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Power series solutionmethodhas been traditionally used to solve ordinary and partial linear differential equations.However, despite
their usefulness the application of this method has been limited to this particular kind of equations. In this work we use themethod
of power series to solve nonlinear partial differential equations. The method is applied to solve three versions of nonlinear time-
dependent Burgers-type differential equations in order to demonstrate its scope and applicability.

1. Introduction

Power series solution (PSS) method is an old method that
has been limited to solve linear differential equations, both
ordinary differential equations (ODE) [1, 2] and partial differ-
ential equations (PDE) [3, 4]. Linear PDE have traditionally
been solved using the separation of variables method because
it permits obtaining a coupled system of ODE easier to
solve with the PSS method. Some examples of these are the
Legendre polynomials and the spherical harmonics used in
Laplace’s equations in spherical coordinates or in Bessel’s
equations in cylindrical coordinates [3, 4]. It is known that
in nonlinear PDE (NLPDE) this procedure is not possible.

In this work we compare the spectral method (SM) with
the PSS method solving three versions of nonlinear time-
dependent Burgers-type equations [5] because we know that
the SM is the more accurate numerical method. The SM
with collocation points (SMCP) is a numerical technique
applied to solve linear and nonlinear differential equations
with high accurate approximations to the solution [6]. This
has been used to solve PDE using polynomial interpolation
functionwith an orthogonal basis such as Fourier, Chebyshev,
or Legendre functions [7]. The SM has also been very

successful to solve any kind of DE problems, including inte-
gro-differential problems [8], with Newman boundary values
[9], and nonlinear PDE [10].

We use the symbolic computation package Matlab to
obtain the algebraic operations for the truncated series app-
roximation.This programhelps to do easier the tedious algeb-
raic operations.

2. Power Series Solution Method

We know that almost the totality of the NLPDE does not have
a solution with an analytic expression, that is, a solution in a
closed form of known functions. Our goal is to construct a
solution using a power series, taking advantage of the capacity
of power series to represent any function with algebraic series
developing the idea to construct an approximate solution
[11–17]. It also has the possibility to approximate a solution,
inclusive if an analytic form does not exist, in a similar
way like the Taylor’s series approximate the functions. The
existence of the PSS does not guarantee per se that the
represented function has an exact approximation in distant
points relative to the central value. However, considering

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2015, Article ID 712584, 9 pages
http://dx.doi.org/10.1155/2015/712584

http://dx.doi.org/10.1155/2015/712584


2 Abstract and Applied Analysis

that the PSS needs to satisfy the NLPDE, with initial values
condition (IVC) or with boundary values conditions (BVC),
therefore we can construct a well posed problem to obtain
an accurate solution, constrained with all these limiting
conditions [18]. Furthermore, the polynomial of the PSS is a
smoothed function and this can guarantee the existence of a
solution [18].

The PSS method represents a general solution with a
series of unknown coefficients. When the PSS polynomial is
substituted in the PDE we obtain a recurrence relation for
the expansion coefficients. These coefficients should be
expressed in function of the coefficients result from IVC or
BVC. In this way, we obtain a system of equations depending
on these initial value based coefficients. In order to obtain and
solve a consistent algebraic system of equations, we also need
the same number of coefficients and equations [11]. All these
conditions, in the beginning, provide a guarantee that the
PDE is a well posed problem; that is, existence, uniqueness,
and smoothness of the solution are well defined [18].

Finally, the PSS method is a proposal to find a semiana-
lytic solution as an asymptotic approximation (in space and
time) of a finite series with minimal error in the expansion
of terms of the series. From numerical analysis when a power
series ∑

𝑘
𝑎𝑘𝑥
𝑘 converges on an interval (−𝑐, 𝑐) to a function

𝑓, the radius of convergence is 𝑐. In our work, the radius of
convergence is defined by each interval where our error was
estimated as we see below.

