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Skew circulant and circulant matrices have been an ideal research area and hot issue for solving various differential equations. In
this paper, the skew circulant type matrices with the sum of Fibonacci and Lucas numbers are discussed. The invertibility of the
skew circulant type matrices is considered. The determinant and the inverse matrices are presented. Furthermore, the maximum
column summatrix norm, the spectral norm, the Euclidean (or Frobenius) norm, themaximum row summatrix norm, and bounds
for the spread of these matrices are given, respectively.

1. Introduction

As is well-known, skew circulant and circulant matrices
play a crucial role for solving various differential equations.
Authors in [1] presented the skew circulant matrices as
preconditioners for linear multistep formulae (LMF-)based
ordinary differential equations (ODEs) codes. Claeyssen
et al. [2] discussed factor block circulant and periodic solu-
tions of undamped matrix differential equations. Using cir-
culant matrix, Karasözen and Şimşek [3] considered periodic
boundary conditions such that no additional boundary terms
will appear after semidiscretization. Meyer and Rjasanow [4]
have presented an effective direct solutionmethod for certain
boundary element equations in 3D. Guo et al. concerned on
generic Dn-Hopf bifurcation to a delayed Hopfield-Cohen-
Grossberg model of neural networks (5.17) in [5], where
𝑇 denoted an interconnection matrix. In particular, they
assumed that 𝑇 is a symmetric circulant matrix. In [6],
Jin et al. proposed the GMRES method with the Strang-type
block-circulant preconditioner for solving singular pertur-
bation delay differential equations. In [7], two new normal-
form realizations are presented which utilize circulant and
skew circulant matrices as their state transition matrices.The
well known second-order coupled form is a special case of
the skew circulant form. Compared with cyclic convolution
algorithm, the skew cyclic convolution algorithm [8] is able

to perform filtering procedure in approximately half of com-
putational cost for real signals. In [9], a new fast algorithm for
optimal design of block digital filters (BDFs) was proposed
based on skew circulant matrix. Spectral decompositions of
skew circulant and skew left circulantmatriceswere discussed
in [10]. Li et al. [11] gave the style spectral decomposition of
skew circulant matrix firstly and then dealt with the optimal
backward perturbation analysis for the linear system with
skew circulant coefficient matrix.

Some scholars have given various algorithms for the
determinants and inverses of nonsingular circulant matrices
[12, 13]. Unfortunately, the computational complexity of
these algorithms is very amazing with the order of matrix
increasing. However, some authors gave the explicit determi-
nants and inverse of circulant and skew circulant involving
some famous numbers. For example, Shen et al. considered
circulant matrices with Fibonacci and Lucas numbers and
presented their explicit determinants and inverses by con-
structing the transformation matrices in [14]. Gao et al. [15]
gave explicit determinants and inverses of skew circulant
and skew left circulant matrices with Fibonacci and Lucas
numbers. In [16], Jiang et al. discussed the nonsingularity
of the skew circulant type matrices and presented explicit
determinants and inverse matrices of these special matrices.
Furthermore, four kinds of norms and bounds for the spread
of these matrices are given separately. In [17], Jiang and
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Hong give exact determinants of some special circulant
matrices involving four kinds of famous numbers. Authors
[18] discussed the nonsingularity of the circulant type matrix
and presented the explicit determinant and inverse matrices.

There are several papers on the norms of some special
matrices. Solak [19] established the lower and upper bounds
for the spectral norms of circulant matrices with classical
Fibonacci and Lucas numbers entries. İpek [20] investigated
an improved estimation for spectral norms of these matrices.

Beginning with Mirsky [21] several authors [22–24] have
obtained bounds for the spread of a matrix.

Additionally, skew circulant type matrices include skew
circulant and skew left circulant matrices. The norm and
spread of skew circulant type matrices have not been studied.
It is hoped that this paper will help in changing this. More
work continuing the present paper is forthcoming.

The sum of Fibonacci and Lucas sequence is defined by
the following recurrence relations:

L
𝑛+2
= L
𝑛+1
+ L
𝑛

where L
0
= 2, L

1
= 2, (1)

for 𝑛 ≥ 0. The first few values of the sequence are given by the
following table:

𝑛 0 1 2 3 4 5 6 7 8

L
𝑛
2 2 4 6 10 16 26 42 68

. (2)

The {L
𝑛
} is given by the formula

L
𝑛
=
𝛼
𝑛−1

− 𝛽
𝑛−1

𝛼 − 𝛽
+
𝛼
𝑛

− 𝛽
𝑛

𝛼 − 𝛽
+
𝛼
𝑛+1

− 𝛽
𝑛+1

𝛼 − 𝛽
, (3)

where 𝛼 and 𝛽 are the roots of the characteristic equation 𝑥2−
𝑥 − 1 = 0.

In this paper, we consider skew circulant type matrices,
including the skew circulant and skew left circulant matrices.

We define a sum of Fibonacci and Lucas skew circulant
matrix which is an 𝑛×𝑛 complex matrix with following form:

SCirc (L
1
,L
2
, . . . ,L

𝑛
)

=(

L
1

L
2
⋅ ⋅ ⋅ L

𝑛−1
L
𝑛

−L
𝑛

L
1
⋅ ⋅ ⋅ L

𝑛−2
L
𝑛−1

.

.

.
.
.
. d

.

.

.
.
.
.

