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Received 16 June 2015; Accepted 5 August 2015

Academic Editor: Weinian Zhang
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In the sixties, Loud obtained interesting results of continuation on periodic solutions in driven nonlinear oscillators with small
parameter (Loud, 1964). In this paper Loud’s results are extended out for periodically driven Duffing equations with odd symmetry
quantifying the continuation parameter for a periodic odd solution which is elliptic and emanates from the equilibrium of the
nonperturbed problem.

1. Introduction

After pioneering work of H. Poincare in celestial mechanics,
the continuation analyticalmethodwill have a great relevance
in applied problems in science and technology. Several ver-
sions of this approach for the searching of dynamic objects
like periodic solutions and invariant manifolds have been
very fruitful in dynamical systems and its applications; see
[1, 2]. Perhaps there are perturbations of oscillators like

𝑥̈ + 𝑔 (𝑥, 𝑥̇) = 𝜖𝑝 (𝑡, 𝑥, 𝑥̇, 𝜖) , (1)

where 𝑔, 𝑝 are continuous and 𝑝 is 𝑇-periodic function in 𝑡

and 𝜖 is a small parameter; this is one of the easiest environ-
ments on which we can apply the continuation methods. In
the sixties, Loud [3] obtained interesting results of local con-
tinuation in driven nonlinear differential equations like (1).
He assumed that the nonperturbed equation

𝑥̈ + 𝑔 (𝑥, 𝑥̇) = 0 (∗)

had an isolated equilibrium 𝑥 ≡ 0 and considered four cases
according to the relative position of the Floquetmultipliers of
the variational equation

̈𝑦 + 𝑏 ̇𝑦 + 𝑎𝑦 = 0, (2)

with 𝑎 = 𝑔

𝑥
(0, 0), 𝑏 = 𝑔

̇𝑥
(0, 0). We denote by 𝑥(𝑡, 𝑥0, V0) the

general solution of (∗). Loud searched the solution of the
implicit function system

𝑥 (𝑇, 𝑥0, V0, 𝜖) − 𝑥0 = 0,

𝑥̇ (𝑇, 𝑥0, V0, 𝜖) − 𝑥0 = 0,
(𝐿)

in order to obtain 𝜖-family of 𝑇-periodic solutions as a con-
tinuation of the equilibrium 𝑥 ≡ 0 for 𝜖 = 0. He used several
versions of the implicit function theorem obtaining some
orthogonality conditions involving the perturbation term
𝑝(𝑡, 0, 0, 0) and the solutions of the variational equation.
According to a sign over this orthogonality condition it is pos-
sible to know the direction of movement of the Floquet mul-
tipliers while the parameter increases. In this way the author
is able to classify the stability properties for 𝜖 small enough.
For the frictionless and nonresonant case, that is,

𝑏 = 0,

𝑎 ̸= (

2𝑛𝜋
𝑇

)

2
, ∀𝑛 ∈ N

(3)

(as will be considered in this paper), Loud’s result does not
provide any stability information (see Theorem 2.9 in [3]).
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From now on, we are interested in studying the periodi-
cally driven Duffing equation

𝑥̈ + 𝑔 (𝑥) = 𝜖𝑝 (𝑡) , (∗∗)

with 𝑔, 𝑝 continuous, 𝑝 being 2𝜋-periodic function, and
𝑎 = 𝑔

󸀠

(0) > 0 satisfying the above nonresonant condition.
We assume that 𝑥 ≡ 0 is an elliptic equilibrium for the non-
perturbed problem (𝜖 = 0) and we formulate the following
two questions:

(i) How small is the perturbation parameter 𝜖 to guaran-
tee the linear stability for (∗∗)?

(ii) How small is the perturbation parameter 𝜖 to guaran-
tee the nonlinear stability for (∗∗)?

A concrete example of oscillators like (∗∗) is the forced
pendulum

𝑥̈ + 𝜔

2 sin𝑥 = 𝜖𝑝 (𝑡) , (4)

where many results with respect to the existence and stability
of periodic solutions can be found in the literature [4–7]; see
also [8] and the references therein. For instance, it is well
known that if 𝑝(𝑡) is 2𝜋-periodic function, there exists 2𝜋-
periodic solution for the forced pendulum as a continuation
of the trivial solution which is stable when 𝜔 ∉ N0 and 𝜖 is
small enough.This result is an easy consequence of the KAM
theory.

There are at least three different types of analytical
periodic continuation on the forced pendulum as follows:
(i) the small oscillations previously mentioned, (ii) those
emanating from certain periodic solutions of the nonlinear
center for the nonforced case, and (iii) those emanating from
the hanging solutions for the nonforced case [6]. In this last
paper the author applied Loud’s techniques in order to find
suitable 𝑝(𝑡) to guarantee the bifurcations of many periodic
solutions from the hanging one.

On the other hand, assuming appropriate symmetries on
(∗∗), 𝑔 and 𝑝 odd functions, the implicit system (𝐿) could be
reduced to a single scalar equation

𝑓 (V0, 𝜖) = 𝑥 (

𝑇

2
, 0, V0, 𝜖) = 0, (5)

in order to find odd 𝑇-periodic solutions. This is an original
idea by Hamel [4] in his research of periodic solutions on the
forced pendulum.

Thereby in this work we focus on the global continuation
problem of periodic solutions under this kind of symmetries
for (∗∗) and their stability properties, starting from an elliptic
equilibrium of the nonperturbed equation.

As the core problem has been reduced to an implicit one,
that is, the study of the set of zeros of a continuous real
function (e.g., the function 𝑓), some topological tools, like
the Leray-Schauder Continuation Theorem [9], help us to
understand its structure.This approach has been successfully
applied in the study of periodic solutions on a restricted three-
body problem (see [10, 11]). In order to apply this tool it is
necessary to compute a priori bounds over the zeros of 𝑓

(see Theorem 1 in Section 2 for more details) but the con-
clusion of the Leray-Schauder Theorem says nothing about
the linear stability of the associated periodic solutions. For
this study it is necessary to obtain more refined bounds over
the periodic solution in order to apply some classical stability
results on the variational equation (like Hill’s equation).

The rest of the paper is divided in four sections. In
Section 2 we illustrate how the Leray-Schauder Continuation
Theorem can be applied to the forced pendulum in order to
get a global family of periodic solutions from the equilibrium
and remark its limitations for the stability analysis of this
family. In Section 3 we consider oscillators of pendulum
type with odd symmetries and present our first main result
(Theorem 5); a family of odd periodic solution is obtained
for all parameter values, and furthermore we present some
interesting a posteriori bounds for its amplitude (see (25)).
In Section 4 we review some basic facts about the stability
of Hill’s equation and we present the second main result,
namely, the determination of a computable 𝜖-interval, where
we guarantee the linear stability for the periodic continuation
obtained in Theorem 5. Finally, Section 5 is devoted to point
out some open questions about the nonlinear stability of the
obtained periodic family.

