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The existence and uniqueness of a mild solution to nonlinear fuzzy differential equation constrained by initial value were proven.
Initial value constraint was then replaced by delay function constraint and the existence of a solution to this type of problem was
also proven. Furthermore, the existence of a solution to optimal control problem of the latter type of equation was proven.

1. Introduction

Fuzzy logic is originated by Zadeh in 1965. It is primarily
based on the fact that “all things happening in real world
are unstable and unpredictable.” This idea was put forward
and successfully applied to many fields of research—such as
medicine, computer science, engineering, and economics—
owing to its remarkable effectiveness at solving problems that
could not be solved by traditional logic; see [1–3] and refer-
ences therein. In particular, fuzzy logic has long been applied
to dynamic systems expressed in differential equations; see
[4–15] and references therein. Moreover, dynamic system
with time delay can be advantageously applied to many
important problems such as determining the current position
of a particle from the history of its past movement; see [16–
19] and references therein. In this study, fuzzy differential
equation of dynamic system constrained by time delay was
investigated. The objectives of this investigation were to
delineate the definitions of and theorems on fuzzy control
system with time delay and to find the necessary conditions
for the existence of a solution to this type of system by
functional analysis.

2. Preliminaries

This section discusses the definitions and theorems pertain-
ing to this research.

Definition 1. Let R
𝐹
be a family of fuzzy subset of R, called a

fuzzy number space. It satisfies the following conditions, for
each 𝑢 ∈ R

𝐹
:

(1) 𝑢 is normal; that is, there exists 𝑥
0
∈ R such that

𝑢(𝑥
0
) = 1.

(2) 𝑢 is a convex fuzzy set; that is, 𝑢(𝑡𝑥 + (1 − 𝑡)𝑦) ≥
min{𝑢(𝑥), 𝑢(𝑦)} for all 𝑡 ∈ [0, 1] and 𝑥, 𝑦 ∈ R.

(3) 𝑢 is upper semicontinuous on R; that is, for each
𝑥 ∈ R and for all sequences 𝑥

𝑛
∈ R, if 𝑥

𝑛
→ 𝑥 then

lim
𝑛 → ∞

sup 𝑢(𝑥
𝑛
) ≤ 𝑢(𝑥).

(4) {𝑥 ∈ R | 𝑢(𝑥) > 0} is compact; that is, for all
sequences 𝑥

𝑛
∈ {𝑥 ∈ R | 𝑢(𝑥) > 0}, there is a subse-

quence 𝑥
𝑘
𝑛

such that 𝑥
𝑘
𝑛

→ 𝑦 ∈ {𝑥 ∈ R | 𝑢(𝑥) > 0}.

Notice that R = {𝜒
{𝑥}
| 𝑥 is real} and R ⊂ R

𝐹
.

Definition 2. Let 𝑢 ∈ R
𝐹
and 0 ≤ 𝑟 ≤ 1. The set of 𝑟-cut of 𝑢,

denoted as [𝑢]
𝑟
, is defined by

[𝑢]𝑟
= {𝑥 ∈ R | 𝑢 (𝑥) ≥ 𝑟} for 0 < 𝑟 ≤ 1,

[𝑢]0
= {𝑥 ∈ R | 𝑢 (𝑥) > 0}.

(1)

According to Definition 1, conditions (1)–(4) imply that
[𝑢]

𝑟
for all 0 ≤ 𝑟 ≤ 1 is a compact set. Hence, we can denote
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[𝑢]
𝑟
by a closed interval [𝑢(𝑟), 𝑢(𝑟)], where 𝑢, 𝑢 : [0, 1] → R

is a function satisfying the following conditions:
(1) 𝑢 is a bounded, left continuous, and nondecreasing

function on [0, 1].
(2) 𝑢 is a bounded, right continuous, and nonincreasing

function on [0, 1].
(3) 𝑢(𝑟) ≤ 𝑢(𝑟) for all 𝑟 ∈ [0, 1].
Next, we define addition and scalar multiplication for the

set in the sense of Minkowski.

Definition 3. Let 𝐴 and 𝐵 be any nonempty subsets of R and
𝜆 ∈ R; addition between𝐴 and 𝐵 denoted by𝐴+𝐵 is defined
by

𝐴 + 𝐵 = {𝑎 + 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} . (2)

Multiplication of 𝐴 by a scalar 𝜆 denoted by 𝜆𝐴 is defined by

𝜆𝐴 = {𝜆𝑎 | 𝑎 ∈ 𝐴} , (3)

where, for 𝜆 > 0, summation of 𝐴 + (−𝜆𝐵) is denoted by 𝐴 −
𝜆𝐵; that is,

𝐴 − 𝜆𝐵 = 𝐴 + (−𝜆𝐵) . (4)

Definition 4 (see [18]). Let 𝐴 and 𝐵 be any nonempty subsets
of R. A nonempty subset 𝐶 is called a Hukuhara difference
between 𝐴 and 𝐵 if 𝐴 = 𝐵 + 𝐶. A Hukuhara difference
between 𝐴 and 𝐵 is denoted by 𝐴 ⊖ 𝐵.

Note the following: (1) 𝐴 ⊖ 𝐵 may not exist even when
𝐴−𝐵 definitely exists, so, for any𝐴 and 𝐵,𝐴⊖𝐵 ̸= 𝐴−𝐵 and
(2) 𝐴 ⊖ 𝐴 = {0}.

Definition 5. Let𝑔 : R×R → R. Zadeh’s extension of𝑔 is the
function 𝑔 : R

𝐹
×R

𝐹
→ R

𝐹
(again, labeled as 𝑔) defined by

𝑔 (𝑢, V) (𝑧) = sup
𝑔(𝑥,𝑦)=𝑧

min {𝑢 (𝑥) , V (𝑦)} ∀𝑧 ∈ R. (5)

Theorem 6. Let 𝑔 : R
𝐹
× R

𝐹
→ R

𝐹
be Zadeh’s extension of

𝑔. Then, the set of 𝑟-cut of 𝑔(𝑢, V) is of the form

[𝑔 (𝑢, V)]
𝑟
= 𝑔 ([𝑢]𝑟

, [V]𝑟) (6)

for all 𝑢, V ∈ R
𝐹
and 0 ≤ 𝑟 ≤ 1.

Definition 5 together with Theorem 6 is called Zadeh’s
extension principle. Following Zadeh’s extension principle
and Minkowski’s definition, addition and scalar multiplica-
tion can be defined by the next definition.

Definition 7. Let 𝑢, V ∈ R
𝐹
and 𝜆 ∈ R; addition between 𝑢

and V, denoted by 𝑢 ⊕ V, is defined by

(𝑢 ⊕ V) (𝑧) = sup
𝑥+𝑦=𝑧

min {𝑢 (𝑥) , V (𝑦)} ∀𝑧 ∈ R, (7)

and multiplication of 𝑢 by a scalar 𝜆, denoted by 𝜆 ⊙ 𝑢, is
defined by

(𝜆 ⊙ 𝑢) (𝑧) =

{

{

{

𝑢(

𝑧

𝜆

) , 𝜆 ̸= 0

0, 𝜆 = 0.

(8)

Theorem 8. Let 𝑢, V ∈ R
𝐹
and 𝜆 ∈ R. Then, one has

[𝑢 ⊕ V]𝑟 = [𝑢]𝑟 + [V]𝑟 = [𝑢 (𝑟) + V (𝑟) , 𝑢 (𝑟) + V (𝑟)] ,

[𝜆 ⊙ 𝑢]𝑟
= 𝜆 [𝑢]𝑟

=

{
{
{
{

{
{
{
{

{

[𝜆𝑢 (𝑟) , 𝜆𝑢 (𝑟)] , 𝜆 > 0

[𝜆𝑢 (𝑟) , 𝜆𝑢 (𝑟)] , 𝜆 < 0

{0} , 𝜆 = 0,

(9)

where 0 = 𝜒
{0}

is the addition identity on R
𝐹
.

Theorem9 (see [20]). Under addition⊕ andmultiplication⊙,
one has the following:

(1) No element of R
𝐹
\ R, except 0, has an inverse under

⊕.
(2) For all 𝑎, 𝑏 ∈ R such that both 𝑎 and 𝑏 ≤ 0 or ≥ 0 and,

for all 𝑢 ∈ R
𝐹
,

(𝑎 + 𝑏) ⊙ 𝑢 = 𝑎 ⊙ 𝑢 ⊕ 𝑏 ⊙ 𝑢. (10)

(3) For all 𝜆 ∈ R and for all 𝑢, V ∈ R
𝐹
,

𝜆 ⊙ (𝑢 ⊕ V) = 𝜆 ⊙ 𝑢 ⊕ 𝜆 ⊙ V. (11)

(4) For all 𝜆, 𝛽 ∈ R and for all 𝑢 ∈ R
𝐹
,

(𝜆 + 𝛽) ⊙ 𝑢 = 𝜆 ⊙ 𝑢 ⊕ 𝛽 ⊙ 𝑢. (12)

Definition 10. Let 𝑢, V ∈ R
𝐹
. If there exists 𝑤 ∈ R

𝐹
such that

𝑢 = V ⊕ 𝑤, then 𝑤 is called a Hukuhara difference (fuzzy)
between 𝑢 and V, denoted by 𝑤 = 𝑢 ⊖ V.

Next, we define the distance between any two elements in
R

𝐹
. R+

0
denotes [0,∞).

Definition 11 (see [15]). Let𝑢, V ∈ R
𝐹
.Thedistance (Hausdorff

distance) between 𝑢 and V is defined by 𝑑
𝐻
: R

𝐹
×R

𝐹
→ R+

0
,

where
𝑑

𝐻 (
𝑢, V) = sup

𝑟∈[0,1]

max {󵄨󵄨󵄨
󵄨
𝑢 (𝑟) − V (𝑟)󵄨󵄨󵄨

󵄨
, |𝑢 (𝑟) − V (𝑟)|} . (13)

Hence, according to the property of the distance 𝑑
𝐻
,

(R
𝐹
, 𝑑

𝐻
) is a complete metric space.

Definition 12. A function 𝑓 : [𝑎, 𝑏] → R
𝐹
is called fuzzy

function and the 𝑟-cut of 𝑓(𝑡) for all 𝑡 ∈ [𝑎, 𝑏] is denoted by
[𝑓(𝑡)]

𝑟
= [𝑓(𝑡)(𝑟), 𝑓(𝑡)(𝑟)] for all 𝑟 ∈ [0, 1].

Definition 13. Let 𝑓 : [𝑎, 𝑏] → R
𝐹
be a fuzzy function. 𝑓 is

called fuzzy continuous on [𝑎, 𝑏] if for all 𝑡
0
∈ [𝑎, 𝑏] and for all

𝜖 > 0 there exists 𝛿 > 0 such that for all 𝑡 ∈ [𝑎, 𝑏] if |𝑡−𝑡
0
| < 𝛿,

then 𝑑
𝐻
(𝑓(𝑡), 𝑓(𝑡

0
)) < 𝜖.

Definition 14. Let 𝑓 : [𝑎, 𝑏] → R
𝐹
be a fuzzy function. 𝑓 is

called fuzzy uniform continuous on [𝑎, 𝑏] if for all 𝜖 > 0 there
exists 𝛿 > 0 such that for all 𝑠, 𝑡 ∈ [𝑎, 𝑏] if |𝑠 − 𝑡| < 𝛿, then
𝑑

𝐻
(𝑓(𝑠), 𝑓(𝑡)) < 𝜖.

Definition 15. Let 𝑓 : [𝑎, 𝑏] → R
𝐹
be a fuzzy function. One

says that 𝑓 is bounded on [𝑎, 𝑏] if there is𝑀 > 0 such that
𝑑

𝐻
(𝑓(𝑡), 0) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏].
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Definition 16 (see [18]). Let 𝑓 : [𝑎, 𝑏] → R
𝐹
be a fuzzy

function. One says that 𝑓 is fuzzy differentiable at 𝑥
0
∈ (𝑎, 𝑏)

if there is 𝑦 ∈ R
𝐹
and 𝛿 > 0 such that for all ℎ < 𝛿 if

𝑓(𝑥
0
+ ℎ) ⊖ 𝑓(𝑥

0
) and 𝑓(𝑥

0
) ⊖ 𝑓(𝑥

0
− ℎ) exist, then

lim
ℎ → 0

+

𝑑
𝐻
(

𝑓 (𝑥 + ℎ) ⊖ 𝑓 (𝑥0
)

ℎ

, 𝑦) = 0

= lim
ℎ → 0

+

𝑑
𝐻
(

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥 − ℎ)

ℎ

, 𝑦) .