−L
3
−L
4
⋅ ⋅ ⋅ L

1
L
2

−L
2
−L
3
⋅ ⋅ ⋅ −L

𝑛
L
1

),

(4)

where each row is a cyclic shift of the row above the right.
Besides, a sum of Fibonacci and Lucas skew left circulant

matrix is given by

SLCirc (L
1
,L
2
, . . . ,L

𝑛
)

=(

L
1

L
2
⋅ ⋅ ⋅ L

𝑛−1
L
𝑛

L
2

L
3
⋅ ⋅ ⋅ L

𝑛
−L
1

.

.

.
.
.
. d

.

.

.
.
.
.

L
𝑛−1

L
𝑛
⋅ ⋅ ⋅ −L

𝑛−3
−L
𝑛−2

L
𝑛
−L
1
⋅ ⋅ ⋅ −L

𝑛−2
−L
𝑛−1

),

(5)

where each row is a cyclic shift of the row above the left.

Lemma 1. Let {L
𝑛
} be the sumof Fibonacci and lucas numbers;

then,

(i)
𝑛

∑

𝑖=1

L
𝑖
= L
𝑛+2
− 4, (6)

(ii)
𝑛

∑

𝑖=1

L
2

𝑖
= L
𝑛
L
𝑛+1
− 4, (7)

(iii)
𝑛

∑

𝑖=1

𝑖L
𝑖
= (𝑛 − 2)L

𝑛+2
+ L
𝑛
+ 6. (8)

Proof. According to

L
𝑛+1
= L
𝑛
+ L
𝑛−1

where L
0
= 2, L

1
= 2, (9)

we have
𝑛

∑

𝑖=1

L
𝑖
= L
1
+ L
2
+ ⋅ ⋅ ⋅ + L

𝑛

= (L
3
− L
2
) + (L

4
− L
3
)

+ ⋅ ⋅ ⋅ + (L
𝑛+2
− L
𝑛+1
)

= L
𝑛+2
− L
2
,

𝑛

∑

𝑖=1

L
2

𝑖
= L
2

1
+ L
2

2
+ ⋅ ⋅ ⋅ + L

2

𝑛

= L
1
(L
2
− L
0
) + L
2
(L
3
− L
1
)

+ ⋅ ⋅ ⋅ + L
𝑛
(L
𝑛+1
− L
𝑛−1
)

= L
𝑛
L
𝑛+1
− L
0
L
1
,

𝑛

∑

𝑖=1

𝑖L
𝑖
= L
1
+ 2L
2
+ ⋅ ⋅ ⋅ + 𝑛L

𝑛

= (L
2
− L
0
) + 2 (L

2
− L
0
)

+ ⋅ ⋅ ⋅ + 𝑛 (L
𝑛+1
− L
𝑛−1
)

= − 2

𝑛

∑

𝑖=1

L
𝑖
+ (𝑛 + 1)L

𝑛
+ 𝑛L
𝑛+1
− L
0

= (𝑛 − 2)L
𝑛+2
+ L
𝑛
+ 2L
2
− L
0
,

(10)

and hence
𝑛

∑

𝑖=1

L
𝑖
= L
𝑛+2
− 4,

𝑛

∑

𝑖=1

L
2

𝑖
= L
𝑛
L
𝑛+1
− 4,

𝑛

∑

𝑖=1

𝑖L
𝑖
= (𝑛 − 2)L

𝑛+2
+ L
𝑛
+ 6.

(11)

This completes the proof.
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Lemma 2 (see [10]). Let𝐴 = SLCirc(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) be a skew

left circulant matrix and let 𝑛 be odd; then,

𝜆
𝑗
= ±

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑘
𝜔
(𝑗−(1/2))(𝑘−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑗 = 1, 2, . . . ,
𝑛 − 1

2
) ,

𝜆
(𝑛+1)/2
=

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑘
(−1)
𝑘−1
󵄨󵄨󵄨󵄨󵄨
,

(12)

where 𝜆
𝑗
(𝑗 = 1, 2, . . . , (𝑛 − 1)/2, (𝑛 + 1)/2) are the eigenvalues

of 𝐴.

2. Determinant and Inverse of Skew
Circulant Matrix with the Sum of Fibonacci
and Lucas Numbers

In this section, let𝐴
𝑛
= SCirc (L

1
, . . . ,L

𝑛
) be a skew circulant

matrix. First of all, a determinant explicit formula for the
matrix𝐴

𝑛
is given.After that, we prove that𝐴

𝑛
is an invertible

matrix for any positive interger 𝑛, and thenwe find the inverse
of the matrix 𝐴

𝑛
. In the following, let

𝑥 = −
2 + L
𝑛

2 + L
𝑛+1

, 𝑡 = 2, 𝑐 = 2 + L
𝑛+1
,

𝑑 = 2 + L
𝑛
, 𝑙

󸀠

𝑛
=

𝑛−1

∑

𝑘=1

L
𝑘+1
⋅ 𝑥
𝑛−(𝑘+1)

(𝑛 ≥ 2) ,

𝑙
𝑛
= 2 + 𝑡L

𝑛
+

𝑛−2

∑

𝑘=1

(𝑡L
𝑘+1
− L
𝑘+2
) ⋅ 𝑥
𝑛−(𝑘+1)

(𝑛 ≥ 3) .

