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Making use of the operator L
𝜐
for functions of the form 𝑓(𝑧) = 1/𝑧 + ∑

∞

𝑘=1
𝑎
𝑘
𝑧𝑘−1, which are analytic in the punctured unit disc

U∗ = {𝑧 : 𝑧 ∈ C and 0 < |𝑧| < 1} = U \ {0}, we introduce two subclasses of meromorphic functions and investigate convolution
properties, coefficient estimates, and containment properties for these subclasses.

1. Introduction

Let Σ denote the class of meromorphic functions of the form

𝑓 (𝑧) =
1
𝑧
+
∞

∑
𝑘=1
𝑎
𝑘
𝑧𝑘−1, (1)

which are analytic in the punctured unit discU∗ = {𝑧 : 𝑧 ∈ C

and 0 < |𝑧| < 1} = U \ {0}. Let 𝑔(𝑧) ∈ Σ be given by

𝑔 (𝑧) =
1
𝑧
+
∞

∑
𝑘=1
𝑏
𝑘
𝑧𝑘−1; (2)

then, the Hadamard product (or convolution) of 𝑓(𝑧) and
𝑔(𝑧) is given by

(𝑓 ∗ 𝑔) (𝑧) =
1
𝑧
+
∞

∑
𝑘=1
𝑎
𝑘
𝑏
𝑘
𝑧𝑘 = (𝑔 ∗ 𝑓) (𝑧) . (3)

We recall some definitions which will be used in our paper.

Definition 1. For two functions 𝑓(𝑧) and 𝑔(𝑧), analytic in U,
we say that the function 𝑓(𝑧) is subordinate to 𝑔(𝑧) in U

and written 𝑓(𝑧) ≺ 𝑔(𝑧), if there exists a Schwarz function
𝑤(𝑧), analytic in U with 𝑤(0) = 0 and |𝑤(𝑧)| < 1 such that
𝑓(𝑧) = 𝑔(𝑤(𝑧)) (𝑧 ∈ U). Furthermore, if the function 𝑔(𝑧) is

univalent in U, then we have the following equivalence (see
[1]):

𝑓 (𝑧) ≺ 𝑔 (𝑧)

⇐⇒ 𝑓 (0) = 𝑔 (0) ,

𝑓 (U) ⊂ 𝑔 (U) .

(4)

Now, consider Bessel’s function of the first kind of order 𝜐
where 𝜐 is an unrestricted (real or complex) number, defined
by (see Watson [2, page 40]) (see also Baricz [3, page 7])

𝐽
𝜐
(𝑧) =

∞

∑
𝑘=0

(−1)𝑘

Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
(
𝑧

2
)
2𝑘+]

, (5)

which is a particular solution of the second order linear
homogenous Bessel differential equation (see, e.g.,Watson [2,
page 38]) (see also Baricz [3, page 7])

𝑧2𝑤󸀠󸀠 (𝑧) + 𝑧𝑤
󸀠

(𝑧) + (𝑧
2 − 𝜐2)𝑤 (𝑧) = 0. (6)

Also, let us define

L
𝜐
(𝑧) =

2𝜐Γ (𝜐 + 1)
𝑧𝜐/2+1

𝐽
𝜐
(𝑧1/2)

=
1
𝑧
+
∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑧𝑘−1

(𝑧 ∈ U
∗) .

(7)
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The operatorL
𝜐
is a modification of the operator introduced

by Szász and Kupán [4] for analytic functions.
By using the Hadamard product (or convolution), we

define the operatorL
𝜐
as follows:

(L
𝜐
𝑓) (𝑧) = L

𝜐
(𝑧) ∗ 𝑓 (𝑧)

=
1
𝑧
+
∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑎
𝑘
𝑧𝑘−1.

(8)

It is easy to verify from (8) that

𝑧 ((L
𝜐+1𝑓) (𝑧))

󸀠

= (𝜐 + 1) (L
𝜐
𝑓) (𝑧)

− (𝜐 + 2) (L
𝜐+1𝑓) (𝑧) .