(14)

The fuzzy number 𝑦 ∈ R
𝐹
is called fuzzy derivative of 𝑓 at 𝑥

0

and is denoted by 𝑓󸀠
(𝑥

0
) or (𝑑𝑓/𝑑𝑥)(𝑥

0
); that is,

𝑓
󸀠
(𝑥

0
) = lim

ℎ → 0
+

𝑓 (𝑥 + ℎ) ⊖ 𝑓 (𝑥0
)

ℎ

= lim
ℎ → 0

+

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥 − ℎ)

ℎ

.

(15)

For the extremes of the interval [𝑎, 𝑏], the fuzzy derivative of𝑓
at 𝑎 is𝑓󸀠

(𝑎) = lim
ℎ → 0

+((𝑓(𝑥+ℎ)⊖𝑓(𝑎))/ℎ) if lim
ℎ → 0

+((𝑓(𝑥+

ℎ)⊖𝑓(𝑎))/ℎ) exists, and the fuzzy derivative of𝑓 at 𝑏 is𝑓󸀠
(𝑏) =

lim
ℎ → 0

+((𝑓(𝑏)⊖𝑓(𝑥−ℎ))/ℎ) if lim
ℎ → 0

+((𝑓(𝑥+ℎ)⊖𝑓(𝑎))/ℎ)

exists (the multiplier 1/ℎ denotes a scalar fuzzy multiple).

Theorem 17 (see [15]). Let the following be true: 𝜆 ∈ R; 𝛼 :
[𝑎, 𝑏] → R is differentiable; and 𝑓, 𝑔 : [𝑎, 𝑏] → R

𝐹
is fuzzy

differentiable on [𝑎, 𝑏]; then the following is true:

(1) (𝑓 ⊕ 𝑔)󸀠(𝑡) = 𝑓󸀠
(𝑡) ⊕ 𝑔

󸀠
(𝑡).

(2) (𝜆 ⊙ 𝑓)󸀠(𝑡) = 𝜆 ⊙ 𝑓󸀠
(𝑡).

(3) (𝛼 ⊙ 𝑔)󸀠(𝑡) = 𝛼(𝑡) ⊙ 𝑓󸀠
(𝑡) ⊕ 𝑎

󸀠
(𝑡) ⊙ 𝑓(𝑡).

Definition 18. For each 𝑓 : [𝑎, 𝑏] → R
𝐹
, one says that 𝑓 is

integrable if there exists a fuzzy function 𝐹 : [𝑎, 𝑏] → R
𝐹

such that 𝐹󸀠
(𝑡) = 𝑓(𝑡) for all 𝑡 ∈ [𝑎, 𝑏]. The fuzzy function

𝐹 is called fuzzy antiderivative of 𝑓 and is denoted by 𝐹(𝑡) =
∫

𝑡

𝑎
𝑓(𝑠)𝑑𝑠.

Theorem 19 (see [15]). Let 𝑓 : [𝑎, 𝑏] → R
𝐹
be fuzzy

differentiable; then

𝑓 (𝑡) = 𝑓 (𝑎) ⊕ ∫

𝑡

𝑎

𝑓
󸀠
(𝑠) 𝑑𝑠. (16)

Theorem 20 (see [15]). Let 𝑓 : [𝑎, 𝑏] → R
𝐹
be fuzzy

integrable and 𝑐 ∈ [𝑎, 𝑏]; then

∫

𝑏

𝑎

𝑓 (𝑠) 𝑑𝑠 = ∫

𝑐

𝑎

𝑓 (𝑠) 𝑑𝑠 ⊕ ∫

𝑏

𝑐

𝑓 (𝑠) 𝑑𝑠. (17)

Theorem 21 (see [15]). If 𝑓 : [𝑎, 𝑏] → R
𝐹
is fuzzy

differentiable, then 𝑓 is fuzzy continuous.

Definition 22. A fuzzy sequence is a function from N to R
𝐹
.

A fuzzy sequence 𝑓 (where 𝑓(𝑛) = 𝑢
𝑛
∈ R for all 𝑛 ∈ R) is

denoted by {𝑢
𝑛
} or more briefly by 𝑢

𝑛
.

Definition 23. Let {𝑢
𝑛
} be a fuzzy sequence and 𝑢 ∈ R

𝐹
. One

says that {𝑢
𝑛
} converges to 𝑢 if and only if for all 𝜖 > 0 there

exists 𝑛
0
∈ N such that 𝑑

𝐻
(𝑢

𝑛
, 𝑢) < 𝜖 for all 𝑛 ≥ 𝑛

0
, denoted

by lim
𝑛 → ∞

𝑢
𝑛
= 𝑢.

Definition 24. Let {𝑢
𝑛
} be a fuzzy sequence. One says that {𝑢

𝑛
}

is bounded if there is 𝑁 > 0 such that 𝑑
𝐻
(𝑢

𝑛
, 0) < 𝑁 for all

𝑛 ∈ N.

3. Fuzzy Initial Value Problem

In this section, we discuss initial value problem of fuzzy
differential equation, give the definition of a solution and
sufficient conditions for its existence, and prove the relevant
theorems and lemmas and then the existence of the solution
by using the method of successive approximation.

In this paper, 𝐶([0, 𝑇],R
𝐹
) denotes {𝑓 : [0, 𝑇] → R

𝐹
|

𝑓 is fuzzy continuous} with a weighted metric defined by
𝑑

𝐶
(𝑢, V) = sup

𝑡∈[0,𝑇]
𝑒

−𝜆𝑡
𝑑

𝐻
(𝑢(𝑡), V(𝑡)), where 𝜆 ≥ 0 (which

can be any given value). Since (R
𝐹
, 𝑑

𝐻
) is complete, the space

(𝐶([0, 𝑇],R
𝐹
), 𝑑

𝐶
) is also complete; see [15]. For convenience,

we denote 𝐶([0, 𝑇],R
𝐹
) as 𝐶0.

3.1. Fuzzy Differential Equation. Consider an initial value
problem of a fuzzy differential equation:

𝑥
󸀠
(𝑡) = 𝑎 (𝑡) ⊙ 𝑥 (𝑡) ⊕ 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 𝑥
0
,

(18)

where 𝑥 is a fuzzy state function of time variable 𝑡, 𝑓(𝑡, 𝑥)
is a fuzzy input function of variable 𝑡 and 𝑥, 𝑥󸀠 is the fuzzy
derivative of 𝑥, 𝑥(0) = 𝑥0 is a fuzzy number, and 𝑎 : [0, 𝑇] →
R is a continuous function.Throughout this paper, we denote
𝑥 by [𝑥, 𝑥] and its 𝑟-cut by [𝑥(𝑡)]

𝑟
= [𝑥(𝑡)(𝑟), 𝑥(𝑡)(𝑟)] for all

0 < 𝑟 ≤ 1.
The fuzzy function 𝑓(𝑡, 𝑥) denotes [𝑓(𝑡, 𝑥), 𝑓(𝑡, 𝑥)] with

𝑓 (𝑡, 𝑥) = min {𝑓 (𝑡, 𝑢) | 𝑢 ∈ [𝑥 (𝑡)]𝑟} ,

𝑓 (𝑡, 𝑥) = max {𝑓 (𝑡, 𝑢) | 𝑢 ∈ [𝑥 (𝑡)]𝑟} .
(19)

The 𝑟-cut of 𝑓(𝑡, 𝑥) for 𝑡 ∈ [0, 𝑇] is given by

[𝑓 (𝑡, 𝑥 (𝑡))]
𝑟
= [𝑓 (𝑡, 𝑥 (𝑡)) (𝑟) , 𝑓 (𝑡, 𝑥 (𝑡)) (𝑟)]

∀0 < 𝑟 ≤ 1.

(20)

Consider the fuzzy derivative of 𝑆(𝑠, 𝑡) ⊙ 𝑥(𝑠) for all 𝑠 ∈
[0, 𝑡], where 𝑆(𝑠, 𝑡) = 𝑒∫

𝑡

𝑠

𝑎(𝜏)𝑑𝜏. If 𝑥 is fuzzy differentiable, that
is, a solution to (18), usingTheorem 19, we get

𝑑

𝑑𝑠

(𝑆 (𝑠, 𝑡) ⊙ 𝑥 (𝑠)) = 𝑆 (𝑠, 𝑡) ⊙ 𝑥
󸀠
(𝑠) ⊕

𝑑𝑆 (𝑠, 𝑡)

𝑑𝑠

⊙ 𝑥 (𝑠)
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= 𝑆 (𝑠, 𝑡)

⊙ [𝑎 (𝑠) ⊙ 𝑥 (𝑠) ⊕ 𝑓 (𝑠, 𝑥 (𝑠))]

⊕ (−𝑆 (𝑠, 𝑡)) 𝑎 (𝑠) ⊙ 𝑥 (𝑠)

= 𝑆 (𝑠, 𝑡) 𝑎 (𝑠) ⊙ 𝑥 (𝑠) ⊕ 𝑆 (𝑠, 𝑡)

⊙ 𝑓 (𝑠, 𝑥 (𝑠)) ⊕ (−𝑆 (𝑠, 𝑡)) 𝑎 (𝑠)

⊙ 𝑥 (𝑠) = 𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠)) .

(21)

UsingTheorem 20 and an initial value 𝑥(0) = 𝑥0, we obtain

𝑥 (𝑡) = 𝑆 (0, 𝑡) ⊙ 𝑥
0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (22)

Hence, (22) is a fuzzy integral that corresponds to the
fuzzy differential equation (18). Solution to (22) is a type of
solutions to (18) that we define next.

Definition 25. Let 𝑥 ∈ 𝐶([0, 𝑇],R
𝐹
). 𝑥 is called fuzzy mild

solution of the fuzzy differential equation (18) if 𝑥 satisfies the
fuzzy integral equation

𝑥 (𝑡) = 𝑆 (0, 𝑡) ⊙ 𝑥
0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (23)

where 𝑆(𝑠, 𝑡) = 𝑒∫
𝑡

𝑠

𝑎(𝜏)𝑑𝜏.

In the next section, we prove the existence of a fuzzy mild
solution of (18) under the following assumption.

Assumption H. It declares that if 𝑓(𝑡, 𝑥) = [𝑓(𝑡, 𝑥), 𝑓(𝑡, 𝑥)] is
a fuzzy function with 𝑓(𝑡, 𝑥) = min{𝑓(𝑡, 𝑢) | 𝑢 ∈ [𝑥(𝑡)]

𝑟
} =

𝐹(𝑡, 𝑥, 𝑥), 𝑓(𝑡, 𝑥) = max{𝑓(𝑡, 𝑢) | 𝑢 ∈ [𝑥(𝑡)]
𝑟
} = 𝐺(𝑡, 𝑥, 𝑥),

where 𝐹, 𝐺 : [0, 𝑇] × [𝐶([0, 𝑇], 𝐶([0, 1],R
𝐹
))]

2
→

𝐶([0, 1],R
𝐹
), then there is 𝑙 > 0 such that 𝑙𝑀𝑇 < 1

and |𝐹(𝑡
1
, 𝑥

1
(𝑡

1
)(𝑟), 𝑦

1
(𝑡

1
)(𝑟)) − 𝐹(𝑡

2
, 𝑥

2
(𝑡

2
)(𝑟), 𝑦

2
(𝑡

2
)(𝑟))(𝑟)|,

|𝐺(𝑡
1
, 𝑥

1
(𝑡

1
)(𝑟), 𝑦

1
(𝑡

1
)(𝑟)) − 𝐺(𝑡

2
, 𝑥

2
(𝑡

2
)(𝑟), 𝑦

2
(𝑡

2
)(𝑟))(𝑟)| ≤

𝑙(|𝑡
1
−𝑡

2
| +max{|𝑥

1
(𝑡

1
)(𝑟)−𝑥

2
(𝑡

2
)(𝑟)|, |𝑦

1
(𝑡

1
)(𝑟)−𝑦

2
(𝑡

2
)(𝑟)|}),

for all (𝑡
1
, 𝑥

1
, 𝑦

1
), (𝑡

2
, 𝑥

2
, 𝑦

2
) ∈ [0, 𝑇]×𝐶([0, 𝑇], 𝐶([0, 1],R))×

𝐶([0, 𝑇], 𝐶([0, 1],R)), where 𝑀 = sup
𝑠,𝑡∈[0,𝑇]

|𝑆(𝑠, 𝑡)| and
𝑆(𝑠, 𝑡) = 𝑒

∫
𝑡

𝑠

𝑎(𝜏)𝑑𝜏.