2. The Forced Pendulum and a Global
Implicit Function Theorem

Consider the forced pendulum

𝑥̈ + 𝜔

2 sin𝑥 = 𝜖𝑝 (𝑡) , (6)

where 𝜖 is a positive parameter and 𝑝(𝑡) is an odd and 2𝜋-
periodic continuous function; that is, for all 𝑡 ∈ R, we have

𝑝 (𝑡 + 2𝜋) = 𝑝 (𝑡) ,

𝑝 (−𝑡) = −𝑝 (𝑡) .

(7)

The existence of odd and 2𝜋-periodic solutions of (6) was
proved for the first time by Hamel [4] in 1922 by means of
a reduction to the boundary value problem

𝑥̈ + 𝜔

2 sin𝑥 = 𝜖𝑝 (𝑡) ,

𝑥 (0) = 𝑥 (𝜋) = 0.
(8)

See [8] formore references on this paradigmatic equation. Let
𝑥(𝑡, 𝜂, 𝜖) be the solution of (6) satisfying

𝑥 (0) = 0,

𝑥̇ (0) = 𝜂.

(9)

This is a real analytic function in the arguments (𝑡, 𝜂, 𝜖) ∈ R3

(see [12]) and is globally defined in R. It is not difficult to
prove that the research of odd and 2𝜋-periodic solutions of
(6) is equivalent to study (8). This follows by performing odd
and 2𝜋-periodic extensions improving the symmetries of (6)
and its periodicity. So problem (8) can be reduced to the study
of the implicit equation

𝑥 (𝜋, 𝜂, 𝜖) = 0. (10)
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Thereforewewant to apply some global version of the Implicit
FunctionTheorem in order to solve (10), namely, the analyti-
cal version of the Leray-Schauder ContinuationTheorem (see
[9]), which provides parametrized curves (𝜂(𝑠), 𝜖(𝑠)) solving
(10) starting at (𝜂, 𝜖) = (0, 0). We present the following
version of this result.The complete proof can be found in [10].

First, we recall that for a given function 𝑓 ∈ 𝐶

1
([𝑎, 𝑏])

which does not vanish in {𝑎, 𝑏} and has a finite number of
nondegenerate zeros 𝑥1, . . . , 𝑥𝑛 in ]𝑎, 𝑏[ it is possible to define
the Brouwer degree deg(𝑓, [𝑎, 𝑏]) as

deg (𝑓, [𝑎, 𝑏]) =
𝑛

∑

𝑖=1
sign (𝑓

󸀠

(𝑥

𝑖
)) , (11)

where 𝑓󸀠 denotes the derivatives of 𝑓. If 𝑥
∗
is an isolated zero

in the set of zeros of 𝑓, the Brouwer index of the zero 𝑥

∗
is

defined by

ind (𝑓, 𝑥

∗
) = deg (𝑓, 𝑈) , (12)

where 𝑈 is a small neighbourhood of 𝑥
∗
. Now we are able to

present the main theorem of this section and its application
to (10).

Theorem 1 (Leray-Schauder). Let 𝐹 : R × [𝑎, 𝑏] → R be
analytic and let 𝑍 = {(𝜂, 𝜖) : 𝐹(𝜂, 𝜖) = 0} be the set of zeros of
𝐹. Assume the following:

(H1) 𝑍 is bounded.
(H2) The set 𝑍

𝑎
= {(𝜂, 𝑎) : 𝐹

𝑎
(𝜂) = 0} with 𝐹

𝑎
(𝜂) = 𝐹(𝜂, 𝑎)

is finite and there is (𝜂0, 𝑎) ∈ 𝑍

𝑎
with ind(𝐹

𝑎
, 𝜂0) ̸= 0.

Then there is a continuum arc𝛼 : [0, 1] → 𝑍, 𝛼(𝑠) =

(𝜂(𝑠), 𝜖(𝑠)), with 𝜂(0) = 𝜂0, 𝜖(0) = 𝑎, such that either 𝜖(1) = 𝑏

or 𝜖(1) = 𝑎 and 𝜂(1) ̸= 𝜂0.

From Theorem 1 we have the following consequence for
the forced pendulum.

Proposition 2. Given Δ > 0, 𝜔 ∈ ]0, 1[ there exists a con-
tinuum arc 𝜂 = 𝜂(𝑠), 𝜖 = 𝜖(𝑠), 𝑠 ∈ [0, 1] such that

𝑥

𝑠
(𝑡) = 𝑥 (𝑡, 𝜂 (𝑠) , 𝜖 (𝑠)) (13)

is an odd 2𝜋-periodic solution of forced pendulum (6) with
𝑥(0) = 0, 𝜖(0) = 0, and 𝜖(1) = Δ.

Proof. Let 𝑥(𝑡, 𝜂, 𝜖) be the solution of (6) that satisfies initial
conditions (9) and defines the real analytic function

𝐹 (𝜂, 𝜖) = 𝑥 (𝜋, 𝜂, 𝜖) (14)

with 𝜖 ∈ [0, Δ]. The set of zeros of 𝐹 is clearly bounded since
the derivatives of the solutions of (6) are uniformly bounded
in [0, 2𝜋] which reveals a simple integration over (6):

|𝑥̇ (𝑡)| ≤ |𝜖|

󵄩

󵄩

󵄩

󵄩

𝑝

󵄩

󵄩

󵄩

󵄩1 + 2𝜋𝜔2
, ∀𝑡 ∈ [0, 2𝜋] , (15)

where ‖ ⋅ ‖1 denotes 𝐿1-norm in the space 𝐿1
([0, 2𝜋]); there-

fore
󵄨

󵄨

󵄨

󵄨

𝜂

󵄨

󵄨

󵄨

󵄨

≤ Δ

󵄩

󵄩

󵄩

󵄩

𝑝

󵄩

󵄩

󵄩

󵄩1 + 2𝜋𝜔2
; (16)

then (H1) holds. On the other hand, since 𝜔 < 1, the only 2𝜋-
periodic solution for the nonforced pendulum (𝜖 = 0) is the
trivial one. This nonlinear center is surrounded by periodic
solutions 𝑥(𝑡, 𝜂, 0) with a monotone increasing time period
function 𝑇(𝜂) with lim

𝜂→ 0𝑇(𝜂) = 2𝜋/𝜔 (see [13]); therefore
if 𝜔 < 1 we obtain 𝑇(𝜂) > 2𝜋 for all 𝜂 ̸= 0. As a consequence
the zeros of the function 𝐹0(𝜂) = 𝑥(𝜋, 𝜂, 0) are reduced to
{(0, 0)}.