(13)

Theorem 3. Let 𝐴
𝑛
= SCirc (L

1
, . . . ,L

𝑛
) be a skew circulant

matrix; then

det𝐴
𝑛
= 2[2 + 𝑡L

𝑛
+

𝑛−2

∑

𝑖=1

(𝑡L
𝑖+1
− L
𝑖+2
) 𝑥
𝑛−(𝑖+1)

] ⋅ 𝑐
𝑛−2

(𝑛 ≥ 3) ,

(14)

where L
𝑛
is the 𝑛th sum of Fibonacci andLucas numbers.

Proof. Obviously, det𝐴
3
= 304 satisfies the equation. In the

case 𝑛 > 3, let

ℶ =

(
(
(
(
(
(

(

1

𝑡 1

1 1 −1

0 0 1 −1 −1

.

.

. c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −1

)
)
)
)
)
)

)

,

Ω
1
=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 𝑥
𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 𝑥
𝑛−3

0 ⋅ ⋅ ⋅ 1 0

.

.

.
.
.
.
.
.
. d
.
.
.
.
.
.

0 𝑥 1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)

)

(15)

be two 𝑛 × 𝑛matrices; then, we have

ℶ𝐴
𝑛
Ω
1
=
(
(

(

2 𝑙
󸀠

𝑛
𝑐
13
⋅ ⋅ ⋅ 𝑐
1,𝑛−1
𝑐
1𝑛

0 𝑙
𝑛
𝑐
23
⋅ ⋅ ⋅ 𝑐
2,𝑛−1
𝑐
2𝑛

0 0 𝑐

0 0 𝑑 d
.
.
.
.
.
. d 𝑐

0 0 𝑑 𝑐

)
)

)

, (16)

where

𝑐
1𝑗
= L
𝑛+2−𝑗

(𝑗 = 3, 4, . . . , 𝑛) ,

𝑐
2𝑗
= 𝑡L
𝑛+2−𝑗
− L
𝑛+3−𝑗

(𝑗 = 3, 4, . . . , 𝑛) .

(17)

So it holds that

detℶ det𝐴
𝑛
detΩ
1
= 2[2 + 𝑡L

𝑛
+

𝑛−2

∑

𝑘=1

(𝑡L
𝑘+1
− L
𝑘+2
)

× 𝑥
𝑛−(𝑘+1)

] ⋅ (2 + L
𝑛+1
)
𝑛−2

.

(18)

While taking detℶ = detΩ
1
= (−1)

(𝑛−1)(𝑛−2)/2, we have

det𝐴
𝑛
= 2[2 + 𝑡L

𝑛
+

𝑛−2

∑

𝑘=1

(𝑡L
𝑘+1
− L
𝑘+2
)

× 𝑥
𝑛−(𝑘+1)

] ⋅ (2 + L
𝑛+1
)
𝑛−2

.

(19)

This completes the proof.

Theorem 4. Let 𝐴
𝑛
= SCirc (L

1
, . . . ,L

𝑛
) be a skew circulant

matrix; then𝐴
𝑛
is an invertible matrix for any positive interger

𝑛.

Proof. Taking 𝑛 = 1 in Theorem 3, we have det𝐴
1
̸=

0. Hence 𝐴
1
is invertible. In the case 𝑛 > 1, since
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L
𝑛
= (𝛼
𝑛−1

− 𝛽
𝑛−1

)/(𝛼 − 𝛽) + (𝛼
𝑛

− 𝛽
𝑛

)/(𝛼 − 𝛽) + (𝛼
𝑛+1

−

𝛽
𝑛+1

)/(𝛼 − 𝛽), where 𝛼 + 𝛽 = 1, 𝛼𝛽 = −1, we have

𝑓 (𝜔
𝑘

𝜂) =

𝑛

∑

𝑗=1

L
𝑗
(𝜔
𝑘

𝜂)
𝑗−1

=

𝑛

∑

𝑗=1

(
𝛼
𝑗−1

− 𝛽
𝑗−1

𝛼 − 𝛽
+
𝛼
𝑗

− 𝛽
𝑗

𝛼 − 𝛽

+
𝛼
𝑗+1

− 𝛽
𝑗+1

𝛼 − 𝛽
) (𝜔
𝑘

𝜂)
𝑗−1

=

𝑛

∑

𝑗=1

(
𝛼
𝑗−1

+ 𝛼
𝑗

+ 𝛼
𝑗+1

𝛼 − 𝛽
) (𝜔
𝑘

𝜂)
𝑗−1

−

𝑛

∑

𝑗=1

(
𝛽
𝑗−1

+ 𝛽
𝑗

+ 𝛽
𝑗+1

𝛼 − 𝛽
) (𝜔
𝑘

𝜂)
𝑗−1

=
1 + 𝛼 + 𝛼

2

𝛼 − 𝛽
⋅
1 + 𝛼
𝑛

1 − 𝛼𝜔𝑘𝜂

−
1 + 𝛽 + 𝛽

2

𝛼 − 𝛽
⋅
1 + 𝛽
𝑛

1 − 𝛽𝜔𝑘𝜂

=
2 + L
𝑛+1
+ (2 + L

𝑛
) 𝜔
𝑘

𝜂

1 − 𝜔𝑘𝜂 − 𝜔2𝑘𝜂2

(𝑘 = 1, 2, . . . , 𝑛 − 1) ,

(20)

where 𝜔 = exp(2𝜋𝑖/𝑛), 𝜂 = exp(𝜋𝑖/𝑛). If there exists 𝜔𝑙𝜂 (𝑙 =
1, 2, . . . , 𝑛 − 1) such that 𝑓(𝜔𝑙𝜂) = 0, we have 2 + L

