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The variability ordering for more and less variables of fuzzy random variables in terms of its distribution function is defined.
A property of new better than used in expectation (NBUE) and new worse than used in expectation (NWUE) is derived as an
application to the variability ordering of fuzzy random variables. The concept of generalized variability orderings of nonnegative
fuzzy random variables representing lifetime of components is introduced.The <𝑃 domination is a generalized variability ordering.
We proposed an integral inequality to the case of fuzzy random variables using <

𝑃 ordering. The results included equivalent
conditions which justify the generalized variability orderings.

1. Introduction

Fuzzy random variables generalize random variables and
random sets. Kwakernaak [1, 2] introduced the concept of
a fuzzy random variable as a function 𝑋 : Ω → 𝐹(𝑅)

where (Ω, 𝐴, 𝑃) is a probability space and 𝐹(𝑅) denote the
set of all canonical fuzzy numbers. Puri and Ralescu [3]
defined the notion of fuzzy random variable as a function
𝑋 : Ω → 𝐹(𝑅

𝑛
) where (Ω, 𝐴, 𝑃) is a probability space and

𝐹(𝑅
𝑛
) denotes all functions 𝑈 : 𝑅

𝑛
→ [0, 1]. The lifetimes of

machines and components are expressed in terms of linguis-
tic variables with imprecise boundaries. In such cases, fuzzy
random variables are only capable of dealing with the vague
data. Life distributions represented by nonnegative random
variables and their distributions can be ordered by the
comparison of their properties. Assessing the credibility of
components in terms of their lifetime through fuzzy random
variables ismore realistic and appropriate because consumers
express their opinion only in terms of linguistic variables with
regard to the lifetimes of appliances and components. Bhat-
tacharjee [4] investigated a generalized variability ordering
and its weaker versions among nonnegative random variables
representing lifetime of components. Abouammoh [5] stud-
ied on the criteria of themean residual lifetime. Bhattacharjee

and Sethuraman [6] have considered the families of life dis-
tributions characterized by two moments. Piriyakumar and
Renganathan [7] employed fuzzy random variables to define
various stochastic orderings. Ramasubramanian andMahen-
dran [8] studied the hazard rate, mean residual life ordering,
and bivariate characterization of hazard rate ordering of
fuzzy random variables.

In this paper the variability ordering of two fuzzy random
variables 𝑋 and 𝑌 in the sense of more and less variables of
fuzzy random variables in terms of its distribution function
is defined. The application to the variability ordering of
fuzzy random variables, a property of new better than
used in expectation (NBUE) and new worse than used in
expectation (NWUE), is achieved.The concept of generalized
variability orderings of nonnegative fuzzy random variables
is commenced.The purpose of this paper is to investigate the
implications of<𝑃 ordered lifetimes represented by fuzzy ran-
dom variables.The <𝑃 domination is a generalized variability
ordering. A useful integral inequality to the case of fuzzy
random variables using <𝑃 ordering is suggested. The results
consisting of the equivalent conditions defend the generalized
variability ordering. These orderings are employed to com-
pare the appealing natures of different risks and are essential
in the theory of decision making under uncertainty.
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The fuzzy random variables 𝑋 and 𝑌 are considered as
the lifetime of components.The variability ordering and gen-
eralized variability ordering are useful to compare the fuzzy
random variables, also in terms of their respective lifetime
distributions. Variability orderings are used to compare prob-
ability distributions according to their spread or dispersion. If
two variables have the samemean, they can still be compared
by spreading out of their distributions. This is captured to
a limited extent by the variance, but more fully by a range
of stochastic orders. For generalized variability orderings,
<
𝑃 ordered lifetimes of fuzzy random variables which must

have a 𝑝th moment. Ross and Schechner [9] proved the
property of the variability ordering and applied it to branch-
ing processes and shock models and also to a population
survival and to Poisson shock model. Life distributions and
their variations have been introduced in reliability theory; the
applications of these classes of life distributions have been
seen in engineering, social, biological science, and so forth.
Reliability analysis has shown a growing interest in modeling
of survival data using classifications of life distributions based
on some aspects of ageing [10].

For the families of life distributions, Barlow and Proschan
[10] have proved the following chain of implication: IFR ⇒

IFRA ⇒ NBU ⇒ NBUE and DFR ⇒ DFRA ⇒ NWU ⇒

NWUE. In this chain of implication, new better than used
in expectation (NBUE) is the extended version of increasing
failure rate (IFR), increasing failure rate average (IFRA), and
new better than used (NBU). Similarly, new worse than used
in expectation (NWUE) is also the extended version of the
decreasing failure rate (DFR), decreasing failure rate average
(DFRA), and new worse than used (NWU).