Nowwe compute the index at 𝜂0 = 0 by linearization; that
is,

ind (𝐹0, 𝜂0) = sign(

𝜕𝐹0
𝜕𝜂

(0, 0)) . (17)

Notice that (𝜕𝐹0/𝜕𝜂)(0, 0) = 𝑦(𝜋) where 𝑦(𝑡) is the solution
of the variational problem

̈𝑦 + 𝜔

2
𝑦 = 0,

𝑦 (0) = 0,

̇𝑦 (0) = 1.

(18)

Since 0 < 𝜔 < 1, then

ind (𝐹0, 𝜂0) = sign(

sin𝜔𝜋

𝜔

) = 1, (19)

and this verifies (H2). As a consequence, we infer the exis-
tence of a continuous family {(𝜂(𝑠), 𝜖(𝑠))}

𝑠∈[0,1]
in R × [0, Δ]

such that

𝐹 (𝜂 (𝑠) , 𝜖 (𝑠)) = 0,

𝜂 (0) = 0,

𝜖 (0) = 0,

(20)

and either

𝑒1 = Δ (21)

or

𝑒1 = 0,

𝜂 (1) ̸= 𝜂0,
(22)

but this last alternative is not possible, again, because 𝜔 < 1.
Thenwe get the required global continuation 𝑥

𝑠
(𝑡) of odd 2𝜋-

periodic solutions for (6).

Remark 3. Note that the continuation 𝑥

𝑠
(𝑡) can be identified

with a parametrized curve in 𝜂𝜖-plane and it could have
turning points. See Figure 1. In the next section we will show
that this is not the case and actually this curve is a graph of a
differentiable function 𝜂 = 𝜙(𝜖) globally defined onR+ when
𝜔 ∈ [0, 1/2[.

Remark 4. Note that Leray-Schauder’s Theorem demands a
priori bounds over the continuation 𝑥

𝑠
(𝑡) which are generally

coarse. A key subject for researching of the stability of
the continuation is the possibility of obtaining more acute
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Figure 1: Graphic of the two possible options for the continuum arc which contains the point (𝜂0, 𝑎) in the Leray-Schauder Continuation
Theorem for real analytical functions.

bounds over it by means of some constructive approach.
This is the purpose in the next section, to present some
basic procedure for quantifying a linear stable branch of
odd periodic solutions emerging from an equilibrium on
oscillators of pendulum type.

3. Odd Global Continuation of Equilibrium
Solutions for Oscillators of Pendulum Type

This section is devoted to oscillators of pendulum type given
by the equation

𝑥̈ + 𝑔 (𝑥) = 𝜖𝑝 (𝑡) , (23)

where 𝑝 is an odd 2𝜋-periodic function and 𝑔 ∈ 𝐶

∞

(R)

satisfies the following conditions for some positive numbers
𝛼0 and 𝜔:

(1) 𝑔(−𝑥) = −𝑔(𝑥), for all 𝑥 ∈ R,
(2) |𝑔󸀠(𝑥)| ≤ 𝜔

2, for all 𝑥 ∈ R,
(3) 𝑔󸀠(𝑥) > 0, for all 𝑥 ∈ [0, 𝛼0[,
(4) 𝑔󸀠(𝛼0) = 0, 𝑔󸀠󸀠 ̸= 0 in [0, 𝛼0[.

Without loss of generality, in the following we assume that

󵄩

󵄩

󵄩

󵄩

𝑝

󵄩

󵄩

󵄩

󵄩1 = ∫

2𝜋

0

󵄨

󵄨

󵄨

󵄨

𝑝 (𝑡)

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 = 1. (24)

The main result of this section is the following.

Theorem 5. If 𝜔 ∈ ]0, 1/2], then there exist 𝑥
𝜖
= 𝑥

𝜖
(𝑡) being

2𝜋-periodic and odd continuation of the equilibrium 𝑥 ≡ 0 for
(23), for all 𝜖 ∈ R. Moreover

󵄩

󵄩

󵄩

󵄩

𝑥

𝜖

󵄩

󵄩

󵄩

󵄩∞
≤

𝜎

𝜔

2𝜔
|𝜖| (1+ sinh𝜔𝜋

sin𝜔𝜋

) , (25)

with

𝜎

𝜔
= max{sinh𝜔𝜋,

sinh 2𝜔𝜋 − sin 2𝜔𝜋
2

} . (26)

Remark 6. As a particular case, this theorem gives the odd
global continuation of the equilibrium solution 𝑥 ≡ 0 for
forced pendulum (6) for all frequencies 𝜔 ∈ ]0, 1/2].

The proof of Theorem 5 requires several preliminary
results. We start with an estimative over the canonical solu-
tions of Hill’s equation as a consequence of Sturm’s Compar-
isonTheorem.

Lemma 7. Let 𝑎 ∈ 𝐶([0, 𝑇/2]) with |𝑎(𝑡)| ≤ 𝜔

2 for all 𝑡 ∈

[0, 𝑇/2] and |𝑎| ̸= 𝜔

2 with 𝜔 ∈ [0, 𝜋/𝑇]. Let 𝜙1(𝑡) and 𝜙2(𝑡) be
the solutions of

𝑥̈ + 𝑎 (𝑡) 𝑥 = 0, (27)

satisfying the initial conditions

𝜙1 (0) = 1,

̇

𝜙 (0) = 0,

𝜙2 (0) = 0,

̇

𝜙2 (0) = 1,

(28)

respectively. Then for all 𝑡 ∈ ]0, 𝑇/2[ we have the following
inequalities:

cos𝜔𝑡 < 𝜙1 (𝑡) < cosh𝜔𝑡,

1
𝜔

sin𝜔𝑡 < 𝜙2 (𝑡) <
1
𝜔

sinh𝜔𝑡.

(29)

Proof. Let 𝜇
𝑖
(𝑡), 𝑖 = 1, 2 be the canonical solutions of

𝑥̈ + 𝜔

2
𝑥 = 0 (30)

that satisfy the initial conditions 𝜇1(0) = 𝜇̇2(0) = 1 and
𝜇2(0) = 𝜇̇1(0) = 0; that is,

𝜇1 (𝑡) = cos𝜔𝑡;

𝜇2 (𝑡) =
1
𝜔

sin𝜔𝑡.