𝑛+1
+ (2 +

L
𝑛
)𝜔
𝑙

𝜂 = 0 for 1 − 𝜔𝑙𝜂 − 𝜔2𝑙𝜂2 ̸= 0, and hence it follows that
𝜔
𝑙

𝜂 = −(2 + L
𝑛+1
)/(2 + L

𝑛
) is a real number. Since

𝜔
𝑙

𝜂 = exp((2𝑙 + 1) 𝜋𝑖
𝑛
)

= cos (2𝑙 + 1) 𝜋
𝑛
+ 𝑖 sin (2𝑙 + 1) 𝜋

𝑛
,

(21)

it yields that sin((2𝑙+1)𝜋)/𝑛 = 0, so we have 𝜔𝑙𝜂 = −1 for 0 <
(2𝑙 + 1)𝜋/𝑛 < 2𝜋. Since 𝑥 = −1 is not the root of the equation
2 + L
𝑛+1
+ (2 + L

𝑛
)𝑥 = 0 (𝑛 ≥ 1). We obtain 𝑓(𝜔𝑘𝜂) ̸= 0 for

any 𝜔𝑘𝜂 (𝑘 = 1, 2, . . . , 𝑛 − 1), while

𝑓 (𝜂) =

𝑛

∑

𝑗=1

L
𝑗
𝜂
𝑗−1

=
2 + L
𝑛+1
+ (2 + L

𝑛
) 𝜂

1 − 𝜂 − 𝜂2
̸= 0.

(22)

It follows from Lemma 1 in [25] that the conclusion holds.

Lemma 5. Let the matrixH = [ℎ
𝑖𝑗
]
𝑛−2

𝑖,𝑗=1
be of the form

ℎ
𝑖𝑗
=

{{

{{

{

2 + L
𝑛+1
, 𝑖 = 𝑗,

2 + L
𝑛
, 𝑖 = 𝑗 + 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(23)

Then the inverseH−1 = [ℎ󸀠
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
of the matrixH is equal to

ℎ
󸀠

𝑖𝑗
=
{

{

{

(−𝑑)
𝑖−𝑗

𝑐𝑖−𝑗+1
, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(24)

Proof. Let 𝑒
𝑖𝑗
= ∑
𝑛−2

𝑘=1
ℎ
𝑖𝑘
ℎ
󸀠

𝑘𝑗
. Obviously, 𝑒

𝑖𝑗
= 0 for 𝑖 < 𝑗. In the

case 𝑖 = 𝑗, we obtain 𝑒
𝑖𝑖
= ℎ
𝑖𝑖
ℎ
󸀠

𝑖𝑖
= (2+L

𝑛+1
) ⋅1/(2+L

𝑛+1
) = 1.

For 𝑖 ≥ 𝑗 + 1, we obtain

𝑒
𝑖𝑗
=

𝑛−2

∑

𝑘=1

ℎ
𝑖𝑘
ℎ
󸀠

𝑘𝑗
= ℎ
𝑖,𝑖−1
ℎ
󸀠

𝑖−1,𝑗
+ ℎ
𝑖𝑖
ℎ
󸀠

𝑖𝑗

= 𝑑 ⋅
(−𝑑)
𝑖−𝑗−1

𝑐𝑖−𝑗
+ 𝑐 ⋅
(−𝑑)
𝑖−𝑗

𝑐𝑖−𝑗+1
= 0.

(25)

Hence, we get HH−1 = 𝐼
𝑛−2

; here 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛 − 2)
identity matrix. Similarly, we can verifyH−1H = 𝐼

𝑛−2
. Thus,

the proof is completed.

Theorem 6. Let 𝐴
𝑛
= SCirc(L

1
, . . . ,L

𝑛
) be a skew circulant

matrix; then

(𝐴
𝑛
)
−1

=
1

𝑙
𝑛

⋅ SCirc (𝑦󸀠
1
, 𝑦
󸀠

2
, . . . , 𝑦

󸀠

𝑛
) (𝑛 ≥ 4) , (26)

where

𝑦
󸀠

1
= 1 − [(6 − 4𝑡) ⋅

(−𝑑)
𝑛−3

𝑐𝑛−2

+

𝑛−3

∑

𝑖=1

(L
𝑛+2−𝑖
− 𝑡L
𝑛+1−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
]

(𝑛 ≥ 4) ,

𝑦
󸀠

2
= −𝑡 −

𝑛−2

∑

𝑖=1

(L
𝑛+1−𝑖
− 𝑡L
𝑛−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

𝑦
󸀠

3
= − (6 − 4𝑡) ⋅

1

𝑐
,

𝑦
󸀠

4
= −

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

𝑦
󸀠

𝑘
= −

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑟+𝑖
) ⋅
(−𝑑)
𝑘−5+𝑖

𝑐𝑘−4+𝑖

(𝑘 = 5, 6, . . . , 𝑛) .

(27)

Proof. Let

Ω
2
=

(
(
(
(

(

1 −
𝑙
󸀠

𝑛

2
𝜔
13
𝜔
14
⋅ ⋅ ⋅ 𝜔
1𝑛

0 1 𝜔
23
𝜔
24
⋅ ⋅ ⋅ 𝜔
2𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.
.
.
.
.
.
. d

.