NBUE (NWUE) is used to compare the ageing properties
of two arbitrary life distributions. Lorenzo et al. [11] have used
NBUE property for estimation of distributions. The simple
ageing concepts such as IFR, IFRA, NBU, and NBUE are
proved useful in reliability related decision making, such as
in replacement and maintenance studies. In this paper, a
property of new better than used in expectation (NBUE) and
new worse than used in expectation (NWUE) is derived as
an application to the variability ordering of fuzzy random
variables (Theorem 11).

This paper is organized in the following manner. In Sec-
tion 2, the preliminaries of fuzzy umbers and fuzzy random
variables are explained. In Section 3, the concept of variability
ordering and its related definitions are discussed and a prop-
erty of NBUE and NWUE is obtained as an application to the
variability ordering of fuzzy random variables. In Section 4,
the concept of generalized variability ordering is introduced
to the case of Kwakernaak’s fuzzy random variables and the
derived equivalent conditions that justify the generalized
variability orderings.

2. Preliminaries

Definition 1. Let 𝑋 be a universal set; then a fuzzy set 𝐴 =

{(𝑥, 𝜇
𝐴
(𝑥))/𝑥 ∈ 𝑋} of 𝑋 is defined by its membership

function 𝜇
𝐴
: 𝑋 → [0, 1]; see [12].

Definition 2. For each 0 ≤ 𝛼 ≤ 1, the 𝛼-cut set of𝐴 is denoted
by 𝐴
𝛼
= {𝑥 ∈ 𝑋 : 𝜇

𝐴
(𝑥) ≥ 𝛼} [12].

Definition 3. A fuzzy number is a fuzzy set of 𝑅 such that the
following conditions are satisfied:

(i) 𝐴 is normal if there exist 𝑥 ∈ 𝑋 such that 𝜇
𝐴
(𝑥) = 1.

(ii) 𝐴 is called convex if 𝜇
𝐴
(𝜆𝑥
1
+ (1 − 𝜆𝑥

2
)) ≥

min(𝜇
𝐴
(𝑥
1
), 𝜇
𝐴
(𝑥
2
)).

(iii) 𝐴 is called upper semicontinuous with compact
support; that is, for every 𝜖 > 0 there exist 𝛿 > 0;
|𝑥 − 𝑦| < 𝛿 ⇒ 𝜇

𝐴
(𝑥) < 𝜇

𝐴
(𝑦) + 𝜖.

(iv) The 𝛼-cut of a fuzzy number is a closed interval
denoted by 𝐴

𝛼
= [𝐴

𝐿

𝛼
, 𝐴
𝑈

𝛼
] where 𝐴

𝐿

𝛼
= inf{𝑥 ∈

𝑅; 𝜇
𝐴
(𝑥) ≥ 𝛼} and 𝐴𝑈

𝛼
= sup{𝑥 ∈ 𝑅; 𝜇

𝐴
(𝑥) ≥ 𝛼}.

(v) If 𝐴 is a closed and bounded fuzzy number with 𝐴
𝐿

𝛼
,

𝐴
𝑈

𝛼
and its membership function is strictly increasing

on [𝐴𝐿
𝛼
, 𝐴
𝐿

1
] and strictly decreasing on [𝐴𝑈

1
, 𝐴
𝑈

𝛼
] then

𝐴 is called canonical fuzzy number.

Definition 4. Let (Ω, 𝑓, 𝑃) be a probability space. A fuzzy ran-
dom variable 𝑋 : Ω → 𝐹(𝑅), where 𝐹(𝑅) is the set of fuzzy
numbers in 𝑅 (i.e., for 𝑤 ∈ Ω, 𝑋(𝑤) ∈ 𝐹(𝑅)) that satisfies
the following properties. For 𝛼 ∈ (0, 1] and 𝑤 ∈ Ω both
𝑋
⋆

𝛼
and 𝑋

⋆∗

𝛼
defined as 𝑋⋆

𝛼
(𝑤) = inf 𝑋

𝛼
(𝑤) and 𝑋

∗⋆

𝛼
(𝑤) =

Sup𝑋
𝛼
(𝑤) are finite real valued randomvariables on (Ω, 𝑓, 𝑃)

such that the mathematical expectations 𝐸𝑋
⋆

𝛼
and 𝐸𝑋

⋆∗

𝛼

exist. For 𝛼 ∈ (0, 1],𝑋⋆
𝛼
∈ 𝑋
𝛼
(𝑤) and𝑋⋆∗

𝛼
∈ 𝑋
𝛼
(𝑤) [1, 2].