(31)



Abstract and Applied Analysis 5

For 𝑖 = 1, 2 observe that 𝜒
𝑖
= 𝜙

𝑖
− 𝜇

𝑖
satisfies the boundary

problem

𝑥̈ + 𝑎 (𝑡) 𝑥 + 𝑞

𝑖
(𝑡) = 0,

𝑥 (0) = 0,

𝑥̇ (0) = 0,

(32)

with 𝑞

𝑖
(𝑡) = (𝑎(𝑡) − 𝜔

2
)𝜇

𝑖
. So it is not difficult to prove that

𝜒

𝑖
(𝑡) = ∫

𝑡

0
𝐺 (𝑡, 𝑠) 𝑞

𝑖
(𝑠) 𝑑𝑠,

(33)

where

𝐺 (𝑡, 𝑠) = 𝜙1 (𝑡) 𝜙2 (𝑠) − 𝜙1 (𝑠) 𝜙2 (𝑡) . (34)

Now we want to know the sign of 𝜒
𝑖
(𝑡) on [0, 𝑇/2]. First, we

remark that 𝑞
𝑖
(𝑡) ≤ 0 since 𝑎(𝑡) − 𝜔

2
≤ 0 and 𝜇

𝑖
≥ 0 for all

[0, 𝑇/2[ because 𝜔 ≤ 𝜋/𝑇.
On the other hand, since 𝑎(𝑡) ≤ (𝜋/𝑇)

2 on [0, 𝑇/2], from
the Sturm Comparison Theorem, we deduce 𝜙2(𝑡) > 0 in
]0, 𝑇/2].This implies that𝐺(𝑡, 𝑠) < 0 for all (𝑡, 𝑠) ∈ {(𝑡, 𝑠) : 0 <

𝑠 < 𝑡, 0 < 𝑡 < 𝑇/2} (see [14]). From the hypothesis on 𝑎(𝑡) we
know that 𝑞

𝑖
(𝑡) is not identically zero; then as a consequence

we have 𝜒
𝑖
(𝑡) > 0 on ]0, 𝑇/2]; that is,

cos𝜔𝑡 < 𝜙1 (𝑡) ,

1
𝜔

sin𝜔𝑡 < 𝜙2 (𝑡) ,

∀𝑡 ∈ ]0, 𝑇
2

] .

(35)

The proof for the other inequalities follows the same ideas if
we consider the equation

𝑥̈ − 𝜔

2
𝑥 = 0 (36)

and the canonical solutions

𝜇1 (𝑡) = cosh𝜔𝑡,

𝜇2 (𝑡) =
1
𝜔

sinh𝜔𝑡.

(37)

As in the previous section, let 𝑥(𝑡, 𝜂, 𝜖) be the solution of
(23) satisfying

𝑥 (0) = 0,

𝑥̇ (0) = 𝜂.

(38)

From the symmetries over (23) the search of odd 2𝜋-periodic
solutions can be focused to solve the Dirichlet problem (in a
half period)

𝑥̈ + 𝑔 (𝑥) = 𝜖𝑝 (𝑡) ,

𝑥 (0) = 0,

𝑥 (𝜋) = 0.

(39)

In other words, we must find the zeros of the function

𝑥 (𝜋, 𝜂, 𝜖) = 0. (40)

This is a classical implicit function problem with initial
solution of the trivial one 𝜂 = 𝜖 = 0. Let 𝜔2

0 := 𝑔

󸀠

(0). Since
𝜔0 < 𝜔 < 1/2, then

𝜕

𝜂
𝑥 (𝜋, 0, 0) = 1

𝜔0
sin (𝜔0𝜋) ̸= 0; (41)

as a consequence there exists a local function 𝜂 = 𝜂(𝜖) such
that 𝑥(𝑡, 𝜂(𝜖), 𝜖) = 0. LetV be an open neighborhood of (0, 0)
where 𝜕

𝜂
𝑥(𝜋, 𝜂, 𝜖) ̸= 0. By the Implicit Function Theorem

problem (40) is equivalent to the Cauchy Problem

𝜂

󸀠

(𝜖) = 𝐹 (𝜂, 𝜖) ,

𝜂 (0) = 0,
(42)

which is well defined onV with

𝐹 (𝜂, 𝜖) = −

𝜕

𝜖
𝑥 (𝜋, 𝜂, 𝜖)

𝜕

𝜂
𝑥 (𝜋, 𝜂, 𝜖)

. (43)

The next proposition gives sufficient conditions to guarantee
thatV = R2 and 𝐹 is bounded.

Proposition 8. If 𝜔 ∈ ]0, 1/2], then the function 𝐹(𝜂, 𝜖) given
in (43) is well defined in all R2 and

󵄨

󵄨

󵄨

󵄨

𝐹 (𝜂, 𝜖)

󵄨

󵄨

󵄨

󵄨

≤

𝜎

𝜔

2 sin𝜋𝜔

, (44)

with 𝜎

𝜔
= max{sinh𝜋𝜔, (sinh 2𝜋𝜔 − sin 2𝜋𝜔)/2}.

Proof. For each (𝜂, 𝜖) ∈ R2 consider the variational equation

𝑥̈ + 𝑎 (𝑡) 𝑥 = 0,

𝑎 (𝑡) = 𝑎

𝜂,𝜖
(𝑡) = 𝑔

󸀠

(𝑥 (𝑡, 𝜂, 𝜖)) .

(45)

From assumption (2) over the function 𝑔, it follows that
|𝑎| ≤ 𝜔

2 in [0, 𝜋] uniformly in (𝜂, 𝜖) and for assumption (3) it
follows that 𝑎 ̸= 𝜔

2. Let 𝜙1 and 𝜙2 be the canonical solutions
of (45). From Lemma 7 with 𝑇 = 2𝜋 we obtain

cos𝜔𝑡 < 𝜙1 (𝑡) < cosh𝜔𝑡,

1
𝜔

sin𝜔𝑡 < 𝜙2 (𝑡) <
1
𝜔

sinh𝜔𝑡,

(46)

for all 𝑡 ∈ ]0, 𝜋]. On the other hand, the theorem of differ-
entiability with respect to initial conditions and parameters
implies that the functions 𝜙2(𝑡) = 𝜕

𝜂
𝑥(𝑡, 𝜂, 𝜖) and 𝜓(𝑡) =

𝜕

𝜖
𝑥(𝑡, 𝜂, 𝜖) satisfy the following Cauchy problems:

𝑥̈ + 𝑎 (𝑡) 𝑥 = 0,

𝑥 (0) = 𝑥̇ (0) = 1,
(47)

𝑥̈ + 𝑎 (𝑡) 𝑥 = 𝑝 (𝑡) ,

𝑥 (0) = 𝑥̇ (0) = 0,
(48)
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respectively. Therefore, for 𝑡 ∈ [0, 𝜋], we have

𝜓 (𝑡) = −∫

𝑡

0
𝐺 (𝑡, 𝑠) 𝑝 (𝑠) 𝑑𝑠.