.

.

0 0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)

)

, (28)
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where

𝜔
1𝑗
=
1

2
[
𝑙
󸀠

𝑛

𝑙
𝑛

(𝑡L
𝑛+2−𝑗
− L
𝑛+3−𝑗
) − L
𝑛+2−𝑗
]

(𝑗 = 3, 4, . . . , 𝑛) ,

𝜔
2𝑗
=
1

𝑙
𝑛

⋅ (L
𝑛+3−𝑗
− 𝑡L
𝑛+2−𝑗
) (𝑗 = 3, 4, . . . , 𝑛) .

(29)

Then we have

ℶ𝐴
𝑛
Ω
1
Ω
2
=
(
(

(

2 0 0 0 ⋅ ⋅ ⋅ 0

0 𝑙
𝑛
0 0 ⋅ ⋅ ⋅ 0

0 0 𝑐 0 ⋅ ⋅ ⋅ 0

0 0 𝑑 𝑐 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.
.
.
.
.
.
. d
.
.
.

0 0 0 0 ⋅ ⋅ ⋅ 𝑐

)
)

)

, (30)

so ℶ𝐴
𝑛
Ω
1
Ω
2
= D ⊕ H, and here 𝐷 = diag(2, 𝑙

𝑛
) is a

diagonal matrix, and D ⊕H is the direct sum of D and H.
If we denote Ω = Ω

1
Ω
2
, then we obtain 𝐴−1

𝑛
= Ω(D−1 ⊕

H−1)Σ. Since the last row elements of the matrix Ω are
(0, 1, 𝜔

23
, 𝜔
24
, . . . , 𝜔

2,𝑛−1
, 𝜔
2𝑛
), the last row elements of the

matrixΩ(D−1 ⊕H−1) are (0, 1/𝑙
𝑛
, 𝑇
23
, 𝑇
24
, . . . , 𝑇

2𝑛
), where

𝑇
23
=

𝑛−2

∑

𝑖=1

𝜔
2,2+𝑖
⋅
(−𝑑)
𝑖−1

𝑐𝑖
(𝑛 ≥ 3) ,

𝑇
2𝑘
=

𝑛+1−𝑘

∑

𝑖=1

𝜔
2,𝑘−1+𝑖
⋅
(−𝑑)
𝑖−1

𝑐𝑖
(𝑘 = 3, 4, . . . , 𝑛) .

(31)

Hence it follows from Lemma 5 that by letting 𝐴−1
𝑛
=

SCirc (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) then its last row elements are (−𝑦

2
,

−𝑦
3
, . . . , −𝑦

𝑛
, 𝑦
1
) which are given by the following equations:

− 𝑦
2
=
𝑡

𝑙
𝑛

+ 𝑇
23

=
𝑡

𝑙
𝑛

+
1

𝑙
𝑛

𝑛−2

∑

𝑖=1

(L
𝑛+1−𝑖
− 𝑡L
𝑛−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

− 𝑦
3
= 𝑇
2,𝑛
=
1

𝑙
𝑛

(6 − 4𝑡) ⋅
1

𝑐
,

− 𝑦
4
= 𝑇
2,𝑛−1
− 𝑇
2𝑛

=
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

− 𝑦
5
= 𝑇
2,𝑛−2
− 𝑇
2𝑛−1
− 𝑇
2𝑛

=
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑖

𝑐𝑖+1
,

− 𝑦
𝑘
= 𝑇
2,𝑛−𝑘+3
− 𝑇
2,𝑛−𝑘+4
− 𝑇
2,𝑛−𝑘+5

=
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑘−5+𝑖

𝑐𝑘−4+𝑖
,

.

.

.

− 𝑦
𝑛
= 𝑇
23
− 𝑇
24
− 𝑇
25

=

𝑛−2

∑

𝑖=1

𝜔
2,2+𝑖
⋅
(−𝑑)
𝑖−1

𝑐𝑖
−

𝑛−3

∑

𝑖=1

𝜔
2,3+𝑖
⋅
(−𝑑)
𝑖−1

𝑐𝑖

−

𝑛−4

∑

𝑖=1

𝜔
2,4+𝑖
⋅
(−𝑑)
𝑖−1

𝑐𝑖

=
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑛−5+𝑖

𝑐𝑛−4+𝑖
,

𝑦
1
=
1

𝑙
𝑛

− 𝑇
23
− 𝑇
24

=
1

𝑙
𝑛

−
1

𝑙
𝑛

[(6 − 4𝑡) ⋅
(−𝑑)
𝑛−3

𝑐𝑛−2

+

𝑛−3

∑

𝑖=1

(L
𝑛+2−𝑖
− 𝑡L
𝑛+1−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
]

(𝑛 ≥ 4) .