If 𝑢
𝑜
is the latent variable and𝑤 ∈ Ω is the outcome of the

experiment, the exact value of 𝑢
𝑜
(𝑤) is unobservable and it is

only known through a fuzzy numberwithwhich 𝑢
𝑜
(𝑤) is sub-

merged in Kwakernaak [1, 2] construction of fuzzy random
variables; random variable found in the basic set is required
to exhibit a type of 𝜎(𝑥)-measurability. Due to this kind of
construction many 𝑓 measurable random variables may be
abandoned. Nevertheless we require some degree of struc-
tural compatibility between fuzzy perception and the under-
lyingmeasure space. To accomplish this requirement Boswell
and Taylor [13] have imposed an assumption that 𝜎(𝑥) must
constitute a subsigma algebra of𝑓. If𝑈 is a𝑓-measurable ran-
dom variable then 𝜇

𝑋
(𝑢) = inf

𝑤∈Ω
𝑋
𝑤
(𝑢(𝑤)) is the valuation

of its suitability as a reconstruction of 𝑢
𝑜
. Let 𝑈

𝑓
be the col-

lection of all 𝑓-measurable random variables onΩ. Then the
fuzzy random variable induced by 𝑋 is defined as 𝑋 =

(𝑈
𝑓
, 𝜇
𝑥
). The expectation and probability for the fuzzy ran-

dom variable are defined as

𝜇

𝐸𝑋

(𝑥) = sup
𝑈∈𝑈𝑓:𝐸𝑈=𝑋

inf
𝑤∈Ω

𝑋
𝑤 (𝑈 (𝑤)) ,

𝜇

𝑃(𝑥∈𝐴)

(𝑝) = sup
𝑈∈𝑈𝑓:𝑃(𝑈∈𝐴)=𝑝

inf
𝑤∈Ω

𝑋
𝑤 (𝑈 (𝑤)) .

(1)
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3. Variability Orderings for
Fuzzy Random Variables

Definition 5. The fuzzy random variables𝑋 is said to bemore
variable (less variable) than the fuzzy random variable𝑌 if for
𝛼 ∈ (0, 1]

𝐸 [ℎ (𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
)] ≥ (≤) 𝐸 [ℎ (𝑌

⋆

𝛼
∨ 𝑌
⋆∗

𝛼
)] (2)

for all increasing convex function ℎ. Symbolically one denotes
it as𝑋≥V 𝑌 (𝑋≤V 𝑌) [14].

Theorem 6. If 𝑋 and 𝑌 are nonnegative fuzzy random
variables with distribution functions𝐹 and𝐺, respectively, then
𝑋≥V 𝑌 (𝑋≤V 𝑌) if and only if

∫

∞

𝑎

𝐹 (𝑥) 𝑑𝑥 ≥ (≤) ∫

∞

𝑎

𝐺 (𝑥) 𝑑𝑥 ∀𝑎 ≥ 0 (3)

(see [14]).

Definition 7. 𝑅(𝑥/𝑡) = Pr(𝑇 > 𝑥 + 𝑡/𝑇 > 𝑡) = Pr(𝑇 >

𝑥 + 𝑡)/Pr(𝑇 > 𝑡) = 𝑅(𝑋 + 𝑡)/𝑅(𝑡) is called the conditional
survivor function of the item at age 𝑡. The mean residual life
of the item at age 𝑡 is MRL(𝑡) = 𝜇(𝑡) = ∫

∞

0
𝑅(𝑥/𝑡)𝑑𝑥 = (1/

𝑅(𝑡)) ∫

∞

𝑡
𝑅(𝑥)𝑑𝑥 [15].

Definition 8. A life distribution 𝐹(𝑥) is said to be new better
than used in expectation (𝐹 is NBUE) if (i) 𝐹 has finite mean
𝜇 (ii) MRL(𝑋) ≤ 𝜇. A life distribution 𝐹(𝑥) is said to be new
worse than used in expectation (𝐹 is NWUE) if (i)𝐹 has finite
mean 𝜇 (ii) MTTF(𝑋) ≥ 𝜇 [15].

Definition 9. Let 𝑇 denote the time to failure of an item, with
the probability density 𝑓(𝑡) and survival function 𝑅(𝑡). The
mean time to failure is the mean value of 𝑇 which is given by

MTTF = ∫

∞

0

𝑡 ⋅ 𝑓 (𝑡) 𝑑𝑡 = ∫

𝑡

0

𝑅 (𝑡) 𝑑𝑡 (4)

(see [15]).