3.2. Existence of a Solution. In this subsection, we prove
the existence of a mild fuzzy solution to system (18) under
AssumptionH by using themethod of successive approxima-
tion. Let us begin by defining a sequence of function {𝑥

𝑛
} for

an initial value 𝑥0
∈ R

𝐹
as

𝑥
𝑛 (
𝑡) = 𝑆 (0, 𝑡) ⊙ 𝑥

0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑛−1 (
𝑠)) 𝑑𝑠

∀𝑡 ∈ [0, 𝑇] ,

(24)

where 𝑥
0
∈ 𝐶

0 is a given initial function. For any 𝑥0
∈ R

𝐹

and 𝑡 ∈ [0, 𝑇], we have 𝑥
𝑛
: [0, 𝑇] → R

𝐹
. Next, we show that

the sequence {𝑥
𝑛
} has the following properties:

(1) 𝑥
𝑛
∈ 𝐶

0 for all 𝑛 ∈ N.
(2) {𝑥

𝑛
} is a Cauchy sequence in 𝐶0.

Property 1. We show that 𝑥
𝑛
∈ 𝐶

0 for all 𝑛 ∈ N by referring
to the following statements.

Lemma26. Let𝑓 be a fuzzy function that satisfies Assumption
H. Then, for each 𝑡, where 𝑡

0
∈ [0, 𝑇], there exists 𝑙 > 0 such

that

𝑑
𝐻
(𝑓 (𝑡, 𝑥 (𝑡)) , 𝑓 (𝑡0

, 𝑥 (𝑡
0
)))

≤ 𝑙 (
󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡

0

󵄨
󵄨
󵄨
󵄨
+ 𝑑

𝐻
(𝑥 (𝑡) , 𝑥 (𝑡0

))) .

(25)

Proof. Let 𝑡, 𝑡
0
∈ [0, 𝑇]. Since

𝑑
𝐻
(𝑓 (𝑡, 𝑥 (𝑡)) , 𝑓 (𝑡0

, 𝑥 (𝑡
0
))) = sup

𝑟∈[0,1]

max {󵄨󵄨󵄨
󵄨
𝐹 (𝑡, 𝑥 (𝑡) (𝑟) , 𝑥 (𝑡) (𝑟)) (𝑟) − 𝐹 (𝑡0

, 𝑥 (𝑡
0
) (𝑟) , 𝑥 (𝑡0

) (𝑟)) (𝑟)
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝐺 (𝑡, 𝑥 (𝑡) (𝑟) , 𝑥 (𝑡) (𝑟)) (𝑟) − 𝐺 (𝑡0

, 𝑥 (𝑡
0
) (𝑟) , 𝑥 (𝑡0

) (𝑟)) (𝑟)
󵄨
󵄨
󵄨
󵄨
} ,

(26)

by Assumption H, there is 𝑙 > 0 such that

max {󵄨󵄨󵄨
󵄨
𝐹 (𝑡, 𝑥 (𝑡) (𝑟) , 𝑥 (𝑡) (𝑟)) (𝑟) − 𝐹 (𝑡0

, 𝑥 (𝑡
0
) (𝑟) ,

𝑥 (𝑡
0
) (𝑟)) (𝑟)

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑡, 𝑥 (𝑡) (𝑟) , 𝑥 (𝑡) (𝑟)) (𝑟) − 𝐺 (𝑡0

,

𝑥 (𝑡
0
) (𝑟) , 𝑥 (𝑡0

) (𝑟)) (𝑟)
󵄨
󵄨
󵄨
󵄨
} ≤ 𝑙 (

󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡

0

󵄨
󵄨
󵄨
󵄨

+max {󵄨󵄨󵄨
󵄨
𝑥 (𝑡) (𝑟) − 𝑥 (𝑡0

) (𝑟)
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) (𝑟) − 𝑥 (𝑡0

) (𝑟)
󵄨
󵄨
󵄨
󵄨
}) .

(27)

Hence,

𝑑
𝐻
(𝑓 (𝑡, 𝑥 (𝑡)) , 𝑓 (𝑡0

, 𝑥 (𝑡
0
))) ≤ 𝑙 (

󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡

0

󵄨
󵄨
󵄨
󵄨

+ sup
𝑟∈[0,1]

max {(󵄨󵄨󵄨
󵄨
𝑥 (𝑡) (𝑟) − 𝑥 (𝑡0

) (𝑟)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) (𝑟) − 𝑥 (𝑡0

) (𝑟)
󵄨
󵄨
󵄨
󵄨
)})

= 𝑙 (
󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡

0

󵄨
󵄨
󵄨
󵄨
+ 𝑑

𝐻
(𝑥 (𝑡) , 𝑥 (𝑡0

))) .

(28)

Lemma27. Let𝑓 be a fuzzy function that satisfies Assumption
H. Then, for each 𝑥 ∈ 𝐶0, the map 𝑡 󳨃→ 𝑓(𝑡, 𝑥(𝑡)) is fuzzy
continuous.
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Proof. Let 𝑡, 𝑡
0
∈ [0, 𝑇]. By Lemma 26, there is 𝑙 > 0 such that

𝑑
𝐻
(𝑓 (𝑡, 𝑥 (𝑡)) , 𝑓 (𝑡0

, 𝑥 (𝑡
0
)))

≤ 𝑙 (
󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡

0

󵄨
󵄨
󵄨
󵄨
+ 𝑑

𝐻
(𝑥 (𝑡) , 𝑥 (𝑡0

))) .

(29)

Given any 𝜀 > 0, by the fuzzy continuity of 𝑥, there exists
𝛿

1
> 0 such that, for all 𝑡 ∈ [0, 𝑇], if |𝑡 − 𝑡

0
| < 𝛿

1
, then

𝑑
𝐻
(𝑥(𝑡), 𝑥(𝑡

0
)) < 𝜀/2𝑙. Choose 𝛿 = min{𝜀/2𝑙, 𝛿

1
}. Then, for

each 𝑡 ∈ [0, 𝑇] such that |𝑡 − 𝑡
0
| < 𝛿, we have

𝑑
𝐻
(𝑓 (𝑡, 𝑥 (𝑡)) , 𝑓 (𝑡0

, 𝑥 (𝑡
0
)))

≤ 𝑙 (
󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡

0

󵄨
󵄨
󵄨
󵄨
+ 𝑑

𝐻
(𝑥 (𝑡) , 𝑥 (𝑡0

))) < 𝑙 (

𝜀

2𝑙

+

𝜀

2𝑙

)

= 𝜀.

(30)

Therefore, the map 𝑡 󳨃→ 𝑓(𝑡, 𝑥(𝑡)) is fuzzy continuous.

Lemma 28. If 𝑦 ∈ 𝐶0 and 𝛽 ∈ 𝐶([0, 𝑇],R), then 𝛽 ⊙ 𝑦 ∈ 𝐶0.

Proof. Let 𝑡
0
∈ [0, 𝑇]. Because 𝛽 ∈ 𝐶([0, 𝑇],R) and 𝑦 ∈ 𝐶0,

there exist 𝑀
1
and 𝑀

2
> 0 such that |𝛽(𝑡)| ≤ 𝑀

1
and

𝑑
𝐻
(𝑦(𝑡), 0) ≤ 𝑀

2
for all 𝑡 ∈ [0, 𝑇]. Set 𝐵 = max{𝑀

1
,𝑀

2
}.

Given any 𝜀 > 0, by the continuity of 𝑦 and 𝛽, there is 𝛿
1
> 0

for each 𝑡 ∈ [0, 𝑇]. If |𝑡 − 𝑡
0
| < 𝛿

1
, then

󵄨
󵄨
󵄨
󵄨
𝛽 (𝑡) − 𝛽 (𝑡0

)
󵄨
󵄨
󵄨
󵄨
<

𝜀

2𝐵

,

𝑑
𝐻
(𝑦 (𝑡) , 𝑦 (𝑡0

)) <

𝜀

2𝐵

.

(31)

Choose 𝛿 = min{𝜀/2𝐵, 𝛿
1
}. Then, for each 𝑡 ∈ [0, 𝑇] such that

|𝑡 − 𝑡
0
| < 𝛿, we have

𝑑
𝐻
(𝛽 (𝑡) ⊙ 𝑦 (𝑡) , 𝛽 (𝑡0

) ⊙ 𝑦 (𝑡
0
)) = 𝑑

𝐻
(𝛽 (𝑡) ⊙ 𝑦 (𝑡)

+ 𝛽 (𝑡) ⊙ 𝑦 (𝑡0
) , 𝛽 (𝑡

0
) ⊙ 𝑦 (𝑡

0
) + 𝛽 (𝑡) ⊙ 𝑦 (𝑡0

))

≤ 𝑑
𝐻
(𝛽 (𝑡) ⊙ 𝑦 (𝑡) , 𝛽 (𝑡) ⊙ 𝑦 (𝑡0

)) + 𝑑
𝐻
(𝛽 (𝑡)

⊙ 𝑦 (𝑡
0
) , 𝛽 (𝑡

0
) ⊙ 𝑦 (𝑡

0
))

≤
󵄨
󵄨
󵄨
󵄨
𝛽 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑

𝐻
(𝑦 (𝑡) , 𝑦 (𝑡0

))

+
󵄨
󵄨
󵄨
󵄨
𝛽 (𝑡) − 𝛽 (𝑡0

)
󵄨
󵄨
󵄨
󵄨
𝑑

𝐻
(𝑦 (𝑡

0
) , 0)

< 𝐵 (

𝜀

2𝐵

) + 𝐵(

𝜀

2𝐵

) = 𝜀.

(32)

Therefore, we can conclude that the map 𝑡 󳨃→ 𝛽(𝑡) ⊙ 𝑦(𝑡) is
fuzzy continuous.

Lemma 29. If 𝑦
1
, 𝑦

2
∈ 𝐶

0, then 𝑦
1
⊕ 𝑦

2
∈ 𝐶

0.

Proof. Let 𝑡
0
∈ [0, 𝑇]. Given any 𝜀 > 0, by the continuity of 𝑦

1

and 𝑦
2
, there is 𝛿

1
> 0 for all 𝑡 ∈ [0, 𝑇] such that |𝑡 − 𝑡

0
| < 𝛿

1
,

and so we obtain 𝑑
𝐻
(𝑦

1
(𝑡), 𝑦

1
(𝑡

0
)), 𝑑

𝐻
(𝑦

2
(𝑡), 𝑦

2
(𝑡

0
)) < 𝜀/2.

Choose 𝛿 = min{𝜀/2, 𝛿
1
}. Then, for each 𝑡 ∈ [0, 𝑇] such

that |𝑡 − 𝑡
0
| < 𝛿, we have

𝑑
𝐻
(𝑦

1 (
𝑡) ⊕ 𝑦2 (

𝑡) , 𝑦1
(𝑡

0
) ⊕ 𝑦

2
(𝑡

0
))

≤ 𝑑
𝐻
(𝑦

1 (
𝑡) , 𝑦1

(𝑡
0
)) + 𝑑

𝐻
(𝑦

2 (
𝑡) , 𝑦2

(𝑡
0
))

<

𝜀

2

+

𝜀

2

= 𝜀.

(33)

Hence, 𝑦
1
⊕ 𝑦

2
∈ 𝐶

0.

Lemma 30. If 𝑦 ∈ 𝐶0, then the map 𝑡 󳨃→ ∫

𝑡

0
𝑦(𝑠)𝑑𝑠 is fuzzy

continuous.

Proof. Since 𝑦 ∈ 𝐶0, there is𝑀 > 0 such that 𝑑
𝐻
(𝑦(𝑠), 0) ≤

𝑀 for all 𝑠 ∈ [0, 𝑇].
Let 𝑡

0
∈ [0, 𝑇]. Given any 𝜀 > 0, choose 𝛿 = 𝜀/𝑀. Then,

for each 𝑡 ∈ [0, 𝑇] such that |𝑡 − 𝑡
0
| < 𝛿 and 𝑡 > 𝑡

0
, by

Theorem 20, we have

𝑑
𝐻
(∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠, ∫

𝑡
0

0

𝑦 (𝑠) 𝑑𝑠)

= 𝑑
𝐻
(∫

𝑡
0

0

𝑦 (𝑠) 𝑑𝑠 ⊕ ∫

𝑡

𝑡
0

𝑦 (𝑠) 𝑑𝑠, ∫

𝑡
0

0

𝑦 (𝑠) 𝑑𝑠 ⊕ 0)

≤ 𝑑
𝐻
(∫

𝑡
0

0

𝑦 (𝑠) 𝑑𝑠, ∫

𝑡
0

0

𝑦 (𝑠) 𝑑𝑠)

+ 𝑑
𝐻
(∫

𝑡

𝑡
0

𝑦 (𝑠) 𝑑𝑠, 0) ≤ ∫

𝑡

𝑡
0

𝑑
𝐻
(𝑦 (𝑠) , 0) 𝑑𝑠

≤ 𝑀(𝑡 − 𝑡
0
) < 𝑀(

𝜀

𝑀

) = 𝜀.

