑡)))

5 + cos2𝑥 + cos2𝑦 + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑦2 (𝑡 − 𝜏 (𝑡))
,

𝑅 (𝑥 (𝑠)) fl
󵄨󵄨󵄨󵄨󵄨
(9𝑥
2
(𝑠) − 2) cos 3𝑥 (𝑠) + (9𝑥2 (𝑠) + 2) (3𝑥 (𝑠) sin 3𝑥 (𝑠) − 2 (9𝑥2 (𝑠) − 2))󵄨󵄨󵄨󵄨󵄨

(9𝑥2 (𝑠) + 2)
2

.

(60)

Comparing system (7) with system (59), we obtain the
following relations.

(i) The function

𝑓 (⋅) fl 3𝑦 +
cos𝑥 + cos (𝑥 (𝑡 − 𝜏 (𝑡))) + 1/2 cos𝑦 + 1/2 cos (𝑦 (𝑡 − 𝜏 (𝑡)))

5 + cos2𝑥 + cos2𝑦 + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑦2 (𝑡 − 𝜏 (𝑡))
. (61)

Noting that

cos𝑥 + cos (𝑥 (𝑡 − 𝜏 (𝑡))) + 1/2 cos𝑦 + 1/2 cos (𝑦 (𝑡 − 𝜏 (𝑡)))
5 + cos2𝑥 + cos2𝑦 + 𝑥2 (𝑡 − 𝜏 (𝑡)) + 𝑦2 (𝑡 − 𝜏 (𝑡))

> 0

(62)

for all 𝑡 ≥ 0, 𝑥 and 𝑦, we assert that

𝑓 (⋅)

𝑦
≥ 𝑎 = 3 (63)

for all 𝑡 ≥ 0, 𝑥 and 𝑦 ̸= 0. The function 𝑓(⋅) is shown
in Figure 4.

(ii) The function

𝑔 (𝑥) fl 2𝑥 +
𝑥 cos 3𝑥
2 + 9𝑥2

. (64)

Let

𝐺 (𝑥) fl
cos 3𝑥
2 + 9𝑥2

. (65)

Since

−1 ≤
cos 3𝑥
2 + 9𝑥2

≤ 1 (66)

for all 𝑥, it follows that

1 = 𝑏 ≤
𝑔 (𝑥)

𝑥
≤ 𝐵 = 3 (67)

for all 𝑥 ̸= 0.
(iii) Furthermore, from (ii) above we have
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨

fl
󵄨󵄨󵄨󵄨󵄨
(9𝑥
2
− 2) cos 3𝑥 + (9𝑥2 + 2) (3𝑥 sin 3𝑥 − 2 (9𝑥2 − 2))󵄨󵄨󵄨󵄨󵄨

(9𝑥2 + 2)
2

.

(68)

It is not difficult to show that
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐿 =

5

2
(69)

for all 𝑥. The functions 𝑔(𝑥)/𝑥, 𝐺(𝑥), and |𝑔󸀠(𝑥)| are
shown in Figure 5.

(iv) The function

𝜙 (𝑡) fl
5 + 2𝑡 + sin 6𝑡

2 + 𝑡2
= 2 +

1 + sin 6𝑡
2 + 𝑡2

. (70)

Since
1 + sin 6𝑡
2 + 𝑡2

> 0 (71)

for 𝑡 ∈ [0, 2𝜋], it follows that

𝜙 (𝑡) =
5 + 2𝑡 + sin 6𝑡

2 + 𝑡2
≥ 𝜙
0
= 2 > 1 (72)

for all 𝑡 ≥ 0. The graph of function 𝜙(𝑡) is shown in
Figure 6.

(v) Moreover, choose 𝛽
0
= 1/2 and from (i) to (iv) of

Example 2 we have

𝛼 = min { 6
65
,
1

5
} =

6

65
, (73)

so that

𝜏 (𝑡) ≤
6

65
. (74)

(vi) The function

𝑝 (𝑡, 𝑥, 𝑦) fl
1 + 𝑥
2
+ 𝑦
2
+ 2 cos (𝑥 + 𝑦)

2 [1 + 𝑥2 + 𝑦2]

=
1

2
+
cos (𝑥 + 𝑦)
1 + 𝑥2 + 𝑦2

.

(75)
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Figure 3: Functions 𝑔(𝑥) and 𝑔󸀠(𝑡).
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Figure 4: Function 𝑓(⋅).

Since
cos (𝑥 + 𝑦)
1 + 𝑥2 + 𝑦2

≤ 1 (76)

for all 𝑥 and 𝑦, it follows that

󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑀 =

3

2
(77)

for all 𝑡 ≥ 0, 𝑥 and 𝑦.

All hypotheses of Theorems 9 and 14 are satisfied; thus by
Theorems 9 and 14 we have that

(i) solutions of system (59) are uniformly bounded and
uniformly ultimately bounded;

(ii) there exists a unique periodic solution of period 𝜔,

respectively. If 𝑝(𝑡, 𝑥, 𝑥̇) = 0 and 𝑝(𝑡, 𝑥, 𝑦) = 0 in (57)
and system (59), respectively, and conditions (i) to (v) of
Example 2 hold, then hypotheses of Theorem 12 hold; hence
byTheorem 12

(iii) the trivial solution of the system (59) (when
𝑝(𝑡, 𝑥, 𝑦) = 0) is uniformly asymptotically stable.

−2𝜋 −𝜋 𝜋 2𝜋 3𝜋

x
G(x)

3

2

1

−1

|g󳰀(x)|

g(x)/x

g(x)/x, |g󳰀(x)| and G(x)

Figure 5: Functions 𝑔(𝑥)/𝑥, 𝐺(𝑥) and |𝑔󸀠(𝑥)|.

3

2

1

y

𝜋/2 𝜋 3𝜋/2 2𝜋

x

𝜙(t) = 2 + (1 + sin (6t))/(2 + t2)

𝜎(t) = (1 + sin (6t))/(2 + t2) ≥ 0, for t in [0, 2𝜋]

Figure 6: Function 𝜙(𝑡).
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