Definition 10. The nonnegative fuzzy random variable 𝑋 is
said to be new better than used in expectation (NBUE) if for
𝛼 ∈ (0, 1]

𝐸 [

(𝑋
⋆

𝛼
− 𝑎) ∨ (𝑋

⋆∗

𝛼
− 𝑎)

(𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
)

> 𝑎] ≤ 𝐸 [𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
]

∀𝑎 ≥ 0.

(5)

It is said to be new worse than used in expectation (NWUE)
if for 𝛼 ∈ (0, 1]

𝐸 [

(𝑋
⋆

𝛼
− 𝑎) ∨ (𝑋

⋆∗

𝛼
− 𝑎)

(𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
)

> 𝑎] ≥ 𝐸 [𝑋] ∀𝑎 ≥ 0. (6)

If 𝑋 is considered as the lifetime of some unit, then 𝑋 being
NBUE (NWUE) means that the expected residual life of any
used item is less (greater) than or equal to the expected life of
a new item. If𝑋 is NBUE and 𝐹 is the distribution of𝑋, then
we say that 𝐹 is an NBUE distribution and similar to NWUE.

Theorem 11. If 𝐹 is an (i) NWUE distribution with mean 𝜇,
then 𝐹≥V exp(𝜇), and if it is (ii) NBUE distribution with mean
𝜇 then𝐹≤V exp(𝜇)where exp(𝜇) is the exponential distribution
with mean 𝜇.

Proof of (i). Suppose 𝐹 is NWUE with mean 𝜇; we need to
prove that

∫

∞

𝑐

𝐹 (𝑥) 𝑑𝑥 ≥ ∫

∞

𝑐

𝑒
−𝑥/𝜇

𝑑𝑥 ∀𝑐 ≥ 0. (7)

If𝑋 has distribution 𝐹, then for

𝐸[

(𝑋
⋆

𝛼
− 𝑎) ∨ (𝑋

⋆∗

𝛼
− 𝑎)

(𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
)

> 𝑎]

= ∫

∞

0

𝑃[

(𝑋
⋆

𝛼
− 𝑎) ∨ (𝑋

⋆∗

𝛼
− 𝑎) > 𝑥

(𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
) > 𝑎

] 𝑑𝑥

= ∫

∞

0

𝑃[

(𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
) > 𝑎 + 𝑥

(𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
) > 𝑎

] 𝑑𝑥

= ∫

∞

0

𝐹 (𝑎 + 𝑥)

𝐹 (𝑎)

𝑑𝑥 = ∫

∞

𝑎

𝐹 (𝑦)

𝐹 (𝑎)

𝑑𝑦.

(8)

𝐹 is NWUE with mean 𝜇; we have 𝐸[(𝑋⋆
𝛼
− 𝑎) ∨ (𝑋

⋆∗

𝛼
− 𝑎)/

(𝑋
⋆

𝛼
∨ 𝑋
⋆∗

𝛼
) > 𝑎] ≥ 𝐸[𝑋].

Equation (8) implies

∫

∞

𝑎

𝐹 (𝑦)

𝐹 (𝑎)

𝑑𝑦 ≥ 𝐸 (𝑋)

󳨐⇒ ∫

∞

𝑎

𝐹 (𝑦)

𝐹 (𝑎)

𝑑𝑦 ≥ 𝜇

󳨐⇒

𝐹 (𝑎)

∫

∞

𝑎
𝐹 (𝑦) 𝑑𝑦

≤

1

𝜇

󳨐⇒ ∫

𝑐

0

𝐹 (𝑎)

∫

∞

𝑎
𝐹 (𝑦) 𝑑𝑦

𝑑𝑎 ≤

1

𝜇

∫

𝑐

0

𝑑𝑎 =

𝑐

𝜇

󳨐⇒ ∫

𝑐

0

𝐹 (𝑎)

∫

∞

𝑎
𝐹 (𝑦) 𝑑𝑦

𝑑𝑎 ≤

𝑐

𝜇

.

(9)

We can evaluate the left-hand side by making the change of
variables

𝑥 = ∫

∞

𝑎

𝐹 (𝑦) 𝑑𝑦 = ∫

∞

𝑎

𝑑 (𝐹 (𝑦)) = 𝐹 (∞) − 𝐹 (𝑎) ,

𝑥 = 𝐹 (𝑎) ,

𝑑𝑥 = 𝐹 (𝑎) 𝑑𝑎.

