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This paper is devoted to both theoretical and numerical study of boundary value problems for higher-order nonlinear fractional
integrodifferential equations. Existence and uniqueness results for the considered problem are provided and proved. The numerical
method of solution for the problem is based on a conjugate collocation and spline approach combined with shooting method. Some
numerical examples are discussed to demonstrate the efficiency and the accuracy of the proposed algorithm.

1. Introduction

Within the context of fractional calculus, it is argued that anti-
cipated sort of memory is being carried out from past states
to current states; see, for example, the recent work of Agarwal
et al. [1]. Therefore, in recent years, several phenomena in
physics, chemistry, life sciences, geophysics and earth sci-
ences, and fluid dynamics have been extensively investigated
through mathematical models involving fractional calculus;
see, for example, the works by Podlubny [2], Mainardi [3], and
Kilbas et al. [4].

In this paper we consider a class of boundary value prob-
lems for nonlinear integrodifferential equations of the form

Py =Dy (x)+ J-OxK(x,t)f(t,y)dt+h(x) =0,

¢))
xel=1[0,1],
subject to

y(0) = ay,

. (2a)
y (0)=q
y(l) = b())

, (2b)
}’ (1) = bl)

where3 < a < 4, f € C[I xR,R],K € C[I xI,R"]is
a positive kernel, h(x) € C[I,R], and a,,b),b; € R. Here,
D denotes the fractional differential operator of order « in
Caputo’s sense and is given by

o 3 1 * ka1 _ (k)
Dy =t |, -0y 0de )
where k = [«] is the smallest integer greater than or equal to
k. 1t is well-known that many mathematical models in engi-
neering and other disciplines in science involve integrodiffer-
ential equations of fractional order, for example, problems in
modeling of turbulent aerodynamic phenomena, continuum
under viscoelastic situations, certain population dynamics
problems, and heat transfer in composite materials with cer-
tain properties. Account for similar issues is given in [5-8]
and the references therein.

A survey of the literature reveals that theoretical and
numerical investigations related to corresponding boundary
value problems for fractional differential and integrodifferen-
tial equations are still in their early stages; see [9-17] and the
references therein. Moreover, it is extremely difficult to find
exact solutions of such problems; therefore, most researchers
have focused on the numerical methods to approximate
exact solutions. Examples of such methods are the Adomian
decomposition method [18, 19], collocation spline method
[20] and Zhao et al. [21], variational iteration method and
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homotopy perturbation method [22, 23], fractional differen-
tial transform method [24, 25], CAS wavelets [26], discrete
Galerkin method [27], Chebyshev wavelets method adopted
by Biazar and Ebrahimi [28], and Taylor expansion method
[29].

The rest of the paper is organized as follows: some defini-
tions and preliminary results are presented in Section 2. In
Section 3, some relevant theoretical results such as the exis-
tence and uniqueness of the considered problem are presented.
The numerical method of solution is presented in Section 4.
In Section 5, numerical examples are discussed to demon-
strate the efficiency and the rapid convergence of the present
algorithm.

2. Definitions and Preliminary Results

This section presents some definitions and preliminary
results that will be extensively used in this study. We first
introduce the Riemann-Liouville definition of fractional
derivative operator.

Definition 1. The left sided Riemann-Liouville fractional inte-
gral operator of order « is defined by

Ty (x) = ﬁ J (x=0)*" y (0 dt, (4)

where y € L,(a,b) and a € R™.

The properties of the operator J are summarized in the
following lemma.

Lemma 2. Let o, 3, x > 0 and y > —1. Then, see [2]
(1) TP y)(x) = TP y)(x) = P19 y) (),
(i) J(x —a)’ = (D(y + 1)/T(y + 1 + a))(x — a)'**.

Note that the left sided Caputo fractional derivative (3) is
originally defined via the left sided Riemann-Liouville frac-
tional integral (4), as follows:

DYy x) =" " ()= y(x), x>0, (5
wherea € R*,n = [a],and y € L,[a,b].
Lemma 3. Fora € R*, n=[«], and y € L,[a,b], one has
(i) (D y)(x) = y(x).
(i) JD@ y)(x) = y(x) = Y02 y™ @) (x - @)™ fm).
(iii) D (x — a)” = (C(r + 1)/T(r + 1 — a))(x — a)"™%, for

[a] <.

3. Analytical Results

The existence and uniqueness of the exact solution to problem
(1) subject to the boundary conditions (2a) and (2b) are dis-
cussed herein. Since we are using the shooting method which
requires converting the boundary value problem to initial
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value problem, we will discuss in the next theorem the
existence of the solution to (1) subject to

y(O) = a()’

)” 0) = ay,

" (6)
y (0) =a,
yHI (0) _ a3'

Theorem 4 (existence). Assume thath € C[0,1], k € C[0,1]?,
and f € C[0,1] x R. Then for any € > 0 and

) el'(w+1) Ve
= 1, 7
* mm{ <||h||oo+||1<um||f||oo) } 7

there exists y : [0, x] — R solving the initial value problem

(1) and (6).

Proof. Taking the Riemann-Liouville functional operator of
both sides of (1) and applying Lemma 3, one obtains
3 (i) (O) )
}’(x)ZZ—y i' x'
=0 b

(8)

o Jxh(r>+j;K(r,t)f(t,y)dth
I'(x) Jo (X—T)l_a
Let B = {y ¢ Cl0,x] : Iy - X (" (0)/iDllg < €.