(32)

Hence, we obtain

𝑦
1
=
1

𝑙
𝑛

−
1

𝑙
𝑛

[(6 − 4𝑡) ⋅
(−𝑑)
𝑛−3

𝑐𝑛−2

+

𝑛−3

∑

𝑖=1

(L
𝑛+2−𝑖
− 𝑡L
𝑛+1−𝑖
)
(−𝑑)
𝑖−1

𝑐𝑖
] ,

𝑦
2
= −
𝑡

𝑙
𝑛

−
1

𝑙
𝑛

𝑛−2

∑

𝑖=1

(L
𝑛+1−𝑖
− 𝑡L
𝑛−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

𝑦
3
= −
1

𝑙
𝑛

(6 − 4𝑡) ⋅
1

𝑐
,

𝑦
4
= −
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

𝑦
5
= −
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑖

𝑐𝑖+1
,
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𝑦
𝑘
= −
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑘−5+𝑖

𝑐𝑘−4+𝑖
,

.

.

.

𝑦
𝑛
=
1

𝑙
𝑛

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑛−5+𝑖

𝑐𝑛−4+𝑖
,

𝐴
−1

𝑛
=
1

𝑙
𝑛

⋅ SCirc (𝑦󸀠
1
, 𝑦
󸀠

2
, . . . , 𝑦

󸀠

𝑛
) ,

(33)

where

𝑦
󸀠

1
= 1 − [(6 − 4𝑡) ⋅

(−𝑑)
𝑛−3

𝑐𝑛−2

+

𝑛−3

∑

𝑖=1

(L
𝑛+2−𝑖
− 𝑡L
𝑛+1−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
]

(𝑛 ≥ 4) ,

𝑦
󸀠

2
= −𝑡 −

𝑛−2

∑

𝑖=1

(L
𝑛+1−𝑖
− 𝑡L
𝑛−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

𝑦
󸀠

3
= − (6 − 4𝑡) ⋅

1

𝑐
,

𝑦
󸀠

4
= −

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
,

𝑦
󸀠

𝑘
= −

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑘−5+𝑖

𝑐𝑘−4+𝑖
, (𝑘 = 5, 6, . . . , 𝑛) .

(34)

This completes the proof.

3. Norm and Spread of Skew Circulant
Matrix with the Sum of Fibonacci and
Lucas Numbers

Theorem 7. Let 𝐴
𝑛
= SCirc(L

1
, . . . ,L

𝑛
) be a skew circulant

matrix. The three kinds norms of 𝐴
𝑛
are given by

󵄩󵄩󵄩󵄩𝐴𝑛
󵄩󵄩󵄩󵄩1 =
󵄩󵄩󵄩󵄩𝐴𝑛
󵄩󵄩󵄩󵄩∞ = L𝑛+2 − 4, (35)

󵄩󵄩󵄩󵄩𝐴𝑛
󵄩󵄩󵄩󵄩𝐹 =
√𝑛 (L

𝑛
L
𝑛+1
− 4). (36)

Proof. By Definition 4 in [26], (6), and (7), we have

󵄩󵄩󵄩󵄩𝐴𝑛
󵄩󵄩󵄩󵄩1 =
󵄩󵄩󵄩󵄩𝐴𝑛
󵄩󵄩󵄩󵄩∞

=

𝑛

∑

𝑖=1

L
𝑖
= L
𝑛+2
− 4,

(
󵄩󵄩󵄩󵄩𝐴𝑛
󵄩󵄩󵄩󵄩𝐹)
2

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

= 𝑛

𝑛

∑

𝑖=1

L
2

𝑖

= 𝑛 (L
𝑛
L
𝑛+1
− 4) .

(37)

Thus
󵄩󵄩󵄩󵄩𝐴𝑛
󵄩󵄩󵄩󵄩𝐹 =
√𝑛 (L

𝑛
L
𝑛+1
− 4). (38)

Theorem 8. Let 𝐴󸀠
𝑛
= SCirc(L

1
, −L
2
, . . . , −L

𝑛−1
,L
𝑛
) be an

odd-order alternative skew circulant matrix and let 𝑛 be odd.
Then

󵄩󵄩󵄩󵄩󵄩
𝐴
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑖=1

L
𝑖
= L
𝑛+2
− 4. (39)

Proof. By Lemma 1 in [25], we have

𝜆
𝑗
(𝐴
󸀠

𝑛
) =

𝑛

∑

𝑖=1

(−1)
𝑖−1

L
𝑖
(𝜔
𝑗

𝜂)
𝑖−1

. (40)

Therefore
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗
(𝐴
󸀠

𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
(−1)
𝑖−1

L
𝑖

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨󵄨
(𝜔
𝑗

𝜂)
𝑖−1󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑖=1

L
𝑖
(𝑗 = 0, 1, . . . , 𝑛 − 1) .

(41)

Since 𝑛 is odd, ∑𝑛
𝑖=1

L
𝑖
is an eigenvalue of 𝐴󸀠

𝑛
, which is

(

L
1
−L
2
⋅ ⋅ ⋅ L

𝑛

−L
𝑛

L
1
⋅ ⋅ ⋅ −L

𝑛−1

L
𝑛−1
−L
𝑛
⋅ ⋅ ⋅ L

𝑛−2

.

.

.
.
.
.
.
.
.
.
.
.

L
2
−L
3
⋅ ⋅ ⋅ L

1

)
(
(

(

1

−1

1

−1

.

.

.

1

)
)

)

=

𝑛

∑

𝑖=1

L
𝑖
⋅
(
(

(

1

−1

1

−1

.

.

.

1

)
)

)

.