(9)

Definition 2. For 0 ≤ 𝜆 < 1, −1 ≤ 𝐵 < 𝐴 ≤ 1, and 𝑏 ∈
C∗ = C \ {0}, let ΣS∗

𝜆
[𝑏; 𝐴, 𝐵] be the subclass of Σ consisting

of function 𝑓(𝑧) of the form (1) and satisfying the analytic
criterion

1+ 1
𝑏
[

−𝑧𝑓󸀠 (𝑧)

(1 − 𝜆) 𝑓 (𝑧) − 𝜆𝑧𝑓󸀠 (𝑧)
− 1] ≺ 1 + 𝐴𝑧

1 + 𝐵𝑧
. (10)

Also, let ΣK
𝜆
[𝑏; 𝐴, 𝐵] be the subclass of Σ consisting of

function 𝑓(𝑧) of the form (1) and satisfying the analytic
criterion

1+ 1
𝑏
[

[

−𝑧 (𝑧𝑓󸀠 (𝑧))
󸀠

(1 − 𝜆) 𝑧𝑓󸀠 (𝑧) − 𝜆𝑧 (𝑧𝑓󸀠 (𝑧))󸀠
− 1]

]

≺
1 + 𝐴𝑧
1 + 𝐵𝑧

.

(11)

It is easy to verify from (10) and (11) that

𝑓 (𝑧) ∈ ΣK
𝜆
[𝑏; 𝐴, 𝐵]

⇐⇒ −𝑧𝑓󸀠 (𝑧) ∈ ΣS
∗

𝜆
[𝑏; 𝐴, 𝐵] .

(12)

We note that

(i) ΣS∗0 [𝑏; 𝐴, 𝐵] = ΣS∗[𝑏; 𝐴, 𝐵] and ΣK0[𝑏; 𝐴, 𝐵] =
ΣK[𝑏; 𝐴, 𝐵] (see Bulboacă et al. [5]);

(ii) ΣS∗0 [𝑏; 1, −1] = ΣS(𝑏) and ΣK0[𝑏; 1, −1] = ΣK(𝑏)
(see Aouf [6]);

(iii) ΣS∗0 [(1 − 𝛼)𝑒
−𝑖𝜇cos𝜇; 1, −1] = ΣS𝜇(𝛼) and ΣK0[(1 −

𝛼)𝑒−𝑖𝜇cos𝜇; 1, −1] = ΣK𝜇(𝛼) (𝜇 ∈ R, |𝜇| ≤ 𝜋/2, 0 ≤
𝛼 < 1) (see Ravichandran et al. [7, with 𝑝 = 1]).

Definition 3. For 0 ≤ 𝜆 < 1, −1 ≤ 𝐵 < 𝐴 ≤ 1, 𝑏 ∈ C∗ and 𝜐
is an unrestricted (real or complex) number, let

ΣS∗
𝜆,𝜐
[𝑏; 𝐴, 𝐵]

= {𝑓 (𝑧) ∈ Σ : (L
𝜐
𝑓) (𝑧) ∈ ΣS

∗

𝜆
[𝑏; 𝐴, 𝐵]} ,

ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵]

= {𝑓 (𝑧) ∈ Σ : (L
𝜐
𝑓) (𝑧) ∈ ΣK

𝜆
[𝑏; 𝐴, 𝐵]} .

(13)

It is easy to show that

𝑓 (𝑧) ∈ ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵]

⇐⇒ −𝑧𝑓󸀠 (𝑧) ∈ ΣS
∗

𝜆,𝜐
[𝑏; 𝐴, 𝐵] .

(14)

The object of the present paper is to investigate
some convolution properties, coefficient estimates, and con-
tainment properties for the subclasses ΣS∗

𝜆,𝜐
[𝑏; 𝐴, 𝐵] and

ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵].