(34)

If 𝑡 < 𝑡
0
, by Theorem 21, we have

𝑑
𝐻
(∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠, ∫

𝑡
0

0

𝑦 (𝑠) 𝑑𝑠)

= 𝑑
𝐻
(∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 ⊕ 0, ∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 ⊕ ∫

𝑡
0

𝑡

𝑦 (𝑠) 𝑑𝑠)

≤ 𝑑
𝐻
(∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠, ∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠)

+ 𝑑
𝐻
(0, ∫

𝑡
0

𝑡

𝑦 (𝑠) 𝑑𝑠) ≤ ∫

𝑡
0

𝑡

𝑑
𝐻
(𝑦 (𝑠) , 0) 𝑑𝑠

≤ −𝑀(𝑡 − 𝑡
0
) < 𝑀(

𝜀

𝑀

) = 𝜀.

(35)

Hence, the map 𝑡 󳨃→ ∫𝑡

0
𝑦(𝑠)𝑑𝑠 is fuzzy continuous.

Lemma 31. Assuming that 𝑓 is a fuzzy function satisfying
Assumption H, for a given initial function 𝑥

0
∈ 𝐶

0, one has a
sequence of fuzzy function {𝑥

𝑛
} as defined in (24).
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Proof. We show that 𝑥
𝑛
is fuzzy continuous for all 𝑛 ∈ N by

using mathematical induction.

Basis Step. Because 𝑥
0
∈ 𝐶

0 and 𝑥
1
is defined as

𝑥
1 (
𝑡) = 𝑆 (0, 𝑡) ⊙ 𝑥

0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥0 (
𝑠)) 𝑑𝑠

∀𝑡 ∈ [0, 𝑇] ,

(36)

by Lemmas 26–30, 𝑥
1
is fuzzy continuous.

Induction Step. For 𝑘 > 1, assuming that 𝑥
𝑘
∈ 𝐶

0, since
𝑥

𝑘+1
(𝑡) = 𝑆(0, 𝑡) ⊙ 𝑥

0
⊕ ∫

𝑡

0
𝑆(𝑠, 𝑡) ⊙ 𝑓(𝑠, 𝑥

𝑘
(𝑠))𝑑𝑠, by Lemmas

26–30, we have 𝑥
𝑘+1
∈ 𝐶

0.

Therefore, by mathematical induction, 𝑥
𝑛
∈ 𝐶

0 for all 𝑛 ∈
N.

Property 2. We show that {𝑥
𝑛
} is a Cauchy sequence in 𝐶0.

Lemma 32. Let𝑓 be a fuzzy function satisfying Assumption H
and let𝑥

0
∈ 𝐶

0 be a given initial function.Then,𝑑
𝐶
(𝑥

𝑛
, 𝑥

𝑛−1
) ≤

𝐴𝑃
𝑛−1 for all 𝑛 ∈ N with 𝑃 = 𝑙𝑀𝑇 and 𝐴 = 𝑑

𝐶
(𝑥

1
, 𝑥

0
).

Proof. We show that 𝑑
𝐶
(𝑥

𝑛
, 𝑥

𝑛−1
) ≤ 𝐴𝑃

𝑛−1 for all 𝑛 ∈ N by
mathematical induction.

Basis Step. For 𝑘 = 1, 𝑑
𝐶
(𝑥

1
, 𝑥

0
) = 𝐴𝑃

0.

Induction Step. For 𝑘 > 1, assuming that 𝑑
𝐶
(𝑥

𝑘
, 𝑥

𝑘−1
) ≤

𝐴𝑃
𝑘−1, we have

𝑑
𝐻
(𝑥

𝑘+1 (
𝑡) , 𝑥𝑘 (

𝑡)) = 𝑑𝐻
(𝑆 (0, 𝑡) ⊙ 𝑥

0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘 (
𝑠)) 𝑑𝑠, 𝑆 (0, 𝑡) ⊙ 𝑥

0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘−1 (
𝑠)) 𝑑𝑠)

= 𝑑
𝐻
(∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘 (
𝑠)) 𝑑𝑠, ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘−1 (
𝑠)) 𝑑𝑠)

= sup
𝑟∈[0,1]

max{
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘 (
𝑠)) (𝑟) 𝑑𝑠 − ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘−1 (
𝑠)) (𝑟) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘 (
𝑠)) (𝑟) 𝑑𝑠 − ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑘−1 (
𝑠)) (𝑟) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ sup
𝑟∈[0,1]

max{∫
𝑡

0

|𝑆 (𝑠, 𝑡)|
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑠, 𝑥

𝑘
(𝑠) (𝑟) , 𝑥𝑘 (

𝑠) (𝑟)) − 𝐹 (𝑠, 𝑥
𝑘−1
(𝑠) (𝑟) , 𝑥𝑘−1 (

𝑠) (𝑟))
󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

∫

𝑡

0

|𝑆 (𝑠, 𝑡)|
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑠, 𝑥

𝑘
(𝑠) (𝑟) , 𝑥𝑘 (

𝑠) (𝑟)) − 𝐺 (𝑠, 𝑥
𝑘−1
(𝑠) (𝑟) , 𝑥𝑘−1 (

𝑠) (𝑟))
󵄨
󵄨
󵄨
󵄨
𝑑𝑠}

≤ 𝑀𝑙{∫

𝑡

0

sup
𝑟∈[0,1]

max {󵄨󵄨󵄨
󵄨
𝑥

𝑘
(𝑠) (𝑟) − 𝑥

𝑘−1
(𝑠) (𝑟)

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑥

𝑘 (
𝑠) (𝑟) − 𝑥𝑘−1 (

𝑠) (𝑟)
󵄨
󵄨
󵄨
󵄨
} 𝑑𝑠} ≤ 𝑀𝑙(∫

𝑡

0

𝑑
𝐻
(𝑥

𝑘−1 (
𝑠) , 𝑥𝑘 (

𝑠)) 𝑑𝑠)

≤ 𝑀𝑙𝑇𝑑
𝐶
(𝑥

𝑘
, 𝑥

𝑘−1
) ≤ 𝑃𝐴𝑃

𝑘−1
= 𝐴𝑃

𝑘
.

(37)

Thus, by mathematical induction, 𝑑
𝐶
(𝑥

𝑛
, 𝑥

𝑛−1
) ≤ 𝐴𝑃

𝑛−1 for
all 𝑛 ∈ N.

Lemma 33. Let𝑓 be a fuzzy function satisfying Assumption H
and let𝑥

0
∈ 𝐶

0 be a given initial function; one has𝑑
𝐶
(𝑥

𝑛
, 𝑥

0
) ≤

𝐴(1 − 𝑃
𝑛
)/(1 − 𝑃) for all 𝑛 ∈ N with 𝑃 = 𝑙𝑀𝑇 and 𝐴 =

𝑑
𝐶
(𝑥

1
, 𝑥

0
).

Proof. We show that 𝑑
𝐶
(𝑥

𝑛
, 𝑥

0
) ≤ 𝐴(1 − 𝑃

𝑛
)/(1 − 𝑃) for all

𝑛 ∈ N by using mathematical induction.

Basis Step. For 𝑘 = 1, the above statement is true since
𝑑

𝐶
(𝑥

1
, 𝑥

0
) = 𝐴(1 − 𝑃)/(1 − 𝑃).

Induction Step. For 𝑚 > 1, assuming that 𝑑
𝐶
(𝑥

𝑗
, 𝑥

0
) ≤ 𝐴(1 −

𝑃
𝑗
)/(1 − 𝑃) for all 𝑗 ∈ {1, 2, . . . , 𝑚}, by Lemma 32, for 𝑡 ∈

[0, 𝑇], we have

𝑑
𝐻
(𝑥

𝑚+1 (
𝑡) , 𝑥0 (

𝑡)) = 𝑑𝐻
(𝑥

𝑚+1 (
𝑡) ⊕ 𝑥𝑚 (

𝑡) ⊕ ⋅ ⋅ ⋅

⊕ 𝑥
1 (
𝑡) , 𝑥0 (

𝑡) ⊕ 𝑥𝑚 (
𝑡) ⊕ ⋅ ⋅ ⋅ ⊕ 𝑥1 (

𝑡))

≤ 𝑑
𝐻
(𝑥

𝑚+1 (
𝑡) , 𝑥𝑚 (

𝑡)) + 𝑑𝐻
(𝑥

𝑚 (
𝑡) , 𝑥𝑚−1 (

𝑡))

+ ⋅ ⋅ ⋅ + 𝑑
𝐻
(𝑥

1 (
𝑡) , 𝑥0 (

𝑡)) ≤ 𝐴𝑃
𝑚
+ 𝐴𝑃

𝑚−1
+ ⋅ ⋅ ⋅

+ 𝐴 =

𝐴 (1 − 𝑃
𝑚+1
)

1 − 𝑃

,

(38)

implying that 𝑑
𝐶
(𝑥

𝑚+1
, 𝑥

0
) ≤ 𝐴(1 − 𝑃

𝑚+1
)/(1 − 𝑃).

Therefore, by the principle of mathematical induction,
𝑑

𝐶
(𝑥

𝑛
, 𝑥

0
) ≤ 𝐴(1 − 𝑃

𝑛
)/(1 − 𝑃) for all 𝑛 ∈ N.

Lemma34. Assume that AssumptionHholds. Given an initial
function 𝑥

0
∈ 𝐶

0, {𝑥
𝑛
} is a bounded sequence.
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Proof. Assumption H implies that there is 𝑙 > 0 such that 𝑃 =
𝑙𝑀𝑇 < 1.

Therefore, there is 𝐵 > 0 such that 𝐴(1 − 𝑃𝑛
)/(1 − 𝑃) ≤ 𝐵

for all 𝑛 ∈ N. By Lemma 33, we have

𝑑
𝐶
(𝑥

𝑛
, 0) − 𝑑

𝐶
(𝑥

0
, 0) ≤ 𝑑

𝐶
(𝑥

𝑛
, 𝑥

0
) ≤

𝐴 (1 − 𝑃
𝑛
)

1 − 𝑃

≤ 𝐵.

(39)

Hence, 𝑑
𝐶
(𝑥

𝑛
, 0) ≤ 𝐵 + 𝑑

𝐶
(𝑥

0
, 0) for all 𝑛 ∈ N.

Lemma 35. Assume that Assumption H holds. Let 𝑅
𝑛
= 𝐴(1−

𝑃
𝑛
)/(1 − 𝑃) and 0 < 𝑐 < 1. Then, for a given initial function

𝑥
0
∈ 𝐶

0 and for each 𝜀 > 0, there is𝑁 ∈ N such that 2𝑅
𝑛
𝑐

𝑁+1
<

𝜀 for all 𝑛 ≥ 𝑁 with 𝑃 = 𝑙𝑀𝑇 and 𝐴 = 𝑑
𝐶
(𝑥

1
, 𝑥

0
).

Proof. By Assumption H, there is 𝑙 > 0 such that 𝑃 = 𝑙𝑀𝑇 <
1. Hence, there is 𝐵 > 0 such that 𝑅

𝑛
= 𝐴(1 −𝑃

𝑛
)/(1 −𝑃) ≤ 𝐵

for all 𝑛 ∈ N. Given any 𝜀 > 0, choose𝑁 > log
𝑐
(𝜀/2𝐵𝑐).

Then, 2𝑅
𝑛
𝑐

𝑁+1
≤ 2𝐵𝑐

𝑁
𝑐 < 2𝐵𝑐𝑐

log
𝑐
(𝜀/2𝐵𝑐)

= 2𝐵𝑐(𝜀/2𝐵𝑐) =

𝜀.

Next, let us define a mapping 𝑔 with an initial value 𝑥0
∈

R
𝐹
to be

𝑔 (𝑢) (𝑡) fl 𝑆 (0, 𝑡) ⊙ 𝑥0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 (40)

for all 𝑢 ∈ 𝐶([0, 𝑇],R
𝐹
).

Lemma 36. Suppose that Assumption H holds. Then, 𝑔 is a
mapping from 𝐶0 to 𝐶0.

Proof. Let 𝑢 ∈ 𝐶([0, 𝑇],R
𝐹
). Similar to the proof of

Lemma 31, we have 𝑔(𝑢) ∈ 𝐶([0, 𝑇],R
𝐹
). Let 𝑢

1
, 𝑢

2
∈

𝐶([0, 𝑇],R
𝐹
) such that 𝑢

1
= 𝑢

2
.

For any 𝑡 ∈ [0, 𝑇], we have

𝑔 (𝑢
1
) (𝑡) = 𝑆 (0, 𝑡) ⊙ 𝑥

0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑢1 (
𝑠)) 𝑑𝑠

= 𝑆 (0, 𝑡) ⊙ 𝑥
0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑢2 (
𝑠)) 𝑑𝑠

= 𝑔 (𝑢
2
) (𝑡) .

(41)

Therefore, 𝑔 : 𝐶([0, 𝑇],R
𝐹
) → 𝐶([0, 𝑇],R

𝐹
).