(10)

Taking 𝑎 = 0,

𝑥 = ∫

∞

0

𝐹 (𝑦) 𝑑𝑦 = 𝐸 (𝑋) = 𝜇. (11)
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Taking 𝑎 = 𝑐, we have

𝑥 = ∫

∞

𝑐

𝐹 (𝑦) 𝑑𝑦. (12)

We denote

𝑥 (𝑐) = ∫

∞

𝑐

𝐹 (𝑦) 𝑑𝑦. (13)

Then (9) takes up the form

−∫

𝑥(𝑐)

𝜇

𝑑𝑥

𝑥

≤

𝑐

𝜇

󳨐⇒ − log𝑥
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥(𝑐)

𝜇

≤

𝑐

𝜇

󳨐⇒ − log[

[

∫

∞

𝑐
𝐹 (𝑦) 𝑑𝑦

𝜇

]

]

≤

𝑐

𝜇

󳨐⇒ log[

[

∫

∞

𝑐
𝐹 (𝑦) 𝑑𝑦

𝜇

]

]

≥ −

𝑐

𝜇

󳨐⇒

∫

∞

𝑐
𝐹 (𝑦) 𝑑𝑦

𝜇

≥ 𝑒
−𝑥/𝜇

󳨐⇒ ∫

∞

𝑐

𝐹 (𝑦) 𝑑𝑦 ≥ 𝜇𝑒
−𝑥/𝜇

󳨐⇒ ∫

∞

𝑐

𝐹 (𝑦) 𝑑𝑦 ≥ ∫

∞

𝑐

𝑒
−𝑥/𝜇

𝑑𝑥,

𝑐 ≥ 0.

(14)

After proving (ii) NBUE distribution with mean 𝜇 then
𝐹≤V exp(𝜇) is similar to the above.

4. Generalized Variability Ordering for
Fuzzy Random Variables

The investigation of generalized variability ordering and its
weaker versions among nonnegative fuzzy random variables
representing lifetime components are stated in this section.

Definition 12. Let 𝑋, 𝑌 be nonnegative fuzzy random vari-
ables representing lifetimes with distribution functions𝐹 and
𝐺, respectively. One says𝐹<

𝑃
𝐺with a finitemoment of order

𝑝 > 0, if the survival functions satisfy

∫

∞

𝑡

𝑋
𝑃−1

[𝑃 {(𝑌
∗

𝛼
− 𝑋
∗

𝛼
) ∨ (𝑌

∗∗

𝛼
− 𝑋
∗∗

𝛼
)} > 𝑥] 𝑑𝑥

≥ 0.

(15)

For 𝑡 > 0 and for each 𝛼 ∈ (0, 1], we say that the fuzzy
random variables𝑋<

𝑃
𝑌 ⇔ 𝐹<

𝑃
𝐺.

Consider the following relation <
𝑃 among life distribu-

tions defined by using condition (15).

Definition 13. 𝐹<(𝑃) 𝐺 if

∫

∞

𝑡

𝑋
𝑃−1

[𝑃 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)} > 0] 𝑑𝑥

≤ ∫

∞

𝑡

𝑋
𝑃−1

[𝑃 {(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥)} > 0] 𝑑𝑥

< ∞

(16)

for 𝑡 ≥ 0 and for each 𝛼 ∈ (0, 1].

Theorem 14. If 𝑋 and 𝑌 are nonnegative fuzzy random
variables with distribution functions𝐹 and𝐺, respectively, then
𝑋≥V 𝑌 if and only if

∫

∞

𝑎

[𝑃 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)} > 0] 𝑑𝑥

≥ ∫

∞

𝑎

[𝑃 {(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥)} > 0] 𝑑𝑥

(17)

for all 𝑎 ≥ 0 and 𝛼 ∈ (0, 1].

Proof. We assume that𝑋≥V 𝑌.
Define the function ℎ

𝑎
as

ℎ
𝑎 (𝑥) = (𝑥 − 𝑎)

+
=

{

{

{

0; 𝑥 ≤ 𝑎

𝑥 − 𝑎; 𝑥 > 𝑎.