3. Numerical Results

First, we consider the nonlinear time-dependent one-dimen-
sional generalized Burgers-Huxley equation [5]:
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where 𝛾, ], 𝜂, and 𝛿 are real parameters. With 𝛿 = 1, this
equation admits a travellingwave solution.Then𝑈(𝑥, 𝑡) reads

𝑈 (𝑥, 𝑡) = 𝜙 (𝑧) , (3)

with 𝑧 = 𝑘𝑥 − 𝑤𝑡, where 𝑘 and 𝑤 represent the wave number
and frequency of the travelling wave, respectively, working as
unknown variables. Introducing (3) in (1) we obtain
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The ansatz for (4) will be a PSS as
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The respective derivatives and nonlinear terms in (4) result in
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Substituting the series of (6) in (4), we obtain the recurrence
relation
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Solving with Matlab until degree 𝑛 = 3 of PSS from (4), we
obtain the following values for the coefficients:
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...

(8)

We will use the initial conditions to obtain the unknown
coefficients (8). From the initial condition (2), we express
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𝑈(𝑥, 0) as a polynomial series applying Taylor’s theorem.
Then
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(9)

Matching the coefficients of this polynomial with the coeffi-
cients (8) of our ansatz, we obtain the next values: 𝑎0 = 𝛾/2,
𝑎1 = 𝛾/2, 𝑎2 = 0, 𝑎3 = −𝛾/6, 𝑎4 = 0, 𝑎5 = 𝛾/15, 𝑎6 = 0,
𝑎7 = −17𝛾/630, and so forth.

With 𝑎2 and 𝑎3 values matched to their respective coef-
ficients in (8), we obtain an algebraic system of 2 equations
with two variables. Solving this one, we obtain the value of
the unknown variables 𝑘 and 𝑤:

𝑘 = 𝛾
−] + √]2 + 8𝜂

8
,
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(10)

Then, the complete solution as PSS for the NLDE (1) reads
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(11)

As it usually does when an approximate solution with PSS
is obtained, a test of accuracy of the approximation must be
performed. In this way, we calculate the absolute difference
between exact and approximated solution defined as𝐸(𝑥, 𝑡) =
|𝑈(𝑥, 𝑡) − 𝑈(𝑥, 𝑡)|, where 𝑈 is the exact solution obtained
from [5], and 𝑈 is the calculated solution (11), at the point
(𝑥, 𝑡), until the power degree 𝑛 = 19, respectively. We
compute the error, with the parameters values 𝛾 = 0.001,
] = 1, and 𝜂 = 1, within the intervals 𝑥 = [−2000, 2000] and
𝑡 = [0, 1000]. This result is shown in Figure 1. This parameter
set was selected because it is the same one used in [5] to do
a comparison. The convergence of the power series, 𝜙(𝑧) =
∑
∞

𝑛=0
𝑎𝑛𝑧
𝑛, depends on 𝑧 and also the coefficient 𝑎𝑛, and then

it is possible to adjust these ones to solve theNLDEand to find
a solution that approximates its behavior to any distance and
time, at less in the interval where we calculate the solution.
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Figure 1: Absolute error of Burgers-Huxley equation, (1), with 𝛿 = 1,
𝛾 = 0.001, ] = 1, and 𝜂 = 1.
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Figure 2: Trajectories of the approximate solution of the Burgers-
Huxley equation, (1), with 𝛿 = 1, 𝛾 = 0.001, ] = 1, and 𝜂 = 1, for
𝑥 = 0.9.

We also compare the approximated solution with the
spatial part fixed in 𝑥 = 0.9, with different power degree
polynomial (𝑛 = 7, 11, 19), relative to the exact result.
This comparison is shown in Figure 2. From this figure we
note that the improvement is better when the power degree
increases. In a similar way, we solved (1) with 𝛿 = 2 and
𝛿 = 3. For 𝛿 = 2 and 𝛾 = ] = 𝜂 = 0.001 in the intervals
𝑥 = [−100, 100] and 𝑡 = [0, 1000] we calculate the error
shown in Figure 3. Finally, in Figure 4we showed the absolute
error of (1) for 𝛿 = 3 with 𝛾 = ] = 𝜂 = 0.001 in the intervals
𝑥 = [−300, 300] and 𝑡 = [0, 10000].