Lemma 37. Suppose that Assumption H holds. Then, 𝑔 is a
contraction mapping.

Proof. ByAssumptionH, there is 𝑙 > 0 such that𝑃 = 𝑙𝑀𝑇 < 1
and

max {󵄨󵄨󵄨
󵄨
𝐹 (𝑠, 𝑢 (𝑠) (𝑟) , 𝑢 (𝑠) (𝑟)) (𝑟)

− 𝐹 (𝑠, V (𝑠) (𝑟) , V (𝑠) (𝑟)) (𝑟)󵄨󵄨󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝐺 (𝑠, 𝑢 (𝑠) (𝑟) , 𝑢 (𝑠) (𝑟)) (𝑟)

− 𝐺 (𝑠, V (𝑠) (𝑟) , V (𝑠) (𝑟)) (𝑟)󵄨󵄨󵄨
󵄨
} ≤ 𝑙max {󵄨󵄨󵄨

󵄨
𝑢 (𝑠) (𝑟)

− V (𝑠) (𝑟)󵄨󵄨󵄨
󵄨
, |𝑢 (𝑠) (𝑟) − V (𝑠) (𝑟)|} .

(42)

For all 𝑡 ∈ [0, 𝑇], choose 𝑐 = 𝑙𝑀𝑇. Then,

𝑑
𝐻
(𝑔 (𝑢) (𝑡) , 𝑔 (V) (𝑡)) = 𝑑𝐻

(∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, V (𝑠)) 𝑑𝑠)

= sup
𝑟∈[0,1]

max{
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑢 (𝑠)) (𝑟) 𝑑𝑠 − ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, V (𝑠)) (𝑟) 𝑑𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑢 (𝑠)) (𝑟) 𝑑𝑠 − ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, V (𝑠)) (𝑟) 𝑑𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ sup
𝑟∈[0,1]

max{∫
𝑡

0

|𝑆 (𝑠, 𝑡)|
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑠, 𝑢 (𝑠) (𝑟) , 𝑢 (𝑠) (𝑟)) − 𝐹 (𝑠, V (𝑠) (𝑟) , V (𝑠) (𝑟))󵄨󵄨󵄨

󵄨
𝑑𝑠,

∫

𝑡

0

|𝑆 (𝑠, 𝑡)|
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑠, 𝑢 (𝑠) (𝑟) , 𝑢 (𝑠) (𝑟)) − 𝐺 (𝑠, V (𝑠) (𝑟) , V (𝑠) (𝑟))󵄨󵄨󵄨

󵄨
𝑑𝑠}

≤ 𝑀𝑙∫

𝑡

0

sup
𝑟∈[0,1]

max {󵄨󵄨󵄨
󵄨
𝑢 (𝑠) (𝑟) − V (𝑠) (𝑟)󵄨󵄨󵄨

󵄨
, |𝑢 (𝑠) (𝑟) − V (𝑠) (𝑟)|} 𝑑𝑠 ≤ 𝑐𝑑𝐶 (

𝑢, V) .

(43)

Therefore, 𝑔 is a contraction mapping. Theorem 38. Suppose that Assumption H holds. Then, {𝑥
𝑛
} is

a Cauchy sequence in 𝐶0.
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Proof. Given any 𝜀 > 0. By Lemma 35, for all 0 < 𝑐 < 1,
there is 𝑁 > 0 such that 2𝑅

𝑛
𝑐

𝑁+1
< 𝜀 for all 𝑛 ≥ 𝑁, where

𝑅
𝑛
= 𝐴(1 − 𝑃

𝑛
)/(1 − 𝑃) with 𝑃 = 𝑙𝑀𝑇 and 𝐴 = 𝑑

𝐶
(𝑥

1
, 𝑥

0
).

Let𝑚, 𝑛 ∈ N be such that𝑚, 𝑛 > 𝑁. WLOG, assume that
𝑛 > 𝑚. By Lemma 33, we have

𝑑
𝐶
(𝑥

𝑚−𝑁−1
, 𝑥

𝑛−𝑁−1
)

= 𝑑
𝐶
(𝑥

𝑚−𝑁−1
⊕ 𝑥

0
, 𝑥

𝑛−𝑁−1
⊕ 𝑥

0
)

≤ 𝑑
𝐶
(𝑥

𝑚−𝑁−1
, 𝑥

0
) + 𝑑

𝐶
(𝑥

𝑛−𝑁−1
, 𝑥

0
)

≤

𝐴 (1 − 𝑃
𝑚−𝑁−1

)

1 − 𝑃

+

𝐴 (1 − 𝑃
𝑛−𝑁−1

)

1 − 𝑃

<

𝐴 (1 − 𝑃
𝑛−𝑁−1

)

1 − 𝑃

+

𝐴 (1 − 𝑃
𝑛−𝑁−1

)

1 − 𝑃

= 2[

𝐴 (1 − 𝑃
𝑛−𝑁−1

)

1 − 𝑃

] < 2 [

𝐴 (1 − 𝑃
𝑛
)

1 − 𝑃

] = 2𝑅
𝑛
.

(44)

By definition of sequence {𝑥
𝑛
} and mapping 𝑔, we can write

𝑥
𝑛
and 𝑥

𝑚
as a composition of 𝑔,

𝑥
𝑚
= 𝑔 ∘ 𝑔 ∘ ⋅ ⋅ ⋅ ∘ 𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁+1

(𝑥
𝑚−𝑁−1

) ,

𝑥
𝑛
= 𝑔 ∘ 𝑔 ∘ ⋅ ⋅ ⋅ ∘ 𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁+1

(𝑥
𝑛−𝑁−1

) .

(45)

Since 𝑔 is a contraction mapping, there is some 𝑐, where 0 <
𝑐 < 1

𝑑
𝐶
(𝑥

𝑚
, 𝑥

𝑛
) = 𝑑

𝐶
(𝑔 ∘ 𝑔 ∘ ⋅ ⋅ ⋅ ∘ 𝑔 (𝑥

𝑚−𝑁−1
) , 𝑔 ∘ 𝑔 ∘ ⋅ ⋅ ⋅

∘ 𝑔 (𝑥
𝑛−𝑁−1

)) ≤ 𝑐
𝑁+1
𝑑

𝐶
(𝑥

𝑚−𝑁−1
, 𝑥

𝑛−𝑁−1
)

< 2𝑅
𝑛
𝑐

𝑁+1
< 𝜀.

(46)

Hence, {𝑥
𝑛
} is a Cauchy sequence in 𝐶([0, 𝑇],R

𝐹
).

By using Properties 1 and 2, we prove the existence of a
mild fuzzy solution to system (18) in the following theorem.

Theorem 39. If Assumption H holds, system (18) has a mild
fuzzy solution; that is, there is 𝑥 ∈ 𝐶([0, 𝑇],R

𝐹
) such that

𝑥(𝑡) = 𝑆(0, 𝑡) ⊙ 𝑥
0
⊕ ∫

𝑡

0
𝑆(𝑠, 𝑡) ⊙ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠.

Proof. Given an initial function 𝑥
0
∈ 𝐶([0, 𝑇],R

𝐹
) and a

sequence {𝑥
𝑛
} defined by

𝑥
𝑛 (
𝑡) = 𝑆 (0, 𝑡) ⊙ 𝑥

0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑛−1 (
𝑠)) 𝑑𝑠

∀𝑡 ∈ [0, 𝑇] ,

(47)

byTheorem 38, {𝑥
𝑛
} is a Cauchy sequence in 𝐶([0, 𝑇],R

𝐹
).

Since 𝐶([0, 𝑇],R
𝐹
) is complete, {𝑥

𝑛
} converges in

𝐶([0, 𝑇],R
𝐹
); that is, there is 𝑥 ∈ 𝐶([0, 𝑇],R

𝐹
) such that

lim
𝑛 → ∞

𝑥
𝑛
= 𝑥.

Given any 𝜀 > 0, since lim
𝑛 → ∞

𝑥
𝑛
= 𝑥, there is 𝑁

1
∈ N

such that 𝑑
𝐶
(𝑥

𝑛−1
, 𝑥) < 𝜀/𝑙𝑀𝑇 for all 𝑛 ≥ 𝑁

1
. Let 𝑤(𝑡) fl

𝑆(0, 𝑡)⊙𝑥
0
⊕∫

𝑡

0
𝑆(𝑠, 𝑡)⊙𝑓(𝑠, 𝑥(𝑠))𝑑𝑠.We show that lim

𝑛 → ∞
𝑥

𝑛
=

𝑤 as follows. For each 𝑡 ∈ [0, 𝑇], choose𝑁 = 𝑁
1
. Then,

𝑑
𝐻
(𝑥

𝑛 (
𝑡) , 𝑤 (𝑡)) = 𝑑𝐻

(∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑛−1 (
𝑠)) 𝑑𝑠, ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

= sup
𝑟∈[0,1]

max{
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑛−1 (
𝑠)) (𝑟) 𝑑𝑠 − ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠)) (𝑟) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑛−1 (
𝑠)) (𝑟) 𝑑𝑠 − ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠)) (𝑟) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ sup
𝑟∈[0,1]

max{∫
𝑡

0

|𝑆 (𝑠, 𝑡)|
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑠, 𝑥

𝑛−1
(𝑠) (𝑟) , 𝑥𝑛−1 (

𝑠) (𝑟)) − 𝐹 (𝑠, 𝑥 (𝑠) (𝑟) , 𝑥 (𝑠) (𝑟))
󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

∫

𝑡

0

|𝑆 (𝑠, 𝑡)|
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑠, 𝑥

𝑛−1
(𝑠) (𝑟) , 𝑥𝑛−1 (

𝑠) (𝑟)) − 𝐺 (𝑠, 𝑥 (𝑠) (𝑟) , 𝑥 (𝑠) (𝑟))
󵄨
󵄨
󵄨
󵄨
𝑑𝑠}

≤ 𝑀𝑙∫

𝑡

0

sup
𝑟∈[0,1]

max {󵄨󵄨󵄨
󵄨
𝑥

𝑛−1
(𝑠) (𝑟) − 𝑥 (𝑠) (𝑟)

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑥

𝑛−1 (
𝑠) (𝑟) − 𝑥 (𝑠) (𝑟)

󵄨
󵄨
󵄨
󵄨
} 𝑑𝑠 ≤ 𝑙𝑀𝑇𝑑

𝐶
(𝑥

𝑛−1
, 𝑥) < 𝜀.

(48)
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Hence, 𝑥(𝑡) = lim
𝑛 → ∞

𝑥
𝑛
(𝑡) = 𝑤(𝑡) = 𝑆(0, 𝑡) ⊙ 𝑥

0
⊕

∫

𝑡

0
𝑆(𝑠, 𝑡) ⊙ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠, implying that system (18) has a mild

fuzzy solution.

4. Fuzzy Delay System

In this section, we investigate a fuzzy system with delay:

𝑥
󸀠
(𝑡) = 𝑎 (𝑡) ⊙ 𝑥 (𝑡) ⊕ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥𝑡

) , 0 ≤ 𝑡 ≤ 𝑇,

𝑥 (𝑡) = 𝜑 (𝑡) , − 𝑙 ≤ 𝑡 ≤ 0,

(49)

where 𝑥 is a fuzzy state function of variable 𝑡 and 𝑥
𝑡
= 𝑥(𝑡+𝜃),

for −𝑙 ≤ 𝜃 ≤ 0, is the state that is time-delayed. We may con-
sider 𝑥

𝑡
as a state in the past, before time 𝑡. Here, 𝜑 is a given

fuzzy function of past state, before or at 𝑡 = 0. In this system,
we assume that the fuzzy input function 𝑓(𝑡, 𝑥, 𝑥

𝑡
) depends

on 𝑡, 𝑥, and 𝑥
𝑡
, and the scalar function 𝑎 : [0, 𝑇] → R is con-

tinuous.The fuzzy derivative of 𝑥 with respect to 𝑡 is denoted
by 𝑥󸀠. All functions are defined using the following notation.

The fuzzy functions 𝑥 and 𝜑 are denoted by [𝑥, 𝑥] and
[𝜑, 𝜑], respectively, with their 𝑟-cuts denoted by

[𝑥 (𝑡)]𝑟
= [𝑥 (𝑡) (𝑟) , 𝑥 (𝑡) (𝑟)] ,

[𝜑 (𝑡)]
𝑟
= [𝜑 (𝑡) (𝑟) , 𝜑 (𝑡) (𝑟)] ∀0 < 𝑟 ≤ 1,

(50)

respectively.
The fuzzy function 𝑓(𝑡, 𝑥(𝑡), 𝑥

𝑡
) is denoted by

[𝑓(𝑡, 𝑥, 𝑥
𝑡
), 𝑓(𝑡, 𝑥, 𝑥

𝑡
)] with

𝑓 (𝑡, 𝑥, 𝑥
𝑡
)

= min {𝑓 (𝑡, 𝑢, V) | 𝑢 ∈ [𝑥 (𝑡)]𝑟 , V ∈ [𝑥𝑡
]

𝑟
} ,

𝑓 (𝑡, 𝑥, 𝑥
𝑡
)

= max {𝑓 (𝑡, 𝑢, V) | 𝑢 ∈ [𝑥 (𝑡)]𝑟 , V ∈ [𝑥𝑡
]

𝑟
} .