(18)

ℎ
𝑎
is the convex increasing function:

∴ 𝐸 [ℎ
𝑎 (𝑋)] ≥ 𝐸 [ℎ

𝑎 (𝑌)]

𝐸 [ℎ
𝑎 (𝑋)] = ∫

∞

0

𝑃 {[(𝑋
∗

𝛼
− 𝑎) ∨ (𝑋

∗∗

𝛼
− 𝑎)] > 𝑥} 𝑑𝑥

= ∫

∞

0

𝑃 {[𝑋
∗

𝛼
∨ 𝑋
∗∗

𝛼
] > 𝑎 + 𝑥} 𝑑𝑥

= ∫

∞

𝑎

𝑃 {[𝑋
∗

𝛼
∨ 𝑋
∗∗

𝛼
] > 𝑦} 𝑑𝑦

= ∫

∞

𝑎

𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥.

(19)

Similarly

𝐸 [ℎ
𝑎 (𝑌)] = ∫

∞

𝑎

𝑃 {[(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥. (20)

Conversely assume that

∫

∞

𝑎

𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

≥ ∫

∞

𝑎

𝑃 {[(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

(21)

for all 𝑎 ≥ 0 and 𝛼 ∈ (0, 1].
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Let ℎ be a convex function, and suppose that ℎ is twice
differentiable. Since ℎ is convex and ℎ󸀠󸀠 ≥ 0,

∫

∞

0

ℎ
󸀠󸀠
(𝑎) ∫

∞

𝑎

𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥 𝑑𝑎

≥ ∫

∞

0

ℎ
󸀠󸀠
(𝑎)

⋅ ∫

∞

𝑎

𝑃 {[(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥 𝑑𝑎.

(22)

Consider

∫

∞

0

ℎ
󸀠󸀠
(𝑎) ∫

∞

𝑎

𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥 𝑑𝑎

= ∫

∞

0

∫

𝑥

𝑎

(ℎ
󸀠󸀠
(𝑎) 𝑑𝑎) 𝑃 {[(𝑋

∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)]

> 0} 𝑑𝑥 = ∫

∞

0

∫

𝑥

0

𝑑 (ℎ
󸀠
(𝑎))

⋅ 𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

= ∫

∞

0

(ℎ
󸀠
(𝑎))

𝑥

0
𝑃 {[(𝑋

∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)]

> 0} 𝑑𝑥 = ∫

∞

0

[ℎ
󸀠
(𝑥) − ℎ

󸀠
(0)]

⋅ 𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

= ∫

∞

0

ℎ
󸀠
(𝑥) 𝑃 {[(𝑋

∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

− ℎ
󸀠
(0) ∫

∞

0

𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

= ∫

∞

0

ℎ
󸀠
(𝑥) 𝑃 {[(𝑋

∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

− ℎ
󸀠
(0) 𝐸 (𝑋) = ∫

∞

0

ℎ
󸀠
(𝑥) 𝑃 {[(𝑋

∗

𝛼
∨ 𝑋
∗∗

𝛼
)]

> 𝑥} 𝑑𝑥 − ℎ
󸀠
(0) 𝐸 (𝑋) = ∫

∞

0

ℎ
󸀠
(𝑥) (1

− 𝑃 {[(𝑋
∗

𝛼
∨ 𝑋
∗∗

𝛼
)] ≤ 𝑥} 𝑑𝑥) − ℎ

󸀠
(0) 𝐸 (𝑋)

= ∫

∞

0

ℎ
󸀠
(𝑥) ∫

∞

𝑥

𝑑𝑃 {[𝑋
∗

𝛼
∨ 𝑋
∗∗

𝛼
] ≤ 𝑦} − ℎ

󸀠
(0)

⋅ 𝐸 (𝑋) = ∫

∞

0

∫

∞

𝑥

ℎ
󸀠
(𝑥) 𝑑𝑥 𝑑𝑃 {𝑋

∗

𝛼
∨ 𝑋
∗∗

𝛼
} ≤ 𝑦

− ℎ
󸀠
(0) 𝐸 (𝑋)

= ∫

∞

0

∫

𝑦

0

ℎ
󸀠
(𝑥) 𝑑𝑥 [𝑑𝑃 {𝑋

∗

𝛼
∨ 𝑋
∗∗

𝛼
} ≤ 𝑦] − ℎ

󸀠
(0)

⋅ 𝐸 (𝑋) = ∫

∞

0

ℎ (𝑦) [𝑑𝑃 {𝑋
∗

𝛼
∨ 𝑋
∗∗

𝛼
} ≤ 𝑦] − ℎ (0)

− ℎ
󸀠
(0) 𝐸 (𝑋) = 𝐸 [ℎ (𝑋)] − ℎ (0) − ℎ

󸀠
(0) 𝐸 (𝑋) .