(42)

To sum up, we have

max
0≤𝑗≤𝑛−1

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗
(𝐴
󸀠

𝑛
)
󵄨󵄨󵄨󵄨󵄨
=

𝑛

∑

𝑖=1

L
𝑖
. (43)

Since all skew circulant matrices are normal, by Lemma 7 in
[26], (6), and (43), we have

󵄩󵄩󵄩󵄩󵄩
𝐴
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑖=1

L
𝑖
= L
𝑛+2
− 4, (44)

which completes the proof.
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Theorem 9. Let 𝐴
𝑛
= SCirc(L

1
, . . . ,L

𝑛
) be a skew circulant

matrix; then the bounds for the spread of 𝐴
𝑛
are

𝑠 (𝐴
𝑛
) ⩽ √2𝑛 (L

𝑛
L
𝑛+1
− 8),

𝑠 (𝐴
𝑛
) ≥
1

𝑛 − 1

󵄨󵄨󵄨󵄨2L𝑛+4 − 𝑛L𝑛+2 − 6𝑛 − 20
󵄨󵄨󵄨󵄨 .

(45)

Proof. The trace of 𝐴
𝑛
is denoted by tr𝐴

𝑛
= 𝑛L

1
. By

Definition 5 in [26] and (36), we have

𝑠 (𝐴
𝑛
) ⩽ √2𝑛 (L

𝑛
L
𝑛+1
− 8). (46)

Since

∑

𝑖 ̸=𝑗

𝑎
𝑖𝑗
=

𝑛

∑

𝑘=2

[𝑛 − (𝑘 − 1)]L
𝑘
−

𝑛

∑

𝑘=2

(𝑘 − 1)L
𝑘

= (𝑛 + 2)

𝑛

∑

𝑘=2

L
𝑘
− 2

𝑛

∑

𝑘=2

𝑘L
𝑘
,

(47)

by (6) and (8),

∑

𝑖 ̸=𝑗

𝑎
𝑖𝑗
= (𝑛 + 2) (L

𝑛+2
− 6) − 2 (𝑛L

𝑛+2
− L
𝑛+3
− 6 + L

4
)

= 2L
𝑛+4
− 𝑛L
𝑛+2
− 6𝑛 − 20.

(48)

By Lemma 6 in [26], we have

𝑆 (𝐴
𝑛
) ≥
1

𝑛 − 1

󵄨󵄨󵄨󵄨2L𝑛+4 − 𝑛L𝑛+2 − 6𝑛 − 20
󵄨󵄨󵄨󵄨 .

(49)

4. Determinant and Inverse of Skew Left
Circulant Matrix with the Sum of Fibonacci
and Lucas Numbers

In this section, let 𝐴󸀠󸀠
𝑛
= SLCirc(L

1
, . . . ,L

𝑛
) be a skew

left circulant matrix. By using the obtained conclusions in
Section 2, we give a determinant explicit formula for the
matrix𝐴󸀠󸀠

𝑛
. And then, we prove that𝐴󸀠󸀠

𝑛
is an invertiblematrix

for any positive interger 𝑛.The inverse of thematrix𝐴󸀠󸀠
𝑛
is also

presented.
According to Lemmas 4 and 5 in [15] andTheorems 3, 4,

and 6, we can obtain the following theorems.

Theorem 10. Let 𝐴󸀠󸀠
𝑛
= SLCirc(L

1
, . . . ,L

𝑛
) be a skew left

circulant matrix; then

det𝐴󸀠󸀠
𝑛
= (−1)

𝑛(𝑛−1)/2

× 2[2 + 𝑡L
𝑛
+

𝑛−2

∑

𝑘=1

(𝑡L
1+𝑖
− L
2+𝑖
) 𝑥
𝑛−1−𝑖

] ⋅ 𝑐
𝑛−2

(𝑛 ≥ 3) ,

(50)

where L
𝑛
is the 𝑛th sum of Fibonacci and Lucas number.

Theorem 11. Let 𝐴󸀠󸀠
𝑛
= SLCirc(L

1
, . . . ,L

𝑛
) be a skew left

circulant matrix for any positive interger 𝑛; then 𝐴󸀠󸀠
𝑛
is an

invertible matrix.

Theorem 12. Let 𝐴󸀠󸀠
𝑛
= SLCirc(L

1
, . . . ,L

𝑛
) be a skew left

circulant matrix; then

(𝐴
󸀠󸀠

𝑛
)
−1

=
1

𝑙
𝑛

SLCirc (𝑦󸀠󸀠
1
, 𝑦
󸀠󸀠

2
, . . . , 𝑦

󸀠󸀠

𝑛
) (𝑛 ≥ 4) , (51)

where

𝑦
󸀠󸀠

1
= 1 − [(6 − 4𝑡)

(−𝑑)
𝑛−3

𝑐𝑛−2

+

𝑛−3

∑

𝑖=1

(L
𝑛+2−𝑖
− 𝑡L
𝑛+1−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
] ,

𝑦
󸀠󸀠

𝑘
= −𝑦
󸀠

𝑛−𝑘+2

=

2

∑

𝑖=1

(L
1+𝑖
− 𝑡L
𝑖
) ⋅
(−𝑑)
𝑛−𝑘−3+𝑖

𝑐𝑛−𝑘−2+𝑖
,

(𝑘 = 2, 3, . . . , 𝑛 − 2) .