(51)

The 𝑟-cut of 𝑓(𝑡, 𝑥(𝑡), 𝑥
𝑡
) is denoted by [𝑓(𝑡, 𝑥(𝑡), 𝑥

𝑡
)]

𝑟
=

[𝑓(𝑡, 𝑥(𝑡), 𝑥
𝑡
)(𝑟), 𝑓(𝑡, 𝑥(𝑡), 𝑥

𝑡
)(𝑟)], for all 0 < 𝑟 ≤ 1.

Let 𝑆(𝑠, 𝑡) = 𝑒
∫
𝑡

𝑠

𝑎(𝜏)𝑑𝜏 and assume that 𝑥 is fuzzy
differentiable that satisfies the conditions of system (49).
Consider the fuzzy derivative of 𝑆(𝑠, 𝑡) ⊙ 𝑥(𝑠) for all 𝑠 ∈ [0, 𝑡].

By Theorem 17, we have

𝑑

𝑑𝑠

(𝑆 (𝑠, 𝑡) ⊙ 𝑥 (𝑠))

= 𝑆 (𝑠, 𝑡) ⊙ 𝑥
󸀠
(𝑠) ⊕

𝑑𝑆 (𝑠, 𝑡)

𝑑𝑠

⊙ 𝑥 (𝑠)

= 𝑆 (𝑠, 𝑡) ⊙ [𝑎 (𝑠) ⊙ 𝑥 (𝑠) ⊕ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
)]

⊖ 𝑆 (𝑠, 𝑡) 𝑎 (𝑠) ⊙ 𝑥 (𝑠)

= 𝑆 (𝑠, 𝑡) 𝑎 (𝑠) ⊙ 𝑥 (𝑠) ⊕ 𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
)

⊖ 𝑆 (𝑠, 𝑡) 𝑎 (𝑠) ⊙ 𝑥 (𝑠) = 𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
) .

(52)

ByTheorem 19 and the initial value 𝑥(0) = 𝜑(0) = 𝜑
0
, we get

𝑥 (𝑠) = 𝑆 (0, 𝑡) ⊙ 𝜑0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
) 𝑑𝑠 (53)

as a fuzzy integral equation satisfying system (49).

Definition 40. Let 𝑥 ∈ 𝐶([−𝑙, 𝑇],R
𝐹
). 𝑥 is called a mild

fuzzy solution to system (49), if 𝑥 satisfies the fuzzy integral
equation

𝑥 (𝑡)

=

{

{

{

𝑆 (0, 𝑡) ⊙ 𝜑0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇

𝜑 (𝑡) , −𝑙 ≤ 𝑡 ≤ 0.

(54)

Next, we prove the existence of a mild fuzzy solution to
system (49) under the following assumption.

Assumption A. Let𝑀 = sup
𝑠,𝑡∈[0,𝑇]

|𝑆(𝑠, 𝑡)| and

𝐵 ([0, 𝑇] ,R𝐹
) = {𝑥

(⋅)
: [0, 𝑇] 󳨀→ R

𝐹
| 𝑥

∈ 𝐶 ([−𝑙, 𝑇] ,R𝐹
) , 𝑥

𝑡
= 𝑥 (𝑡 + 𝜃) , −𝑟 ≤ 𝜃 ≤ 0} .

(55)

Assume that 𝑓 satisfies the following conditions:

(A-1) There is a constant 𝑘 > 0 such that

𝑑
𝐻
(𝑓 (𝑡, 𝑥 (𝑡) , 𝑦𝑡

) , 0)

≤ 𝑘 [1 + 𝑑
𝐻
(𝑥 (𝑡) , 0) + 𝑑𝐻

(𝑦
𝑡
, 0)]

(56)

for all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝐶([−𝑙, 𝑇],R
𝐹
), 𝑦

(⋅)
∈

𝐵([0, 𝑇],R
𝐹
).

(A-2) There is a constant 𝐿 > 0 such that

𝑑
𝐻
(𝑓 (𝑡, 𝑥

1 (
𝑡) , 𝑦1 (

𝑡)) , 𝑓 (𝑠, 𝑥2 (
𝑠) , 𝑦2 (

𝑠)))

≤ 𝐿 [|𝑡 − 𝑠| + 𝑑𝐻
(𝑥

1 (
𝑡) , 𝑥2 (

𝑡)) + 𝑑𝐻
(𝑦

1 (
𝑡) , 𝑦2 (

𝑡))]

(57)

for all 𝑠, 𝑡 ∈ [0, 𝑇], 𝑥
1
, 𝑥

2
∈ 𝐶([−𝑙, 𝑇],R

𝐹
), 𝑦

1(⋅)
, 𝑦

2(⋅)
∈

𝐵([−𝑙, 𝑇],R
𝐹
).

Definition 41. If there exists 𝜏
0
> 0 such that 𝑥 ∈

𝐶([−𝑙, 𝜏
0
],R

𝐹
) satisfies the fuzzy integral equation

𝑥 (𝑡)

=

{

{

{

𝑆 (0, 𝑡) ⊙ 𝜑0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝜏

0

𝜑 (𝑡) , −𝑙 ≤ 𝑡 ≤ 0,

(58)

one says that system (49) is mildly fuzzily solvable in [0, 𝜏
0
]

and 𝑥 is called a mild fuzzy solution in [0, 𝜏
0
].

For each 𝜏 > 0. Let us denote a weighted metric space
𝐶([−𝑙, 𝜏],R

𝐹
) by 𝐶𝜏. Its metric is defined by

𝑑
𝐶 (
𝑢, V) = sup

𝑡∈[0,𝜏]

𝑒
−𝜆𝑡
𝑑

𝐻 (
𝑢 (𝑡) , V (𝑡)) , (59)
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for some given 𝜆 ≥ 0. The metric space (𝐶([−𝑙, 𝜏],R
𝐹
), 𝑑

𝐶
) is

a complete metric space.
For each 𝛾 > 0, define Ω(𝛾, 𝜏) to be

Ω(𝛾, 𝜏) = {𝑦 ∈ 𝐶
𝜏
| max

0≤𝑡≤𝜏

𝑑
𝐻
(𝑦 (𝑡) , 𝜑0

) ≤ 𝛾, 𝑦 (𝑡)

= 𝜑 (𝑡) , −𝑙 ≤ 𝑡 ≤ 0} .

(60)

Then,Ω(𝛾, 𝜏) is convex and closed.
Let 𝜏 > 0. We define a mapping 𝑄 : Ω(𝛾, 𝜏) → 𝐶

𝜏 to be

𝑄𝑦 (𝑡)

=

{
{

{
{

{

𝑆 (0, 𝑡) ⊙ 𝜑0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠
) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝜏

𝜑 (𝑡) , −𝑙 ≤ 𝑡 ≤ 0,

(61)

for all 𝑦 ∈ Ω(𝛾, 𝜏). Then, 𝑄 is a bounded mapping. By
assumption (A-1), there is a constant 𝑘 > 0 such that

𝑑
𝐻
(𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠

) , 0)

≤ 𝑘 [1 + 𝑑
𝐻
(𝑦 (𝑠) , 0) + 𝑑𝐻

(𝑦
𝑠
, 0)] .

(62)

Since𝑦 ∈ 𝐶([−𝑙, 𝜏],R
𝐹
), there is𝑁 > 0 such that𝑑

𝐻
(𝑦(𝑠), 0)+

𝑑
𝐻
(𝑦

𝑠
, 0) ≤ 𝑁 for all 𝑠 ∈ [−𝑙, 𝜏]. Hence, for each 𝑡 ∈ [0, 𝜏], we

have

𝑑
𝐻
(𝑄𝑦 (𝑡) , 0) = 𝑑𝐻

(𝑆 (0, 𝑡) ⊙ 𝜑0

⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠
) 𝑑𝑠, 0) ≤ 𝑀𝑑

𝐻
(𝜑

0
, 0)

+ 𝑀𝑘(∫

𝑡

0

1 + 𝑑
𝐻
(𝑦 (𝑠) , 0) + 𝑑𝐻

(𝑦
𝑠
, 0) 𝑑𝑠)

≤ 𝑀[𝑑
𝐻
(𝜑

0
, 0) + 𝑘 (1 + 𝑁) 𝜏] < ∞.

(63)

Lemma 42. The mapping 𝑄 : Ω(𝛾, 𝜏) → 𝐶
𝜏 is well-defined

and there is 𝜏
0
> 0 such that 𝑄(Ω(𝛾, 𝜏

0
)) ⊆ Ω(𝛾, 𝜏

0
).

Proof. Let 𝛾, 𝜏 > 0, {𝑦
𝑛
} be a sequence in Ω(𝛾, 𝜏), and let 𝑦 ∈

Ω(𝛾, 𝜏) be such that 𝑦
𝑛
→ 𝑦.

By condition (A-2), there is 𝐿 > 0 such that

𝑑
𝐻
(𝑓 (𝑠, 𝑦

𝑛 (
𝑠) , (𝑦𝑛

)
𝑠
) , 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠

))

≤ 𝐿 [𝑑
𝐻
(𝑦

𝑛 (
𝑠) , 𝑦 (𝑠)) + 𝑑𝐻

((𝑦
𝑛
)

𝑠
, 𝑦

𝑠
)]

∀𝑠 ∈ [0, 𝜏] .

(64)

Given any 𝜖 > 0, since 𝑦
𝑛
→ 𝑦, there is 𝑛

0
∈ N such that

𝑑
𝐶
(𝑦

𝑛
, 𝑦) < 𝜀/2𝑀𝐿 for all 𝑛 ≥ 𝑛

0
. Therefore, for 𝑡 ∈ [0, 𝜏], we

obtain

𝑑
𝐻
(𝑄𝑦

𝑛 (
𝑡) , 𝑄𝑦 (𝑡)) = 𝑑𝐻

(∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑦𝑛 (
𝑠) , (𝑦𝑛

)
𝑠
) 𝑑𝑠, ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠
) 𝑑𝑠)

≤ ∫

𝑡

0

|𝑆 (𝑠, 𝑡)| 𝑑𝐻
(𝑓 (𝑠, 𝑦

𝑛 (
𝑠) , (𝑦𝑛

)
𝑠
) , 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠

)) 𝑑𝑠

≤ 𝑀𝐿∫

𝑡

0

𝑑
𝐻
(𝑦

𝑛 (
𝑠) , 𝑦 (𝑠)) + 𝑑𝐻

((𝑦
𝑛
)

𝑠
, 𝑦

𝑠
) 𝑑𝑠 ≤ 2𝑀𝐿𝜏𝑑

𝐶
(𝑦

𝑛
, 𝑦) < 𝜀.

(65)

This implies that the mapping 𝑄 : Ω(𝛾, 𝜏) → 𝐶
𝜏 is well-

defined.
Next, we show that there exists 𝜏

0
> 0 such that

𝑄(Ω(𝛾, 𝜏
0
)) ⊆ Ω(𝛾, 𝜏

0
).

By conditions (A-1) and (A-2), there exist 𝐿
1
and 𝐿

2
> 0

such that

𝑑
𝐻
(𝑓 (0, 𝑦 (0) , 𝑦0

) , 0) ≤ 𝐿
1
(1 + 𝑑

𝐶
(𝜑, 0)) ,

𝑑
𝐻
(𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠

) , 𝑓 (0, 𝑦 (0) , 𝑦0
))

≤ 𝐿
2
max

𝜐∈[0,𝜏]

𝑑
𝐻
(𝑦 (𝜐) , 𝜑0

) ∀𝑠 ∈ [0, 𝜏] .