2. Main Results

Unless otherwise mentioned, we assume throughout this
paper that 0 ≤ 𝜆 < 1, −1 ≤ 𝐵 < 𝐴 ≤ 1, 𝑏 ∈ C∗ and 𝜐 is
an unrestricted (real or complex) number.

Theorem 4. If 𝑓(𝑧) ∈ Σ, then 𝑓(𝑧) ∈ ΣS∗
𝜆
[𝑏; 𝐴, 𝐵] if and only

if

𝑧 [𝑓 (𝑧) ∗
1 − [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧

𝑧 (1 − 𝑧)2
] ̸= 0

𝑓𝑜𝑟 𝑧 ∈ U,

(15)

where𝑀 = 𝑀
𝜃
= (𝑒−𝑖𝜃 + 𝐵)/(𝐴 − 𝐵)𝑏, 𝜃 ∈ [0, 2𝜋), and also

𝑀 = 0.

Proof. It is easy to verify that

𝑓 (𝑧) ∗
1

𝑧 (1 − 𝑧)
= 𝑓 (𝑧) ,

𝑓 (𝑧) ∗ [
1

𝑧 (1 − 𝑧)2
−

2
(1 − 𝑧)2

] = − 𝑧𝑓󸀠 (𝑧)

∀𝑧 ∈ U
∗; 𝑓 ∈ Σ.

(16)

(i) In view of (10), 𝑓(𝑧) ∈ ΣS∗
𝜆
[𝑏; 𝐴, 𝐵] if and only if (10)

holds. Since the function (1 + [𝐵 + (𝐴 − 𝐵)𝑏]𝑧)/(1 + 𝐵𝑧) is
analytic in U, it follows that (1 − 𝜆)𝑓(𝑧) − 𝜆𝑧𝑓󸀠(𝑧) ̸= 0 for
𝑧 ∈ U∗ or 𝑧[(1 − 𝜆)𝑓(𝑧) − 𝜆𝑧𝑓󸀠(𝑧)] ̸= 0 for 𝑧 ∈ U; this is
equivalent to (15) holdding for 𝑀 = 0. To prove (15) for all
𝑀 ̸= 0, we write (10) by using the principle of subordination
as

−𝑧𝑓󸀠 (𝑧)

(1 − 𝜆) 𝑓 (𝑧) − 𝜆𝑧𝑓󸀠 (𝑧)
=
1 + [𝐵 + (𝐴 − 𝐵) 𝑏]𝑤 (𝑧)

1 + 𝐵𝑤 (𝑧)
, (17)

where 𝑤(𝑧) is Schwarz function, analytic in U with 𝑤(0) = 0
and |𝑤(𝑧)| < 1; hence,

𝑧 [−𝑧𝑓󸀠 (𝑧) (1+𝐵𝑒𝑖𝜃) − [(1−𝜆) 𝑓 (𝑧) − 𝜆𝑧𝑓󸀠 (𝑧)]

⋅ [1+ [𝐵+ (𝐴−𝐵) 𝑏] 𝑒
𝑖𝜃]] ̸= 0

for 𝑧 ∈ U, 𝜃 ∈ [0, 2𝜋) .

(18)
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Using (16), (18) may be written as

𝑧 [𝑓 (𝑧)

∗
1 − [(𝜆 − 1) ((𝑒−𝑖𝜃 + 𝐵) / (𝐴 − 𝐵) 𝑏) + (𝜆 + 1)] 𝑧

𝑧 (1 − 𝑧)2
]

̸= 0 for 𝑧 ∈ U.

(19)

Thus, the first part of Theorem 4 was proved.
(ii) Reversely, because assumption (15) holds for𝑀 = 0,

it follows that 𝑧[(1 − 𝜆)𝑓(𝑧) − 𝜆𝑧𝑓󸀠(𝑧)] ̸= 0 for 𝑧 ∈ U. This
implies that𝜑(𝑧) = −𝑧𝑓󸀠(𝑧)/((1−𝜆)𝑓(𝑧)−𝜆𝑧𝑓󸀠(𝑧)) is analytic
in U (i.e., it is regular in 𝑧 = 0, with 𝜑(0) = 1).