(23)

If𝑋 is replaced by 𝑌 then

∫

∞

0

ℎ
󸀠󸀠
(𝑎) ∫

∞

𝑎

𝐺 (𝑥) 𝑑𝑥 𝑑𝑎

= 𝐸 [ℎ (𝑌)] − ℎ (0) − ℎ
󸀠
(0) 𝐸 (𝑌) .

(24)

By (15) we have

𝐸 [ℎ (𝑋)] − ℎ (0) ℎ
󸀠
(0) 𝐸 (𝑋)

≥ 𝐸 [ℎ (𝑌)] − ℎ (0) − ℎ
󸀠
(0) 𝐸 (𝑌) ,

that is, 𝐸 [ℎ (𝑋)] − ℎ
󸀠
(0) 𝐸 (𝑋)

≥ 𝐸 [ℎ (𝑌)] − ℎ
󸀠
(0) 𝐸 (𝑌) ,

that is, 𝐸 [ℎ (𝑋)] − 𝐸 [ℎ (𝑌)]

≥ ℎ
󸀠
(0) (𝐸 (𝑋) − 𝐸 (𝑌)) .

(25)

By stipulation,

∫

∞

𝑎

𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

≥ ∫

∞

𝑎

𝑃 {[(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

(26)

for all 𝑎 ≥ 0.
Taking 𝑎 = 0,

∫

∞

0

𝑃 {[(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥

≥ ∫

∞

0

𝑃 {[(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥)] > 0} 𝑑𝑥;

(27)

that is,

𝐸 (𝑋) ≥ 𝐸 (𝑌) . (28)

Since

ℎ
󸀠
(0) ≥ 0,

𝐸 (𝑋) ≥ 𝐸 (𝑌) .

(29)

We have

𝐸 [ℎ (𝑋)] − 𝐸 [ℎ (𝑌)] ≥ 0; (30)

that is,

𝐸 [ℎ (𝑋)] ≥ 𝐸 [ℎ (𝑌)] (31)

which concludes the proof.

Theorem 15. If 𝑋 and 𝑌 are nonnegative fuzzy random
variables such that 𝐸[𝑋] = 𝐸[𝑌] then 𝑋≥V 𝑌 if and only if
𝐸[ℎ(𝑋)] ≥ 𝐸[ℎ(𝑌)] for all convex ℎ.

Proof. Let ℎ be convex and suppose that𝑋≥V 𝑌.
By stipulation 𝐸[𝑋] = 𝐸[𝑌]; then by (25) we have

𝐸[ℎ(𝑋)] ≥ 𝐸[ℎ(𝑌)].
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Theorem 16. For the fuzzy random variables 𝑋 and 𝑌 the
following conditions are equivalent:

(i) 𝑋<
(𝑃)

𝑌.
(ii) 𝐸(𝑋𝑝 − 𝑡

𝑝
)
+
≤ 𝐸(𝑌

𝑝
− 𝑡
𝑝
)
+.

(iii) 𝐸(Ψ(𝑋𝑝)) ≤ 𝐸(Ψ(𝑌
𝑝
)) for all nondecreasing convexΨ

on [0,∞).

Proof. Consider

𝑃
−1
∫

∞

0

(𝑥
𝑝
− 𝑡
𝑝
)
+

𝑑𝑝 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)} ≤ 0

= 𝑃
−1
∫

𝑡

0

(𝑥
𝑝
− 𝑡
𝑝
)
+

𝑑𝑝 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)}

≤ 0 + 𝑃
−1
∫

∞

𝑡

(𝑥
𝑝
− 𝑡
𝑝
)
+

𝑑𝑝 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)} ≤ 0

= 𝑃
−1
∫

∞

𝑡

(𝑥
𝑝
− 𝑡
𝑝
) 𝑑𝑝 {(𝑋

∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)} ≤ 0

= 𝑃
−1

∫

∞

𝑡

(𝑥
𝑝
− 𝑡
𝑝
) 𝑝 {(𝑋

∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∞

𝑡

− 𝑃∫

∞

𝑡

𝑝 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥) ≤ 𝑎} 𝑃𝑥

𝑃−1
𝑑𝑥

= 𝑃
−1
∫

∞

𝑡

𝑃𝑥
𝑃−1

𝑑𝑥

− 𝑃∫

∞

𝑡

𝑝 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥) ≤ 0} 𝑥

𝑃−1
𝑑𝑥

= ∫

∞

𝑡

𝑥
𝑃−1

(𝑃 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥) > 0}) 𝑑𝑥,

𝑋<
(𝑃)