(49)

Since 𝜔 ∈ ]0, 1/2[ from the Comparison Sturm Theorem we
obtain 𝜙2(𝑡) > 0 for all 𝑡 ∈ ]0, 𝜋[. Following the lemma in [14]
we concluded that

𝐺 (𝑡, 𝑠) = 𝜙1 (𝑡) 𝜙2 (𝑠) − 𝜙1 (𝑠) 𝜙2 (𝑡) < 0, (50)

for all (𝑡, 𝑠) ∈ Δ = {(𝑡, 𝑠) | 0 < 𝑠 < 𝑡, 0 < 𝑡 < 𝜋}. Moreover
since 0 < 𝜔𝜋 < 𝜋/2 then cos𝜔𝑡 > 0 and sin𝜔𝑡 > 0 on [0, 𝜋];
therefore

|𝐺 (𝑡, 𝑠)| = −𝐺 (𝑡, 𝑠) ≤ max
(𝑡,𝑠)∈Δ

𝐻(𝑡, 𝑠) , (51)

where𝐻(𝑡, 𝑠) = (1/𝜔) (cosh𝜔𝑡 sinh𝜔𝑠 − cos𝜔𝑠 sin𝜔𝑡). Since
there are no critical points of 𝐻 in Δ then 𝐻 has the maxi-
mum value on the boundary ofΔ. A simple calculation shows
that

|𝐺 (𝑡, 𝑠)| = −𝐺 (𝑡, 𝑠) ≤

𝜎

𝜔

𝜔

, (52)

with

𝜎

𝜔
= max{sinh𝜋𝜔,

sinh 2𝜋𝜔 − sin 2𝜋𝜔
2

} . (53)

On the other hand

󵄨

󵄨

󵄨

󵄨

𝜓 (𝑡)

󵄨

󵄨

󵄨

󵄨

≤

𝜎

𝜔

2𝜔
∀𝑡 ∈ [0, 𝜋] . (54)

Finally we obtain

󵄨

󵄨

󵄨

󵄨

𝐹 (𝜂, 𝜖)

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜓 (𝜋)

𝜙2 (𝜋)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝜎

𝜔

2 sin𝜋𝜔

. (55)

Remark 9. For the autonomous Cauchy problem

𝑑𝜂

𝑑𝜖

= 𝐹 (𝜂, 𝑡) ,

𝑑𝑡

𝑑𝜖

= 1,

𝜂 (0) = 0,

𝑡 (0) = 0,

(56)

which has a bounded vector field 𝑋(𝜂, 𝜖) = (𝐹(𝜂, 𝜖), 1); we
conclude that 𝜂(𝜖) is well defined in ] − ∞,∞[ (see [15]);
therefore for all 𝜔 ∈ ]0, 1/2] we obtain an odd, 2𝜋-periodic
continuation 𝜑

𝜖
(𝑡) = 𝑥(𝑡, 0, 𝜂(𝜖), 𝜖) of the equilibrium for all

𝜖 ∈ R.

Now we are able to present the proof of the main theorem
of this section.

Proof of Theorem 5. Let𝑋(𝜖) = (𝜂(𝜖), 𝑡(𝜖))

tr and consider the
autonomous Cauchy problem

𝑋

󸀠

= F (𝑋) = (𝐹 (𝜂, 𝜖) , 1) ,

𝑋 (0) = (0, 0) .
(57)

It follows from Proposition 8 that F is bounded. From here
we deduce that all solutions are globally defined; then 𝜂(𝜖) is
well defined for all 𝑡 ∈ ]−∞,∞[; (see [15]). As a consequence
for all 𝜔 ∈ ]0, 1/2] we obtain an odd, 2𝜋-periodic continua-
tion 𝜑

𝜖
(𝑡) = 𝑥(𝑡, 0, 𝜂(𝜖), 𝜖) of the equilibrium for all 𝜖 ∈ R.

Now by the Mean ValueTheorem we have

󵄨

󵄨

󵄨

󵄨

𝜑

𝜖

󵄨

󵄨

󵄨

󵄨

≤ |𝜖| max
|𝜉|≤𝜖,𝑡∈[0,𝜋]

󵄨

󵄨

󵄨

󵄨

𝜕

𝜖
𝜑

𝜖
(𝑡, 𝜂 (𝜉) , 𝜉)

󵄨

󵄨

󵄨

󵄨

. (58)

On the other hand,

󵄨

󵄨

󵄨

󵄨

𝜕

𝜖
𝜑

𝜖

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

𝜂
𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜂

󸀠
󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜕

𝜖
𝑥

󵄨

󵄨

󵄨

󵄨

. (59)

Since 𝜕
𝜖
𝑥 and 𝜕

𝜂
𝑥 are, respectively, the solutions of the initial

value problems (47) and (48), with 𝑎(𝑡) = 𝑔

󸀠

(𝜑

𝜖
(𝑡)), they

satisfy inequalities (46) and (54) in [0, 𝜋]; therefore

󵄨

󵄨

󵄨

󵄨

𝜕

𝜖
𝜑

󵄨

󵄨

󵄨

󵄨

≤

𝜎

𝜔

2 sin𝜋𝜔

sinh𝜔𝜋

𝜔

+

𝜎

𝜔

2𝜔

=

𝜎

𝜔

2𝜔
(1+ sinh𝜔𝜋

sin𝜔𝜋

) ;

(60)

as a consequence

󵄨

󵄨

󵄨

󵄨

𝜑

𝜖

󵄨

󵄨

󵄨

󵄨

≤ |𝜖|

𝜎

𝜔

2𝜔
(1+ sinh𝜔𝜋

sin𝜔𝜋

) , (61)

concluding the proof.

4. Linear Stability of the Continuation

In this section we will obtain a proof of the linear stability of
the continuation 𝜑

𝜖
. We use techniques that are traditionally

employed in the study of Hill’s equation. More precisely,
the proof will be based on the Lyapunov-Zukovskii stability
criteria for Hill’s equations.We start with a well-known result
of the Sturm comparison theory for Hill’s equation.

Lemma 10. If 𝑎 ∈ 𝐶

𝑇
(R) satisfies 0 < 𝑚

2
≤ 𝑎(𝑡) ≤ 𝑀

2

on [0, 𝑇] with strict inequality on a set of positive measures on
[0, 𝑇], then

(i) any solution of (27) has infinitely many zeros;
(ii) if 𝑡1 and 𝑡2 are two consecutive zeros of any solution of

(27), they satisfy

𝜋

𝑀

< 𝑡2 − 𝑡1 <

𝜋

𝑚

. (62)

The proof of Lemma 10 follows easily from Sturm’s Com-
parisonTheorems (see [16]).
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Proposition 11 (Lyapunov-Zukovskii). Let 𝑎 ∈ 𝐶

𝑇
(R) such

that 0 < 𝑎(𝑡) ≤ (𝜋/𝑇)

2, for all 𝑡 ∈ R, with strict inequality on
a set of positive measures in [0, 𝑇]. Then (27) is elliptic.