Since it was shown in the first part of the proof that
assumption (18) is equivalent to (15), we obtain that

−𝑧𝑓󸀠 (𝑧)

(1 − 𝜆) 𝑓 (𝑧) − 𝜆𝑧𝑓󸀠 (𝑧)
̸=
1 + [𝐵 + (𝐴 − 𝐵) 𝑏] 𝑒𝑖𝜃

1 + 𝐵𝑒𝑖𝜃

for 𝑧 ∈ U, 𝜃 ∈ [0, 2𝜋) .

(20)

Assume that

𝜓 (𝑧) =
1 + [𝐵 + (𝐴 − 𝐵) 𝑏] 𝑒𝑖𝜃

1 + 𝐵𝑒𝑖𝜃
. (21)

Relation (20) means that 𝜑(U) ∩ 𝜓(𝜕U) = 0. Thus, the simply
connected domain is included in a connected component of
C \ 𝜓(𝜕U). From this, using the fact that 𝜑(0) = 𝜓(0) and
the univalence of the function 𝜓, it follows that 𝜑(𝑧) ≺ 𝜓(𝑧);
this implies that 𝑓(𝑧) ∈ ΣS∗

𝜆,𝜐
[𝑏; 𝐴, 𝐵]. Thus, the proof of

Theorem 4 is completed.

Remark 5. (i) Putting 𝜆 = 0 in Theorem 4, we obtain the
result obtained by Bulboacă et al. [5, Theorem 1].

(ii) Putting 𝜆 = 0, 𝑏 = 1, and 𝑒𝑖𝜃 = 𝑥 in Theorem 4, we
obtain the result obtained by Ponnusamy [8, Theorem 2.1].

(iii) Putting 𝜆 = 0, 𝑏 = (1 − 𝛼)𝑒−𝑖𝜇cos𝜇 (𝜇 ∈ R, |𝜇| ≤

𝜋/2, 0 ≤ 𝛼 < 1),𝐴 = 1, 𝐵 = −1, and 𝑒𝑖𝜃 = 𝑥 inTheorem 4, we
obtain the result obtained by Ravichandran et al. [7,Theorem
1.2 with 𝑝 = 1].

Theorem 6. If 𝑓(𝑧) ∈ Σ, then 𝑓(𝑧) ∈ ΣK
𝜆
[𝑏; 𝐴, 𝐵] if and

only if

𝑧 [𝑓 (𝑧) ∗
1 − 3𝑧 + 2 [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧2

𝑧 (1 − 𝑧)3
] ̸= 0

𝑓𝑜𝑟 𝑧 ∈ U,

(22)

where𝑀 = 𝑀
𝜃
= (𝑒−𝑖𝜃 + 𝐵)/(𝐴 − 𝐵)𝑏, 𝜃 ∈ [0, 2𝜋), and also

𝑀 = 0.

Proof. Putting

𝑔 (𝑧) =
1 − [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧

𝑧 (1 − 𝑧)2
, (23)

then

− 𝑧𝑔󸀠 (𝑧) =
1 − 3𝑧 + 2 [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧2

𝑧 (1 − 𝑧)3
. (24)

From (12) and using the identity

[−𝑧𝑓󸀠 (𝑧)] ∗ 𝑔 (𝑧) = 𝑓 (𝑧) ∗ [−𝑧𝑔
󸀠

(𝑧)] , (25)

we obtain the required result fromTheorem 4.

Remark 7. (i) Putting𝜆 = 0 inTheorem6,we obtain the result
obtained by Bulboacă et al. [5, Theorem 2].

(ii) Putting 𝜆 = 0, 𝑏 = 1, and 𝑒𝑖𝜃 = 𝑥 in Theorem 4, we
obtain the result obtained by Ponnusamy [8, Theorem 2.2].