𝑦
󸀠󸀠

𝑛−1
= −𝑦
󸀠

3
= (6 − 4𝑡) ⋅

1

𝑐
,

𝑦
󸀠󸀠

𝑛
= −𝑦
󸀠

2

= 𝑡 +

𝑛−2

∑

𝑖=1

(L
𝑛+1−𝑖
− 𝑡L
𝑛−𝑖
) ⋅
(−𝑑)
𝑖−1

𝑐𝑖
.

(52)

5. Norm and Spread of Skew Left
Circulant Matrix with the Sum of Fibonacci
and Lucas Numbers

Theorem 13. Let 𝐴󸀠󸀠
𝑛
= SLCirc(L

1
, . . . ,L

𝑛
) be a skew left

circulant matrix. Then three kinds norms of 𝐴󸀠󸀠
𝑛
are given by

󵄩󵄩󵄩󵄩󵄩
𝐴
󸀠󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩󵄩
𝐴
󸀠󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩∞
= L
𝑛+2
− 4,

󵄩󵄩󵄩󵄩󵄩
𝐴
󸀠󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩𝐹
= √𝑛 (L

𝑛
L
𝑛+1
− 4).

(53)

Proof. Using the similar method in Theorem 7, the conclu-
sion is obtained.

Theorem 14. Let 𝐴󸀠󸀠󸀠
𝑛
= SLCirc(L

1
, −L
2
, . . . , −L

𝑛−1
,L
𝑛
) be

an odd-order alternative skew left circulant matrix; then

󵄩󵄩󵄩󵄩󵄩
𝐴
󸀠󸀠󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑖=1

L
𝑖
= L
𝑛+2
− 4. (54)

Proof. According to Lemma 2,

𝜆
𝑗
(𝐴
󸀠󸀠󸀠

𝑛
) = ±

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

(−1)
𝑖−1

L
𝑖
𝜔
(𝑗−(1/2))(𝑘−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (55)
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for 𝑗 = 1, 2, . . . , (𝑛 − 1)/2, and

𝜆
(𝑛+1)/2
(𝐴
󸀠󸀠󸀠

𝑛
) =

𝑛

∑

𝑖=1

L
𝑖
. (56)

So

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗
(𝐴
󸀠󸀠󸀠

𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
(−1)
𝑖−1

L
𝑖
(−1)
𝑖−1
󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑖=1

L
𝑖
, (𝑗 = 1, 2, . . . ,

𝑛 − 1

2
) .

(57)

By (56) and (57), we have

max
0≤𝑖≤𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖
(𝐴
󸀠󸀠󸀠

𝑛
)
󵄨󵄨󵄨󵄨󵄨
=

𝑛

∑

𝑖=1

L
𝑖
. (58)

Since all skew left circulant matrices are symmetrical, by
Lemma 7 in [26], (6), and (58), we obtain

󵄩󵄩󵄩󵄩󵄩
𝐴
󸀠󸀠󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩2
= L
𝑛+2
− 4. (59)

Theorem 15. Let 𝐴󸀠󸀠
𝑛
= SLCirc(L

1
, . . . ,L

𝑛
) be a skew left

circulant matrix; then the bounds for the spread of 𝐴󸀠󸀠
𝑛
are

2L
𝑛
≤ 𝑠 (𝐴

󸀠󸀠

𝑛
) ≤

{{{{

{{{{

{

√𝑀 −
2

𝑛
𝑁
2

1
, if 𝑛 is odd,

√𝑀 −
2

𝑛
𝑁
2

2
, if 𝑛 is even,

(60)

where𝑀 = 2𝑛(L
𝑛
L
𝑛+1
− 4),𝑁

1
= L
𝑛−1
− L
−1
, 𝑁
2
= 0.

Proof. Since 𝐴󸀠󸀠
𝑛
is a symmetric matrix, by Lemma 6 in [26],

we get 𝑠(𝐴󸀠󸀠
𝑛
) ≥ 2max

𝑖 ̸=𝑗
|𝑎
𝑖𝑗
| = 2L

𝑛
.

The trace of 𝐴󸀠󸀠
𝑛
is, if 𝑛 is odd, then tr(𝐴󸀠󸀠

𝑛
) = L

1
− L
2
+

L
3
− ⋅ ⋅ ⋅ + L

𝑛
= L
1
+ L
1
+ L
3
+ ⋅ ⋅ ⋅ + L

𝑛−2
= 4 + ∑

𝑛−3

𝑖=1
L
𝑖
, by

(6), we have

tr (𝐴󸀠󸀠
𝑛
) = L

𝑛−1
− L
−1
= 𝑁
1
. (61)

Let𝑀 = 2𝑛(L
𝑛
L
𝑛+1
−4); then byDefinition 5 in [26], (53),

and (61), we obtain

𝑠 (𝐴
󸀠󸀠

𝑛
) ⩽ √𝑀 −

2

𝑛
𝑁
2

1
. (62)

If 𝑛 is even, then

tr (𝐴󸀠󸀠
𝑛
) = 𝑁

2
= L
1
− L
1
+ L
3
− L
3
+ ⋅ ⋅ ⋅ − L

𝑛−1
= 0, (63)

hence

tr (𝐴󸀠󸀠
𝑛
) = 𝑁

2
= 0. (64)

So the result follows.

6. Conclusion

We discuss the invertibility of the skew circulant type
matrices with the sum of Fibonacci and Lucas numbers
and present the determinant and the inverse matrices by
constructing the transformation matrices. The four kinds of
norms and bounds for the spread of these matrices are given,
respectively.
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