𝑌 ⇐⇒ ∫

∞

0

𝑥
𝑃−1

𝑃 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥) > 0} 𝑑𝑥

≤ ∫

∞

0

𝑥
𝑃−1

𝑃 {(𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥) > 0} 𝑑𝑥; 𝑡 ≥ 0

⇐⇒ 𝑃
−1
∫

∞

𝑡

((𝑥
𝑝
− 𝑡
𝑝
)
+

𝑑𝑝 {(𝑋
∗

𝛼
− 𝑥) ∨ (𝑋

∗∗

𝛼
− 𝑥)} ≤ 0)

≤ 𝑃
−1
∫

∞

𝑡

(𝑦
𝑝
− 𝑡
𝑝
)
+

𝑑𝑝 ((𝑌
∗

𝛼
− 𝑥) ∨ (𝑌

∗∗

𝛼
− 𝑥) ≤ 0)

⇐⇒ 𝐸 (𝑋
𝑝
− 𝑡
𝑝
)
+

≤ 𝐸 (𝑌
𝑝
− 𝑡
𝑝
)
+

.

(32)

Since Ψ is nondecreasing convex function on [0,∞),

𝐸 (𝑋
𝑝
− 𝑡
𝑝
)
+

≤ 𝐸 (𝑌
𝑝
− 𝑡
𝑝
)
+

⇐⇒ 𝐸(Ψ (𝑋
𝑝
))

≤ 𝐸 (Ψ (𝑌
𝑝
)) .

(33)

5. Conclusion

The variability ordering of fuzzy random variables is defined
and as an application a property of new better than used
in expectation and new worse than used in expectation
is derived using variability orderings for fuzzy random
variables. The generalized variability ordering and its weaker

versions among nonnegative fuzzy random variables repre-
senting lifetime components are discussed. These orderings
are employed to compare the appealing nature of different
risks and are essential in the theory of decisionmaking under
uncertainty.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] H. Kwakernaak, “Fuzzy random variables—I. definitions and
theorems,” Information Sciences, vol. 15, pp. 1–29, 1978.

[2] H. Kwakernaak, “Fuzzy random variables—II,” Information
Sciences, vol. 17, pp. 153–178, 1979.

[3] M. L. Puri and D. A. Ralescu, “Fuzzy random variables,” Journal
of Mathematical Analysis and Applications, vol. 114, no. 2, pp.
409–422, 1986.

[4] M. C. Bhattacharjee, “Some generalized variability orderings
among life distributions with reliability applications,” Journal of
Applied Probability, vol. 28, no. 2, pp. 374–383, 1991.

[5] A. M. Abouammoh, “On the criteria of the mean remaining
life,” Statistics & Probability Letters, vol. 6, no. 4, pp. 205–211,
1988.

[6] M. C. Bhattacharjee and J. Sethuraman, “Families of life dis-
tributions characterized by two moments,” Journal of Applied
Probability, vol. 27, no. 3, pp. 720–725, 1990.

[7] E. J. L. Piriyakumar and N. Renganathan, “Stochastic orderings
of fuzzy random variables,” International Journal of Information
Science and Management, vol. 12, no. 4, pp. 29–40, 2001.

[8] S. Ramasubramanian and P. Mahendran, “Estimation of hazard
rate and mean residual life ordering for fuzzy random variable,”
Abstract and Applied Analysis, vol. 2015, Article ID 164795, 5
pages, 2015.

[9] S. M. Ross and Z. Schechner, “Some reliability applications of
the variability ordering,” Research Report ORC 82-6, University
of California, 1982.

[10] R. E. Barlow and F. Proschan, StatisticalTheory of Reliability and
Life Testing, Probability Models, Holt, Rinehart and Winston,
New York, NY, USA, 1975.

[11] E. Lorenzo, G. Malla, and H. Mukerjee, “Estimation of distri-
butions with the new better than used in expectation property,”
Statistics & Probability Letters, vol. 83, no. 5, pp. 1346–1352, 2013.

[12] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8,
pp. 338–353, 1965.

[13] S. B. Boswell andM. S. Taylor, “A central limit theorem for fuzzy
randomvariables,”Fuzzy Sets and Systems, vol. 24, no. 3, pp. 331–
344, 1987.

[14] E. J. Lazarus Piriyakumar and S. Ramasubramanian, “Vari-
ability orderings of fuzzy random variables,” in Proceedings of
the National Conference on Discrete Mathematics and Its Appli-
cations (NCDMA ’07), pp. 221–229, September 2007.

[15] M. Rausand and A. Hoyla, System Reliability Theory, Models,
Statistical Methods and Applications, John Wiley & Sons, 2004.