Theorem 8. If 𝑓(𝑧) ∈ Σ, then 𝑓(𝑧) ∈ ΣS∗
𝜆,𝜐
[𝑏; 𝐴, 𝐵] if and

only if

1+
∞

∑
𝑘=1

(−1)𝑘 (1 − 𝑘𝜆) Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑎
𝑘
𝑧𝑘 ̸= 0, (26)

1+
∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 1)

⋅ [
(1 − 𝑘𝜆) (𝐴 − 𝐵) 𝑏

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

−
−𝑘 (𝜆 − 1) (𝑒−𝑖𝜃 + 𝐵)

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
] 𝑎
𝑘
𝑧𝑘 ̸= 0,

(27)

for all 𝜃 ∈ [0, 2𝜋).

Proof. If 𝑓(𝑧) ∈ Σ, from Theorem 4, we have 𝑓(𝑧) ∈
ΣS∗
𝜆,𝜐
[𝑏; 𝐴, 𝐵] if and only if

𝑧 [(L
𝜐
𝑓) (𝑧) ∗

1 − [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧
𝑧 (1 − 𝑧)2

] ̸= 0

for 𝑧 ∈ U,

(28)

where𝑀 = 𝑀
𝜃
= (𝑒−𝑖𝜃 + 𝐵)/(𝐴 − 𝐵)𝑏, 𝜃 ∈ [0, 2𝜋), and also

𝑀 = 0. Since

1 − (𝜆 + 1) 𝑧
𝑧 (1 − 𝑧)2

=
1
𝑧
+
∞

∑
𝑘=1

(1− 𝑘𝜆) 𝑧𝑘−1, 𝑧 ∈ U
∗, (29)

it is easy to show that (28) holds for𝑀 = 0 if and only if (26)
holds. Also,

1 − [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧
𝑧 (1 − 𝑧)2

=
1
𝑧
+
∞

∑
𝑘=1

[(1− 𝑘𝜆) − 𝑘 (𝜆 − 1)𝑀] 𝑧
𝑘−1, 𝑧 ∈ U

∗;

(30)

we may easily check that (28) is equivalent to (27). This
completes the proof of Theorem 8.
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Theorem 9. If 𝑓(𝑧) ∈ Σ, then 𝑓(𝑧) ∈ ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵] if and

only if

1+
∞

∑
𝑘=1

(−1)𝑘 (𝑘𝜆 − 1) (𝑘 − 1) Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑎
𝑘
𝑧𝑘 ̸= 0, (31)

1+
∞

∑
𝑘=1

(−1)𝑘 (𝑘 − 1) Γ (𝜐 + 1)

⋅ [
(𝑘𝜆 − 1) (𝐴 − 𝐵) 𝑏

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

+
𝑘 (𝜆 − 1) (𝑒−𝑖𝜃 + 𝐵)

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
] 𝑎
𝑘
𝑧𝑘 ̸= 0,

(32)

for all 𝜃 ∈ [0, 2𝜋).

Proof. If 𝑓(𝑧) ∈ Σ, from Theorem 6, we have 𝑓(𝑧) ∈
ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵] if and only if

𝑧 [(L
𝜐
𝑓) (𝑧) ∗

1 − 3𝑧 + 2 [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧2

𝑧 (1 − 𝑧)3
]

̸= 0 for 𝑧 ∈ U,

(33)

where𝑀 = 𝑀
𝜃
= (𝑒−𝑖𝜃 + 𝐵)/(𝐴 − 𝐵)𝑏, 𝜃 ∈ [0, 2𝜋), and also

𝑀 = 0. Since

1 − 3𝑧 + 2 (𝜆 + 1) 𝑧2

𝑧 (1 − 𝑧)3
=
1
𝑧
+
∞

∑
𝑘=1

(𝑘𝜆 − 1) (𝑘 − 1) 𝑧𝑘−1,

𝑧 ∈ U
∗,

(34)