(66)

Hence,

𝑑
𝐻
(𝑄𝑦 (𝑡) , 𝜑0

) = 𝑑
𝐻
(𝑆 (0, 𝑡) ⊙ 𝜑0

⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡)

⊙ 𝑓 (𝑠, 𝑦
𝑛 (
𝑠) , (𝑦𝑛

)
𝑠
) 𝑑𝑠, 𝜑

0
) ≤ 𝑑

𝐻
(𝑆 (0, 𝑡) ⊙ 𝜑0

,

𝜑
0
) + 𝑑

𝐻
(∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (0, 𝑦 (0) , 𝑦0
) , 0)

+ 𝑑
𝐻
(∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠
) 𝑑𝑠, ∫

𝑡

0

𝑆 (𝑠, 𝑡)

⊙ 𝑓 (0, 𝑦 (0) , 𝑦0
) 𝑑𝑠)
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≤ sup
𝑟∈[0,1]

max {
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑆 (0, 𝑡) 𝜑
0
(𝑟) − 𝜑

0
(𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
𝑆 (0, 𝑡) 𝜑

0
(𝑟) − 𝜑

0
(𝑟)
󵄨
󵄨
󵄨
󵄨
} + 𝑀𝐿

1
(∫

𝑡

0

1 + 𝑑
𝐶
(𝜑

0
,

0) 𝑑𝑠) +𝑀∫

𝑡

0

𝑑
𝐻
(𝑓 (𝑠, 𝑦 (𝑠) , 𝑦𝑠

) , 𝑓 (0, 𝑦 (0) ,

𝑦
0
)) 𝑑𝑠 ≤ |𝑆 (0, 𝜏) − 1| 𝑑𝐶

(𝜑
0
, 0) + 𝑀𝐿

1
𝜏 (1

+ 𝑑
𝐶
(𝜑

0
, 0)) +𝑀𝐿

2
𝜏max

𝜐∈[0,𝜏]

𝑑
𝐻
(𝑦 (𝜐) , 𝜑0

) ≡ 𝑞 (𝜏) .

(67)

Since 𝑞(𝜏) → 0 as 𝜏 → 0
+, there exists 𝜏

0
> 0 such that

0 < 𝑞(𝜏
0
) < 1.

Therefore, we can conclude that there is 𝜏
0
> 0 such that

𝑄(Ω(𝛾, 𝜏
0
)) ⊆ Ω(𝛾, 𝜏

0
).

Lemma 43. Assume that conditions (A-1) and (A-2) hold.
Then, there exists 𝜏

0
> 0 such that system (49) is mildly fuzzily

solvable in [0, 𝜏
0
] and its mild fuzzy solution is unique.

Proof. Let 𝜏 > 0. Define Ω(1, 𝜏) = {𝑦 ∈ 𝐶
𝜏
|

max
0≤𝑡≤𝜏

𝑑
𝐻
(𝑦(𝑡), 𝜑

0
) ≤ 1, 𝑦(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝑙, 0]}.

Then,Ω(1, 𝜏) is convex and closed. Define a mapping 𝑄 :
Ω(1, 𝜏) → 𝐶

𝜏 as that in (61).
By Lemma 42, the mapping 𝑄 is well-defined on Ω(1, 𝜏)

and there is 𝜏
0
such that𝑄 : Ω(1, 𝜏

0
) → Ω(1, 𝜏

0
). Let 𝜏

1
≤ 𝜏

0
.

We show that 𝑄 is a strong contraction mapping on Ω(1, 𝜏
2
)

for some 𝜏
2
> 0. Let 𝑦

1
, 𝑦

2
∈ Ω(1, 𝜏

1
). By condition (A-2),

there is 𝑎(𝜏
1
) > 0 such that

𝑑
𝐻
(𝑓 (𝑠, 𝑦

1 (
𝑠) , (𝑦1

)
𝑠
) , 𝑓 (𝑠, 𝑦

2 (
𝑠) , (𝑦2

)
𝑠
))

≤ 𝑎 (𝜏
1
) [𝑑

𝐻
(𝑦

1 (
𝑠) , 𝑦2 (

𝑠)) + 𝑑𝐻
((𝑦

1
)

𝑠
, (𝑦

2
)

𝑠
)]

≤ 2𝑎 (𝜏
1
) 𝑑

𝐶
(𝑦

1
, 𝑦

2
) ∀𝑠 ∈ [0, 𝜏

1
] .

(68)

Hence, 𝑑
𝐻
(𝑄𝑦

1
(𝑡), 𝑄𝑦

2
(𝑡)) ≤ 2𝑀𝑎(𝜏

1
)𝜏

1
𝑑

𝐶
(𝑦

1
, 𝑦

2
) =

𝑝(𝜏
1
)𝑑

𝐶
(𝑦

1
, 𝑦

2
) for all 𝑡 ∈ [0, 𝜏

1
] with 𝑝(𝜏

1
) = 2𝑀𝑎(𝜏

1
)𝜏

1
.

Since 𝑝(𝜏
1
) = 2𝑀𝑎(𝜏

1
)𝜏

1
→ 0 as 𝜏

1
→ 0

+, there is 𝜏
2
> 0

such that𝑝(𝜏
2
) < 1.This implies that𝑄 is a strong contraction

mapping on Ω(1, 𝜏
2
) for some 𝜏

2
> 0. By the contraction

mapping principle, there exists a unique 𝑥 ∈ Ω(1, 𝜏
2
) such

that 𝑄𝑥 = 𝑥; that is,

𝑥 (𝑡)

=

{
{

{
{

{

𝑆 (0, 𝑡) ⊙ 𝜑0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝜏

2

𝜑 (𝑡) , −𝑙 ≤ 𝑡 ≤ 0.

(69)

Theorem 44. Assume that conditions (A-1) and (A-2) hold.
Then, system (49) is mildly fuzzily solvable in [0, 𝑇].

Proof. Let [−𝑟, 𝜏max) be the biggest interval where system (49)
is mildly fuzzily solvable.

We show that 𝜏max > 𝑇 by contradiction. Suppose
that 𝜏max ≤ 𝑇. Then, lim

𝑡 → 𝜏max
𝑑

𝐻
(𝑥(𝑡), 0) = ∞ because if

lim
𝑡 → 𝜏max

𝑑
𝐻
(𝑥(𝑡), 0) < ∞, then there exists a sequence {𝑡

𝑛
}

and 𝜅 > 0 such that 𝑡 → 𝜏max and 𝑑𝐻
(𝑥(𝑡), 0) ≤ 𝜅 for all 𝑛.

So 𝑥 can extend beyond [0, 𝑡
𝑛
+ 𝛿] for some 𝛿 = 𝛿(𝑡

𝑛
) > 0.

This implies that system (49) is mildly fuzzily solvable in
[−𝑟, 𝜏max + 𝛿), which contradicts the definition of [−𝑟, 𝜏max).
However, the case that lim

𝑡 → 𝜏max
𝑑

𝐻
(𝑥(𝑡), 0) = ∞ also

contradicts the a priori boundary property of solution 𝑥.
Hence, 𝜏max > 𝑇; that is, system (49) is mildly fuzzily solvable
on [0, 𝑇].

5. Fuzzy Control Problem

In this section, we study a fuzzy differential equation system
with time delay and regulation:

𝑥
󸀠
(𝑡) = 𝑎 (𝑡) ⊙ 𝑥 (𝑡) ⊕ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥𝑡

, 𝑢 (𝑡)) ,

0 ≤ 𝑡 ≤ 𝑇,

𝑥 (𝑡) = 𝜑 (𝑡) , − 𝑙 ≤ 𝑡 ≤ 0.

(70)

In the above equations, 𝑥 is a fuzzy function of time variable
𝑡; 𝑥

𝑡
(equaling 𝑥(𝑡 + 𝜃) for some −𝑙 ≤ 𝜃 ≤ 0) is a state of

time delay (consider 𝑥
𝑡
as a state in the past before time 𝑡);

𝜑 is a fuzzy history function before start time 𝑡 = 0; 𝑢 is a
fuzzy controller function of time variable 𝑡; and 𝑎 : [0, 𝑇] →
R is a given continuous function. In this study, we assume
that the input function𝑓(𝑡, 𝑥, 𝑥

𝑡
, 𝑢) is a fuzzy function of time

variable 𝑡, state variable 𝑥, delay variable 𝑥
𝑡
, and controller

variable 𝑢 ∈ 𝑈ad (𝑈ad is an admissible control set). The fuzzy
derivative of 𝑥 is denoted by 𝑥󸀠.

From now on, we denote 𝑥, 𝜑, and 𝑢 by [𝑥, 𝑥], [𝜑, 𝜑], and
[𝑢, 𝑢], respectively.

The fuzzy function 𝑓(𝑡, 𝑥, 𝑥
𝑡
, 𝑢) is denoted by

[𝑓(𝑡, 𝑥, 𝑥
𝑡
, 𝑢), 𝑓(𝑡, 𝑥, 𝑥

𝑡
, 𝑢)] with

𝑓 (𝑡, 𝑥, 𝑥
𝑡
, 𝑢) = min {𝑓 (𝑡, 𝑥

1
, 𝑥

2
, 𝑥

3
) | 𝑥

1

∈ [𝑥 (𝑡)]𝑟
, 𝑥

2
∈ [𝑥

𝑡
]

𝑟
, 𝑥

3
∈ [𝑢]𝑟

} ,

𝑓 (𝑡, 𝑥, 𝑥
𝑡
, 𝑢) = max {𝑓 (𝑡, 𝑥

1
, 𝑥

2
, 𝑥

3
) | 𝑥

1

∈ [𝑥 (𝑡)]𝑟
, 𝑥

2
∈ [𝑥

𝑡
]

𝑟
, 𝑥

3
∈ [𝑢]𝑟

} .

(71)

In this research, we investigate equation system (70)
under the following assumptions.

Assumption B. (B-1) Let 𝐵([0, 𝑇],R
𝐹
) = {𝑥

(⋅)
: [0, 𝑇] →

R
𝐹
| 𝑥 ∈ 𝐶([−𝑙, 𝑇],R

𝐹
), 𝑥

𝑡
= 𝑥(𝑡 + 𝜃), −𝑟 ≤ 𝜃 ≤ 0} and

𝑈ad = 𝐶([0, 𝑇],R𝐹
) and let 𝑓 be a fuzzy function; there exists

a constant 𝑘 > 0 such that

𝑑
𝐻
(𝑓 (𝑡, 𝑥 (𝑡) , 𝑦𝑡

, 𝑧 (𝑡)) , 0)

≤ 𝑘 [1 + 𝑑
𝐻
(𝑥 (𝑡) , 0) + 𝑑𝐻

(𝑦
𝑡
, 0) + 𝑑

𝐻
(𝑧 (𝑡) , 0)]

(72)

for all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝐶([−𝑙, 𝑇],R
𝐹
), 𝑦

(⋅)
∈ 𝐵([0, 𝑇],R

𝐹
), and

𝑧 ∈ 𝑈ad.
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(B-2) There exists a constant 𝐿 > 0 such that

𝑑
𝐻
(𝑓 (𝑠, 𝑥

1 (
𝑠) , 𝑦1(𝑠)

, 𝑧
1 (
𝑠)) , 𝑓 (𝑡, 𝑥2 (

𝑡) , 𝑦2(𝑡)
, 𝑧

2 (
𝑡)))

≤ 𝐿 [|𝑠 − 𝑡| + 𝑑𝐻
(𝑥

1 (
𝑠) , 𝑥2 (

𝑡)) + 𝑑𝐻
(𝑦

1(𝑠)
, 𝑦

2(𝑠)
)

+ 𝑑
𝐻
(𝑧

1 (
𝑠) , 𝑧2 (

𝑡))]

(73)

for all 𝑠, 𝑡 ∈ [0, 𝑇], 𝑥
1
, 𝑥

2
∈ 𝐶([−𝑙, 𝑇],R

𝐹
), 𝑦

1(⋅)
, 𝑦

2(⋅)
∈

𝐵([0, 𝑇],R
𝐹
), and 𝑧

1
, 𝑧

2
∈ 𝑈ad.

Definition 45. Let 𝑥 ∈ 𝐶([−𝑙, 𝑇],R
𝐹
) and 𝑢 ∈ 𝑈ad. 𝑥 is called

a mild fuzzy solution of system (70) with respect to control 𝑢
in [−𝑙, 𝑇], if 𝑥 satisfies this system of fuzzy integral equation:

𝑥 (𝑡) =

{

{

{

𝑆 (0, 𝑡) ⊙ 𝜑0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥𝑠
, 𝑢 (𝑠)) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇

𝜑 (𝑡) , −𝑙 ≤ 𝑡 ≤ 0.

(74)

Theorem46. Assume that Assumption B holds.Then, for each
𝑢 ∈ 𝑈

𝑎𝑑
, system (70) has a mild fuzzy solution with respect to

control 𝑢.

Proof. Let 𝑢 ∈ 𝑈ad. Define 𝑓𝑢
(𝑡, 𝑥(𝑡), 𝑥

𝑡
) to be 𝑓(𝑡, 𝑥(𝑡), 𝑥

𝑡
,

𝑢(𝑡)). By Assumption B and the continuity of 𝑢, 𝑓
𝑢
satisfies

Assumption A. Therefore, by Theorem 44, system (70) has a
mild fuzzy solution with respect to 𝑢.