Proof. By a contradiction argument suppose that there is a
real Floquet multiplier 𝜆. Let 𝜑(𝑡) be the Floquet solution
associated with 𝜆; then

𝜑 (𝑡 +𝑇) = 𝜆𝜑 (𝑡) , ∀𝑡 ∈ R. (63)

Since 0 < 𝑎(𝑡) it follows from Lemma 10 that ∃𝑡0 ∈ R such
that 𝜑(𝑡0) = 0; then 𝜑(𝑡0 + 𝑇) = 0. Once again, from Lemma
10 𝑡0 and 𝑡0 + 𝑇 are consecutive zeros; as a consequence the
distance is at most 𝑇 and this is a contradiction.

Finally we completed all the necessary arguments that we
need in order to prove our second main result.

Theorem 12. Under the same hypothesis of Theorem 5, 2𝜋-
periodic continuation 𝜑

𝜖
of the equilibrium 𝑥 = 0 of (45) is

elliptic if |𝜖| < 𝐼 = 𝐼(𝜔) where

𝐼 (𝜔) =

2𝛼0𝜔 sin𝜋𝜔

𝜎

𝜔
(sinh𝜋𝜔 + sin𝜋𝜔)

. (64)

Proof. With 𝜖 ∈ ] − 𝐼, 𝐼[ and from (25) it is clear that |𝜑
𝜖
(𝑡)| ≤

𝛼0. On the other hand, from the conditions on the function
𝑔, we have

0 < 𝑎 (𝑡) = 𝑔

󸀠

(𝜑

𝜖
(𝑡)) ≤ 𝜔

2
≤

1
4
, ∀𝑡 ∈ R. (65)

On the other hand, if 𝑎(𝑡) = 1/4 for all 𝑡 ∈ R, then 𝜑

𝜖
≡ 0

since 𝑔

󸀠 is strict monotone in ]0, 𝛼0] and this implies 𝑝 ≡ 0
which is a contradiction. By continuity we deduce the exis-
tence of a set of positive measures in [0, 𝑇] such that 0 < 𝑎 <

1/4. The conclusion follows if we apply Proposition 11 to the
variational equation along 𝜑

𝜖
:

̈𝑦 + 𝑎 (𝑡) 𝑦 = 0, (66)

where 𝑎(𝑡) = 𝑔

󸀠

(𝜑

𝜖
(𝑡)).

Corollary 13. For 𝑝 ∈ 𝐶2𝜋(R), ‖𝑝‖1 = 1, and odd 𝜔 ∈

]0, 1/2], the equilibrium solution 𝑥 ≡ 0 of the oscillator (23)
can be continued like an odd 2𝜋-periodic solution 𝜑

𝜖
(𝑡) of the

forced pendulum

𝑥

󸀠󸀠

+𝜔

2 sin𝑥 = 𝜖𝑝 (𝑡) , (67)

which is elliptic (therefore linear stable) for |𝜖| < 𝛾(𝜔) where

𝛾 (𝜔) =

𝜋𝜔 sin𝜋𝜔

𝜎

𝜔
(sinh𝜋𝜔 + sin𝜋𝜔)

; (68)

moreover,

󵄩

󵄩

󵄩

󵄩

𝜑

𝜖

󵄩

󵄩

󵄩

󵄩

≤

|𝜖| 𝜎

𝜔

2𝜔
(1+ sinh𝜋𝜔

sin𝜋𝜔

) . (69)

5. Odd Global Continuation for any Positive 𝜔

In order to remove the restriction 𝜔 ∈ ]0, 1/2[ in Theorem 5,
we follow a different approach to estimate an upper bound for
|𝜕

𝜖
𝑥(𝜋; 𝜂, 𝜖)| and a lower bound for |𝜕

𝜂
𝑥(𝜋; 𝜂, 𝜖)| in (42)-(43).

As before we assume the condition ‖𝑝‖1 = 1 on oscillator
(23).

We start this new approach by setting new conditions over
the function 𝑔. Suppose that there exist positive values 𝜔 and
𝜔0 ∉ N such that

(a) |𝑔󸀠(𝑥)|, |𝑔󸀠󸀠(𝑥)| ≤ 𝜔

2, for all 𝑥 ∈ R.
(b) 𝑔󸀠(0) = 𝜔

2
0 .

The main result of this section is the following.

Theorem 14. Under assumptions (a) and (b), there exist 𝜑
𝜖
=

𝜑

𝜖
(𝑡) being 2𝜋-periodic and odd continuation of the equilib-

rium 𝑥 ≡ 0 for (23) for all |𝜖| < Δ 0 with

Δ 0 = Δ 0 (𝜔, 𝜔0) =
(1 + 𝜔

−2
)

𝜔0𝐴
3
𝜔
(𝐴

2
𝜔
− 1)

󵄨

󵄨

󵄨

󵄨

sin𝜔0𝜋
󵄨

󵄨

󵄨

󵄨

.

(70)

Moreover

󵄨

󵄨

󵄨

󵄨

𝜑

𝜖
(𝑡)

󵄨

󵄨

󵄨

󵄨

≤ |𝜖| 𝐴

𝜔
(1+

𝐴

𝜔

Υ (𝜔, 𝜔0, 𝜖)
) , (71)

where 𝐴2
𝜔
= 𝑒

(1+𝜔2)𝜋 and Υ(𝜔, 𝜔0, 𝜖) is a positive constant for
|𝜖| < Δ 0 given by

Υ (𝜔, 𝜔0, 𝜖) =
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1
𝜔0

sin𝜔0𝜋
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−

|𝜖| 𝜔

2
𝐴

3
𝜔

1 + 𝜔

2 (𝐴

2
𝜔
− 1) . (72)

The proof of Theorem 14 follows similar arguments and
steps are given in Section 2 for proving Theorem 5. We start
by considering again the solutions 𝜙2(𝑡) = 𝜕

𝜂
𝑥(𝑡, 𝜂, 𝜖) and

𝜓(𝑡) = 𝜕

𝜖
𝑥(𝑡, 𝜂, 𝜖) of Cauchy problems (47) and (48), respec-

tively.
Before the proof ofTheorem 14we point out some prelim-

inary results. The first one is about the growing of the solu-
tions for Hill’s equations.