it is easy to show that (33) holds for𝑀 = 0 if and only if (31)
holds. Also,

1 − 3𝑧 + 2 [(𝜆 − 1)𝑀 + (𝜆 + 1)] 𝑧2

𝑧 (1 − 𝑧)3

=
1
𝑧
+
∞

∑
𝑘=1

(𝑘 − 1) [𝑘 (𝜆 − 1)𝑀+ (𝑘𝜆 − 1)] 𝑧𝑘−1;
(35)

for 𝑧 ∈ U∗, we may easily check that (33) is equivalent to (32).
This completes the proof of Theorem 9.

Unless otherwise mentioned, we assume throughout the
remainder of this section that 𝜐 is a real number (𝜐 > −1).

Theorem 10. If 𝑓(𝑧) ∈ Σ satisfies inequalities
∞

∑
𝑘=1

|𝑘𝜆 − 1| Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 < 1, (36)

∞

∑
𝑘=1

[(|1 − 𝑘𝜆|) (𝐴 − 𝐵) |𝑏| + 𝑘 (1 − 𝜆) (1 + |𝐵|)] Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

< (𝐴−𝐵) |𝑏| ,

(37)

then 𝑓(𝑧) ∈ ΣS∗
𝜆,𝜐
[𝑏; 𝐴, 𝐵].

Proof. We have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1−
∞

∑
𝑘=1

(−1)𝑘 (𝑘𝜆 − 1) Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑎
𝑘
𝑧𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 1−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
𝑘=1

(−1)𝑘 (𝑘𝜆 − 1) Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑎
𝑘
𝑧𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 1−
∞

∑
𝑘=1

|𝑘𝜆 − 1| Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑧
𝑘
󵄨󵄨󵄨󵄨󵄨

≥ 1−
∞

∑
𝑘=1

|𝑘𝜆 − 1| Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

> 0, for 𝑧 ∈ U,

(38)

which implies inequality (36). Also,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1+
∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 1)

⋅ [
(1 − 𝑘𝜆) (𝐴 − 𝐵) 𝑏

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

−
𝑘 (𝜆 − 1) (𝑒−𝑖𝜃 + 𝐵)

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
] 𝑎
𝑘
𝑧𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 1

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 1)

⋅ [
(1 − 𝑘𝜆) (𝐴 − 𝐵) 𝑏

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

−
𝑘 (𝜆 − 1) (𝑒−𝑖𝜃 + 𝐵)

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
] 𝑎
𝑘
𝑧𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 1

−
∞

∑
𝑘=1
Γ (𝜐 + 1)

⋅ [
|1 − 𝑘𝜆| (𝐴 − 𝐵) |𝑏|

4𝑘 (𝐴 − 𝐵) |𝑏| Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

+
𝑘 (1 − 𝜆) (1 + |𝐵|)

4𝑘 (𝐴 − 𝐵) |𝑏| Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
]
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑧
𝑘
󵄨󵄨󵄨󵄨󵄨

≥ 1−
∞

∑
𝑘=1
Γ (𝜐 + 1)

⋅ [
|1 − 𝑘𝜆| (𝐴 − 𝐵) |𝑏|

4𝑘 (𝐴 − 𝐵) |𝑏| Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

+
𝑘 (1 − 𝜆) (1 + |𝐵|)

4𝑘 (𝐴 − 𝐵) |𝑏| Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
]
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 > 0,

for 𝑧 ∈ U,

(39)
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which implies inequality (37). Thus, the proof of Theorem 10
is completed.

Using similar arguments to those in the proof of Theo-
rem 10, we obtain the following theorem.

Theorem 11. If 𝑓(𝑧) ∈ Σ satisfies inequalities
∞

∑
𝑘=1

|𝑘𝜆 − 1| (𝑘 − 1) Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 < 1,

∞

∑
𝑘=1

(𝑘 − 1) Γ (𝜐 + 1) [ (|𝑘𝜆 − 1|) (𝐴 − 𝐵) |𝑏|

4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

+
𝑘 (1 − 𝜆) (1 + |𝐵|)

4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
]
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 < (𝐴−𝐵) |𝑏| ,

(40)

then 𝑓(𝑧) ∈ ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵].