Note that for each solution 𝑥 with respect to a control
𝑢, we can denote 𝑥 by 𝑥𝑢 and call the ordered pair (𝑥𝑢

, 𝑢) a
pairwise control pair, sometimes written shortly as (𝑥, 𝑢).

Next, we investigate an optimization control problem,
problem (B), or Bolza problem.

Problem P. Problem P is to find the pairwise control pair
(𝑥

0
, 𝑢

0
) ∈ 𝐶([−𝑙, 𝑇],R

𝐹
) × 𝑈ad such that

𝐽 (𝑥
0
, 𝑢

0
) ≤ 𝐽 (𝑥

𝑢
, 𝑢) ∀𝑢 ∈ 𝑈ad, (75)

where 𝐽(𝑥𝑢
, 𝑢) = ∫

𝑇

0
𝑟(𝑡, 𝑥

𝑢
, 𝑥

𝑢

𝑡
, 𝑢(𝑡))𝑑𝑡 + 𝑔(𝑥

𝑢
(𝑇)) is a

Bolza cost functional. The multivariable function 𝑟 is called
a running function and the function 𝑔 is called a terminal
function. For convenience, 𝐽(𝑥𝑢

, 𝑢) is written as 𝐽(𝑢). We
prove the existence of a solution to Problem P constrained
by system (70) under the following assumptions.

Assumption U. Assume that 𝑈ad = 𝐶([0, 𝑇],R𝐹
):

(U-1) The running function 𝑟 : [0, 𝑇] × 𝐶([−𝑙, 𝑇],R
𝐹
) ×

𝐵([0, 𝑇],R
𝐹
) ×𝑈ad → (−∞,∞] is Borel measurable.

(U-2) The terminal function 𝑔 : 𝐶([−𝑙, 𝑇],R
𝐹
) → R is

nonnegative and continuous.
(U-3) The running function 𝑟(𝑡, ⋅, ⋅, ⋅) is sequentially lower

semicontinuous on𝐶([−𝑙, 𝑇],R
𝐹
)×𝐵([0, 𝑇],R

𝐹
)×𝑈ad

for almost every 𝑡 ∈ [0, 𝑇].
(U-4) The running function 𝑟(𝑡, 𝑥, 𝑦

(⋅)
, ⋅) is convex on

𝐶([0, 𝑇],R
𝐹
) for all 𝑥 ∈ 𝐶([−𝑙, 𝑇],R

𝐹
), 𝑦

(⋅)
∈

𝐵([0, 𝑇],R
𝐹
) and almost every 𝑡 ∈ [0, 𝑇].

(U-5) There are constants 𝑎, 𝑏, 𝑐 > 0 and 𝜆 ∈ 𝐿([0, 𝑇],R)
such that

𝑟 (𝑡, 𝑥, 𝑦
(⋅)
, 𝑢) ≥ 𝜆 (𝑡) + 𝑎𝑑𝐻

(𝑥 (𝑡) , 0) + 𝑏𝑑𝐻
(𝑦

𝑡
, 0)

+ 𝑐𝑑
𝐻
(𝑢 (𝑡) , 0)

(76)

for all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝐶([−𝑙, 𝑇],R
𝐹
), 𝑦

(⋅)
∈

𝐵([0, 𝑇],R
𝐹
), and 𝑢 ∈ 𝑈ad.

Theorem 47. Under Assumptions B and U, Problem P con-
strained by system (70) has at least one solution; that is, there
exists a pairwise control pair (𝑥0

, 𝑢
0
) ∈ 𝐶([−𝑙, 𝑇],R

𝐹
) × 𝑈

𝑎𝑑

such that 𝐽(𝑥0
, 𝑢

0
) ≤ 𝐽(𝑥

𝑢
, 𝑢) for all (𝑥𝑢

, 𝑢) ∈ 𝐶([−𝑙, 𝑇],R
𝐹
) ×

𝑈
𝑎𝑑
.

Proof. Let 𝑚 = inf{𝐽(𝑥𝑢
, 𝑢) | 𝑢 ∈ 𝑈ad}. If 𝑚 = +∞,

the theorem is already true. Assume that 𝑚 < +∞. By
assumption (U-5), there are 𝑎, 𝑏, 𝑐 > 0 and 𝜆 ∈ 𝐿([0, 𝑇],R)
such that

𝑟 (𝑡, 𝑥
𝑢
, 𝑥

𝑢

𝑡
, 𝑢) ≥ 𝜆 (𝑡) + 𝑎𝑑𝐶

(𝑥
𝑢
, 0) + 𝑏𝑑

𝐶
(𝑥

𝑢

𝑡
, 0)

+ 𝑐𝑑
𝐶
(𝑢, 0)

(77)

for all 𝑡 ∈ [0, 𝑇], 𝑥𝑢
, 𝑥

𝑢

𝑡
∈ 𝐶([−𝑙, 𝑇],R

𝐹
), and 𝑢 ∈ 𝑈ad. Since 𝑔

is a nonnegative function, we have

𝐽 (𝑥
𝑢
, 𝑢) = ∫

𝑇

0

𝑟 (𝑡, 𝑥
𝑢
, 𝑥

𝑢

𝑡
, 𝑢 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥

𝑢
(𝑇))

≥ ∫

𝑇

0

𝜆 (𝑡) 𝑑𝑡 + 𝑎∫

𝑇

0

𝑑
𝐻
(𝑥

𝑢
(𝑡) , 0) 𝑑𝑡

+ 𝑏∫

𝑇

0

𝑑
𝐻
(𝑥

𝑢

𝑡
, 0) 𝑑𝑡

+ 𝑐∫

𝑇

0

𝑑
𝐻
(𝑢 (𝑡) , 0) 𝑑𝑡 + 𝑔 (𝑥

𝑢
(𝑇)) ≥ −𝜔

> −∞, for some 𝜔 > 0, ∀𝑢 ∈ 𝑈ad.

(78)

So 𝑚 ≥ 𝜔 > −∞. By the definition of minimum, there
is a sequence of the minimum point, say {𝑢

𝑛
}, of the cost

functional 𝐽 such that lim
𝑛 → ∞

𝐽(𝑥
𝑢
𝑛
, 𝑢

𝑛
) = 𝑚 and

𝐽 (𝑥
𝑢
, 𝑢) ≥ ∫

𝑇

0

𝜆 (𝑡) 𝑑𝑡 + 𝑎∫

𝑇

0

𝑑
𝐻
(𝑥

𝑢
𝑛

(𝑡) , 0) 𝑑𝑡

+ 𝑏∫

𝑇

0

𝑑
𝐻
(𝑥

𝑢
𝑛

𝑡
, 0) 𝑑𝑡

+ 𝑐∫

𝑇

0

𝑑
𝐻
(𝑢

𝑛 (
𝑡) , 0) 𝑑𝑡 + 𝑔 (𝑥

𝑢
𝑛

(𝑇)) .

(79)
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Thus, there is 𝑁
0
> 0 and 𝑚

1
> 0 such that 𝑚 +

𝑚
1
≥ 𝐽(𝑥

𝑢
𝑛
, 𝑢

𝑛
) ≥ 𝑐 ∫

𝑇

0
𝑑

𝐻
(𝑢

𝑛
(𝑡), 0)𝑑𝑡 for all 𝑛 ≥ 𝑁

0
. This

implies that (𝑚 + 𝑚
1
)/𝑐 ≥ ∫

𝑇

0
𝑑

𝐻
(𝑢

𝑛
(𝑡), 0)𝑑𝑡. Consequently,

𝑑
𝐶
(𝑢

𝑛
, 0) ≤ (𝑚 + 𝑚

1
)/𝑇𝑐 for all 𝑛 ≥ 𝑁

0
. Hence, {𝑢

𝑛
} is a

bounded sequence in 𝑈ad ⊂ 𝐿2
([0, 𝑇],R

𝐹
) with respect to

the norm ‖ ⋅ ‖ defined by ‖𝑥‖ = 𝑑
𝐶
(𝑥, 0). Since 𝐿

2
([0, 𝑇],R

𝐹
)

is a reflexive Banach space, there exists a subsequence {𝑢
𝑛
𝑘

} of
{𝑢

𝑛
} such that 𝑢

𝑛
𝑘

𝑤

󳨀→ 𝑢
0 for some 𝑢0

∈ 𝑈ad.
Let 𝑥0

∈ 𝐶([0, 𝑇],R
𝐹
) be a mild fuzzy solution with

respect to a control 𝑢0 and let {𝑥
𝑛
𝑘

} be a sequence of mild
fuzzy solution corresponding to the sequence of control {𝑢

𝑛
𝑘

};
that is,

𝑥
𝑛
𝑘

(𝑡) =

{

{

{

𝑆 (0, 𝑡) ⊙ 𝜑0
⊕ ∫

𝑡

0

𝑆 (𝑠, 𝑡) ⊙ 𝑓 (𝑠, 𝑥𝑛
𝑘

(𝑠) , 𝑥𝑛
𝑘 (𝑠)
, 𝑢

𝑛
𝑘

(𝑠)) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇

𝜑 (𝑡) , −𝑙 ≤ 𝑡 ≤ 0.

(80)

By assumption (B-2), for all 0 ≤ 𝑡 ≤ 𝑇, there is a constant
𝑎 > 0 such that

𝑑
𝐻
(𝑥

𝑛
𝑘

(𝑡) , 𝑥
0
(𝑡)) ≤ 2𝑀𝑎[∫

𝑡

0

𝑑
𝐻
(𝑥

𝑛
𝑘

(𝑠) , 𝑥
0
(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑑
𝐻
(𝑢

𝑛
𝑘

(𝑠) , 𝑢
0
(𝑠)) 𝑑𝑠]

≤ 2𝑀𝑎[∫

𝑡

0

𝑑
𝐻
(𝑥

𝑛
𝑘

(𝑠) , 𝑥
0
(𝑠)) 𝑑𝑠

+ 𝑇𝑑
𝐶
(𝑢

𝑛
𝑘

, 𝑢
0
)] .

(81)

By Gronwall lemma, there is𝑀
1
> 0 such that

𝑑
𝐶
(𝑥

𝑛
𝑘

, 𝑥
0
) ≤ 𝑀

1
𝑑

𝐶
(𝑢

𝑛
𝑘

, 𝑢
0
) . (82)

Since 𝑢
𝑛
𝑘

𝑤

󳨀→ 𝑢
0, 𝑥

𝑛
𝑘

𝑤

󳨀→ 𝑥
0. By using assumptions (U-2) and

(U-3), we obtain

𝑚 = lim
𝑛
𝑘

→ ∞

𝐽 (𝑥

𝑢
𝑛
𝑘

𝑛
𝑘

, 𝑢
𝑛
𝑘

)

= lim
𝑛
𝑘

→ ∞

∫

𝑇

0

𝑟 (𝑡, 𝑥

𝑢
𝑛
𝑘

𝑛
𝑘

, 𝑥

𝑢
𝑛
𝑘

𝑛
𝑘
(𝑡)
, 𝑢

𝑛
𝑘

(𝑡)) 𝑑𝑡

+ 𝑔 (𝑥

𝑢
𝑛
𝑘

𝑛
𝑘

(𝑇))

≥ ∫

𝑇

0

lim
𝑛
𝑘

→ ∞

𝑟 (𝑡, 𝑥

𝑢
𝑛
𝑘

𝑛
𝑘

, 𝑥

𝑢
𝑛
𝑘

𝑛
𝑘
(𝑡)
, 𝑢

𝑛
𝑘

(𝑡)) 𝑑𝑡

+ 𝑔( lim
𝑛
𝑘

→ ∞

𝑥

𝑢
𝑛
𝑘

𝑛
𝑘

(𝑇))

≥ ∫

𝑇

0

𝑟 (𝑡, 𝑥
0
, 𝑥

0

𝑡
, 𝑢

0
(𝑡)) 𝑑𝑡 + 𝑔 (𝑥

0
(𝑇))

= 𝐽 (𝑥
0
, 𝑢

0
) .

(83)

Thus, 𝐽(𝑥0
, 𝑢

0
) = 𝑚; that is, 𝐽(𝑥0

, 𝑢
0
) ≤ 𝐽(𝑥

𝑢
, 𝑢) for all

(𝑥
𝑢
, 𝑢) ∈ 𝐶([−𝑙, 𝑇],R

𝐹
) × 𝑈ad.

6. Conclusion

This paper is concerned with proving of the existence and
uniqueness of a mild solution to nonlinear fuzzy differential
equation constrained by initial value.Then,we already proved
the existence of a solution to the system that the initial value
constraint was then replaced by delay function constraint.
Furthermore, we prove the existence of a solution to optimal
control problem of the latter type of equation. Last but not
least we should be interested in studying applications and
numerical method of these problems. Even though it seems
likely that efforts in this direction can be successful, there is
no guarantee for that.Therefore, we can only hope for the best
and prepare for the worst.
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