Lemma 15. Let 𝑎 ∈ 𝐶([0, 𝑇]) with |𝑎(𝑡)| ≤ 𝜎 for all 𝑡 ∈ [0, 𝑇]
and let 𝜙1(𝑡), 𝜙2(𝑡) be the unique solutions of

𝑥̈ + 𝑎 (𝑡) 𝑥 = 0 (⬦)

satisfying

𝜙1 (0) = ̇

𝜙2 (0) = 1,

̇

𝜙1 (0) = 𝜙2 (0) = 0.
(73)

Then, for 𝑖 = 1, 2, we have
󵄨

󵄨

󵄨

󵄨

𝜙

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝑒

((1+𝜎)/2)𝑇
∀𝑡 ∈ [0, 𝑇] . (74)

Proof. Let 𝑥(𝑡) be a solution of (⬦) and define the function

V (𝑡) =

1
2
(𝑥

2
(𝑡) + 𝑥̇

2
(𝑡)) .

(75)
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By a direct computation we obtain

̇V (𝑡) = 𝑥𝑥̇ (1− 𝑎 (𝑡)) ≤

(𝑥

2
+ 𝑥̇

2
)

2
(1+𝜎)

= V (𝑡) (1+𝜎) .

(76)

Solving this differential inequality with initial conditionV(0)
we get

V (𝑡) ≤ V (0) 𝑒(1+𝜎)𝑡. (77)

In particular for the canonical solutions 𝜙
𝑖
(𝑡) 𝑖 = 1, 2 we have

V(0) = 1/2 and therefore
󵄨

󵄨

󵄨

󵄨

𝜙

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

≤

󵄩

󵄩

󵄩

󵄩

󵄩

(𝜙

𝑖
(𝑡) ,

̇

𝜙

𝑖
(𝑡))

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑒

((1+𝜎)/2)𝑡
, ∀𝑡 ∈ [0, 𝑇] . (78)

From (49), hypothesis (a), and Lemma 15 taking 𝑎(𝑡) =

𝑔

󸀠

(𝑥(𝑡, 𝜂, 𝜖)) on [0, 𝜋] we have the following estimative:

󵄨

󵄨

󵄨

󵄨

𝜕

𝜖
𝑥 (𝜋, 𝜂, 𝜖)

󵄨

󵄨

󵄨

󵄨

≤ 𝑒

(1+𝜔2)𝜋
, ∀ (𝜂, 𝜖) ∈ R

2
.

(79)

The second preliminary result is the classical fundamental
inequality in ordinary differential equations (see [16]).

Proposition 16. Suppose that 𝑥(𝑡), 𝑦(𝑡) satisfy

𝑥̇ = 𝑓 (𝑡, 𝑥) ,

𝑥 (𝑡0) = 𝑥0,

̇𝑦 = 𝑔 (𝑡, 𝑦) ,

𝑦 (𝑡0) = 𝑦0,

(80)

where 𝑓, 𝑔 : 𝑈 ⊂ R ×R𝑛 → R𝑛, are continuous and Lipschitz
with respect to the second variable with Lipschitz constant𝐾. If

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡, 𝑢) − 𝑔 (𝑡, 𝑢)

󵄨

󵄨

󵄨

󵄨

≤ 𝛿, (𝑡, 𝑢) ∈ 𝑈, (81)

then
󵄨

󵄨

󵄨

󵄨

𝑥 (𝑡) − 𝑦 (𝑡)

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

𝑥0 −𝑦0
󵄨

󵄨

󵄨

󵄨

𝑒

𝐾|𝑡−𝑡0|
+

𝛿

𝐾

(𝑒

𝐾|𝑡−𝑡0|
− 1) , (82)

for all 𝑡 in a common interval of existence.

Proof of Theorem 14. The existence of nontrivial odd, 2𝜋-
periodic solutions of (23) is equivalent to the solving of
problem (40). Furthermore, from assumption (b)

𝜕

𝜂
𝑥 (𝜋, 0, 0) = 1

𝜔0
sin (𝜔0𝜋) ̸= 0; (83)

therefore we can consider the Cauchy problem

𝜂

󸀠

(𝜖) = −

𝜕

𝜖
𝑥 (𝜋, 𝜂, 𝜖)

𝜕

𝜂
𝑥 (𝜋, 𝜂, 𝜖)

,

𝜂 (0) = 0,

(84)

in a small rectangle of the form Ω

Δ,Γ
= {(𝜖, 𝜂) : |𝜖| ≤ Δ, |𝜂| ≤

Γ}.

Our objective is to solve initial value problem (84) in a
concrete 𝜖-interval and on an appropriate rectangle. For this
purpose we will estimate an upper bound over the absolute
value of the right hand side of (84). In accordance with (79)
we only have to find a positive lower bound for |𝜕

𝜂
𝑥(𝑡, 𝜂, 𝜖)|

onΩ

Δ,Γ
.

Consider variational equation (45) given by

𝑥̈ + 𝑎

𝜂,𝜖
(𝑡) 𝑥 = 0,

𝑎

𝜂,𝜖
(𝑡) = 𝑔

󸀠

(𝑥 (𝑡, 𝜂, 𝜖)) .

(85)

The vector field of the first order system associated with this
variational equation is given by

𝐹

𝜂,𝜖
(𝑡, 𝑥, 𝑦) = (𝑦, − 𝑎

𝜂,𝜖
(𝑡) 𝑥) , (86)

with 𝑦 = 𝑥

󸀠. Notice that this vector field is continuous and
(𝑥, 𝑦)-Lipschitz, with Lipschitz constant𝐾 = 1+𝜔2 uniformly
in (𝜖, 𝜂) ∈ R2.

Next we apply the fundamental inequality to the vector
fields 𝐹

𝜂,𝜖
(𝑡, 𝑥, 𝑦), 𝐹0,0(𝑡, 𝑥, 𝑦) and the respective solutions

𝜕

𝜂
𝑥(𝑡, 𝜂, 𝜖), 𝜕

𝜂
𝑥(𝑡, 0, 0) = (1/𝜔0)sin(𝜔0𝑡) (both in the same

initial conditions) on the domain 𝑈 = R×] − 𝐴

𝜔
, 𝐴

𝜔
[×R,

where 𝐴

𝜔
= 𝑒

((1+𝜔2)/2)𝜋 is an upper bound for the canonical
solutions of (45) given by Lemma 15. Henceforth

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

𝜂
𝑥 (𝜋, 𝜂, 𝜖) −

1
𝜔0

sin𝜔0𝜋
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝛿

1 + 𝜔

2 (𝐴

2
𝜔
− 1) , (87)

where 𝛿 is an upper bound on 𝑈 for
󵄨

󵄨

󵄨

󵄨

󵄨

𝐹

𝜂,𝜖
(𝑡, 𝑥, 𝑦) −𝐹0,0 (𝑡, 𝑥, 𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑎

𝜂,𝜖
(𝑡) − 𝜔

2
0) 𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

. (88)

From the mean value theorem we get
󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝜂,𝜖
(𝑡) − 𝜔

2
0
󵄨

󵄨

󵄨

󵄨

󵄨

≤ |𝜖| 𝑚, (89)

where𝑚 is any positive number such that

𝑚 ≥ sup{

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑎

𝜂,𝜖
(𝑡)

𝜕𝜖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

: 𝑡 ∈ [0, 𝜋] , 𝜂 ∈R, 𝜖 > 0} . (90)

Besides,
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑎

𝜂,𝜖
(𝑡)

𝜕𝜖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔

󸀠

(𝑥 (𝑡, 𝜂, 𝜖))

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

𝜖
𝑥 (𝑡, 𝜂, 𝜖)

󵄨

󵄨

󵄨

󵄨

, (91)

and from (79) and condition (a) over the function 𝑔 we have

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑎

𝜂,𝜖
(𝑡)

𝜕𝜖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜔

2
𝐴

2
𝜔
, (92)

for all 𝑡 ∈ [0, 𝜋], 𝜂 ∈ R, 𝜖 > 0. In conclusion on the domain
𝑈 we have

󵄨

󵄨

󵄨

󵄨

󵄨

𝐹

𝜂,𝜖
(𝑡, 𝑥, 𝑦) − 𝐹0,0 (𝑡, 𝑥, 𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑎

𝜂,𝜖
(𝑡) − 𝜔

2
0) 𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝛿

:= |𝜖| 𝜔

2
𝐴

3
𝜔
.

(93)
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Now we impose the restriction (see (87))

𝛿

1 + 𝜔

2 (𝐴

2
𝜔
− 1) <

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1
𝜔0

sin𝜔0𝜋
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

.
(R)

The restriction (R) is equivalent to |𝜖| < Δ 0 with Δ 0 given by
(70). Combining (87) and (R) we obtain (for all 𝑢, V, 𝛾 ∈ R if
|𝑢 − V| < 𝛾 < |V|, then |𝑢| > |V| − 𝛾)

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

𝜂
𝑥 (𝜋, 𝜂, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

≥ Υ (𝜔, 𝜔0, 𝜖) > 0, (94)

withΥ(𝜔, 𝜔0, 𝜖) given by (72). Finally, an upper bound for the
modulus of the right hand side in (84) is given by

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

𝜖
𝑥 (𝜋, 𝜂, 𝜖)

𝜕

𝜂
𝑥 (𝜋, 𝜂, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑀 :=

𝐴

2
𝜔

Υ (𝜔, 𝜔0, 𝜖)
, (95)

on Ω

Δ 0 ,Γ
. For classical Peano’s Theorem we obtain a solution

𝜂 = 𝜙(𝜖) of (10) for |𝜖| ≤ min{Δ 0, Γ/𝑀}. Note that our esti-
matives do not depend on 𝜂; therefore we can take Γ ≥ 𝑀Δ 0
so the solution 𝜙(𝜖) is defined on ] − Δ 0, Δ 0[. So we obtain
the odd 2𝜋-periodic family 𝜑

𝜖
(𝑡) = 𝑥(𝑡, 𝜙(𝜖), 𝜖). Following

the lines in the proof of Theorem 5 (inequalities (58) and
(59)) is a straightforward task to obtain (71) using the above
estimative.

6. Concluding Remarks

Applying the techniques in [7] to forced pendulum (6) we
obtain a finite 𝜖-interval for frequencies 𝜔 far away of the
strong resonances. In contrast, our first main result (The-
orem 5) provides an infinite 𝜖-interval for low frequencies
𝜔 ∈ [0, 1/2]. Moreover for high frequencies we obtain 2𝜋-
periodic continuation of the equilibrium𝑥 ≡ 0 in a quantified
𝜖-interval (Theorem 14) for general oscillators of pendulum
type.

The nonlinear stability in the Lyapunov sense of the fam-
ily 𝜑

𝜖
obtained before remains an open problem. This can

be studied by means of the KAM Theory. More precisely,
the Twist Theorem of Möser [17] gives sufficient conditions
to ensure that Poincare’s mapping P

𝜖
of (23) has invariant

curves in all neighbourhood of the elliptic fixed point 𝑧0 =

(𝜑

𝜖
(0), 𝜑̇
𝜖
(0)).

From Möser’s work this approach has been referenced in
the literature like a third-order method, because the stability
is generically decided by the nonvanishing of a certain third-
order coefficient 𝛽 ofP

𝜖
called the first twist coefficient. The

Möser Theorem essentially claims that if 𝛽 ̸= 0, then the
fixed point 𝑧0 is stable and therefore 𝜑

𝜖
is also stable. We will

explain this a little bit more.
By means of a translation 𝜑

𝜖
to the origin 𝑦 = 𝑥 − 𝜑

𝜖
and

making Taylor’s expansion up to the third order, we arrive to
the equivalent equation with equilibrium 𝑦 ≡ 0:

̈𝑦 + 𝑎

𝜖
(𝑡) 𝑦 + 𝑏

𝜖
(𝑡) 𝑦 + 𝑐

𝜖
(𝑡) 𝑦

3
+ ⋅ ⋅ ⋅ = 0, (96)

where 𝑎

𝜖
, 𝑏
𝜖
, and 𝑐

𝜖
and the remaining terms are periodic

functions of period 2𝜋; moreover

𝑎

𝜖
(𝑡) = 𝑔

󸀠

(𝜑

𝜖
(𝑡)) ,

𝑏

𝜖
(𝑡) =

𝑔

󸀠󸀠

(𝜑

𝜖
(𝑡))

2
,

𝑐

𝜖
(𝑡) =

𝑔

󸀠󸀠󸀠

(𝜑

𝜖
(𝑡))

6
.

(97)

The twist coefficient 𝛽 = 𝛽(𝜖) is a meromorphic function
which depends on 𝑎

𝜖
, 𝑏
𝜖
, and 𝑐

𝜖
in a not easy way (see [7, 14, 18,

19]). In [14] Ortega gave for the first time an explicit formula
for 𝛽 and subsequently Zhang in [7, 19] provided some
refinements of it making the dependence with respect to
𝑎

𝜖
more synthetic and very practical for applications (see

[5, 7, 19–21]). The open problem consists of studying the first
zero of 𝛽(𝜖) in order to estimate 𝜖-range for the stability of
𝜑

𝜖
. In this direction the results in [7] could be useful. Finally,

it is important to notice that when 𝑔 is really analytical the
recently Hanßmann and Simó’s results in [22] could be useful
to study the nonlinear stability for the continuation.
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