Now, using themethod due toAhuja [9], wewill prove the
containment relations for the subclasses ΣS∗

𝜆,𝜐
[𝑏; 𝐴, 𝐵] and

ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵].

Theorem 12. For 𝜐 > −1, we have ΣS∗
𝜆,𝜐+1[𝑏; 𝐴, 𝐵] ⊂

ΣS∗
𝜆,𝜐
[𝑏; 𝐴, 𝐵].

Proof. Since 𝑓(𝑧) ∈ ΣS∗
𝜆,𝜐+1[𝑏; 𝐴, 𝐵], we see fromTheorem 8

that

1+
∞

∑
𝑘=1

(−1)𝑘 (1 − 𝑘𝜆) Γ (𝜐 + 2)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 2)

𝑎
𝑘
𝑧𝑘 ̸= 0,

1+
∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 2)

⋅ [
(1 − 𝑘𝜆) (𝐴 − 𝐵) 𝑏

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 2)

−
𝑘 (𝜆 − 1) (𝑒−𝑖𝜃 + 𝐵)

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 2)
] 𝑎
𝑘
𝑧𝑘 ̸= 0.

(41)

We can write (41) as

[1+
∞

∑
𝑘=1

𝜐 + 1
𝑘 + 𝜐 + 1

𝑧𝑘] ∗ [1

+
∞

∑
𝑘=1

(−1)𝑘 (1 − 𝑘𝜆) Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑎
𝑘
𝑧𝑘] ̸= 0,

[1+
∞

∑
𝑘=1

𝜐 + 1
𝑘 + 𝜐 + 1

𝑧𝑘] ∗ [1+
∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 1)

⋅ [
(1 − 𝑘𝜆) (𝐴 − 𝐵) 𝑏

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

−
𝑘 (𝜆 − 1) (𝑒−𝑖𝜃 + 𝐵)

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
] 𝑎
𝑘
𝑧𝑘] ̸= 0,

(42)

since

[1+
∞

∑
𝑘=1

𝜐 + 1
𝑘 + 𝜐 + 1

𝑧𝑘] ∗ [1+
∞

∑
𝑘=1

𝑘 + 𝜐 + 1
𝜐 + 1

𝑧𝑘]

= 1+
∞

∑
𝑘=1
𝑧𝑘.

(43)

By using the property, if𝑓 ̸= 0 and𝑔∗ℎ ̸= 0, then𝑓∗(𝑔∗ℎ) ̸=
0; (42) can be written as

1+
∞

∑
𝑘=1

(−1)𝑘 (1 − 𝑘𝜆) Γ (𝜐 + 1)
4𝑘Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

𝑎
𝑘
𝑧𝑘 ̸= 0,

1+
∞

∑
𝑘=1

(−1)𝑘 Γ (𝜐 + 1)

⋅ [
(1 − 𝑘𝜆) (𝐴 − 𝐵) 𝑏

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)

−
𝑘 (𝜆 − 1) (𝑒−𝑖𝜃 + 𝐵)

4𝑘 (𝐴 − 𝐵) 𝑏Γ (𝑘 + 1) Γ (𝑘 + 𝜐 + 1)
] 𝑎
𝑘
𝑧𝑘 ̸= 0,

(44)

which means that 𝑓(𝑧) ∈ ΣS∗
𝜆,𝜐
[𝑏; 𝐴, 𝐵]. This completes the

proof of Theorem 12.

Using the same arguments as in the proof of Theorem 12,
we obtain the following theorem.

Theorem 13. For 𝜐 > −1, we have ΣK
𝜆,𝜐+1[𝑏; 𝐴, 𝐵] ⊂

ΣK
𝜆,𝜐
[𝑏; 𝐴, 𝐵].
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