Obviously, B is a closed subset of the Banach space of all
continuous functions on [0, ] equipped with the Chebyshev

norm. Moreover, since y(x) = Zfzo(y(i)(O)/i!)xi for x € [0, x]
is in B then B # ¢. Define the operator & on B by

Z[y] (%)

P 9)

. J»xh(‘[)+J:K(T,t)f(t,y)dtdr'
I'(x) Jo (x-1)"*

The equation under consideration can be written as

Zyl =y (10)

Our aim is to show that (10) has a fixed point in B. Since h €
C[0,1], k € C[0,1]% and f € C[0,1] x R, then Z[y] is a
continuous function. Notice that, since 2 < a < 4 ensures
that « — 1 > 2. To achieve our target, we need to show that &
is a self-mapping on B. For any y € B and x € [0, x], we have
0)

—x

3 )/(i)
3220
i=0 :

1
" T(w)

r h@)+ [ K@o) f(6y)dt

0 (x—1)'™

dr| (1)

x \h K
J Ihloo + 1 ||oo||flloofd1|.

0 (x—1)'™

I'(x)
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Since 0 < 7 < x < 1, then

(1)
‘se -y 2O o+ Kl

i=0

F (oc)

‘IIflloo)le(x—ﬂ"“ldr T )(uhu 1Kl

x
W) % = s (oo 1T 1£1,) .
N 1
XS 17 Wl + 1Kl
) et D

Wlleo + 1Ko £ ]

= €.

Therefore, Z[y] € Bif y € B; that is, & maps y to itself.
Based on Banach’s fixed point theorem, it follows that the
proof is complete. O

It is easy to see that the solution produced by Theorem 4
depends on x, a,, and a;. To prove the existence of solution to
problem (1)-(2b), it is enough to force the solution to satisfy
the condition (2b). In this case, we can determine values of a,
and a; so that the solution of (1)-(2b) depends on x only.

Theorem 5 (uniqueness). Let f be a Lipschitz function in
the variable y with Lipschitz constant L. Let K be a bounded
function on [0, 1] x [0, 1] such that

K (t,t;)| <M, V(t),ty) €[0,1]x[0,1],  (13)

where M > 0. If 0 < LM/al(x) < 1; then problem (1)-(2b)
has a unique solution.

Proof. Let y, and y, be two solutions to problem (1)-(2b);
then

D%y, (x) + Jox K (x,t) f(t,y,)dt + h(x) =0, (14)

D%y, (x) + Jox K(x,t) f(t,y,)dt +h(x)=0. (15)

Subtracting (14) from (15) then applying the Riemann-
Liouville fractional integration one obtains

|)’2 _)’1|
_ 1 r‘ jOTK(T’t)(f(t’)’z)_f(t’%))dt
T (a) (x-1)'™
C (16)
< b2l Wdt‘
LM

Sar—w|yz-)’1|~

3
Obviously,
1 x* 1

——dt|=|— < —|. (17)

(x _ T)l—lx o
Since LM/al'(a) < 1, then y, = y, which completes the
proof. O
4. Method of Solution

The following is a brief derivation of the numerical algorithm
used to solve problem (1) subject to (2a) and (2b). It is based
on conjugate collocation approach with multiple shooting
method. It consists of three main steps:

(1) Collocation step.
(2) Spline step.
(3) Multiple shooting step.

4.1. Collocation and Spline Methods. For the sake of simplic-
ity, we discuss the solution of (1) as initial value problem with

¥ (0) = ag,
)’, 0) =a;
" (18)
y (0) =a,,
ym 0) = as,

where a, and a; are unknown constants which will be
determined later.

The interval I = [0,1] is partitioned into N uniform
subintervals A; = [x;_;,x;] (fori = 1,2,...,N) of width h =
1/N.LetZy ={x; =ih:i=1,2,...,N —1}. Fora given m >
1, let S .3(Z ) be the spline space of piecewise polynomials
on Zy which are 3 times continuously differentiable on the
interval I, given by

St (Zn)

s (19)
= {ueC (I : Uy, = (t) eP,.; on Ai},

where P, ; represents the set of all real polynomials of degree
not exceeding m + 3. Notice that m represents the number

of collocation points in each subinterval A;. Those points are
defined as

X;={xj=x;+hc;:i=0:N-1j=1:m},  (20)
with0 < ¢ < ¢ <+ < ¢, < 1. Based on the collocation

method, the exact solution y of problem (1) subject to (18)
will be approximated by an element u € Sm +3(Z ~) such that

D%u(x) + L K (x,t) f (t,u)dt + h(x) =
@
xeX=|JX,

i=0
subject to

u (0) = ay,

u' (0) = aj,



u" (0) = a,,

n

u (0) =as.

(22)

On each subinterval A;, the spline u can be expressed as a

piecewise polynomial of degree m + 3 of the form

u(x) = u; (x; + hy)

=u +ux+ i+ Y BT (23)
j=1

xel;, i:N-1,

(j+ Ci)_a -
(o) _

ik (] n Ci)—oﬁ-k l—[

I=

*
and &7,

eachX; (i=0,1 N — 1) can be expressed in the form

o (B putru s S St

k=07=0 k=0 s=0

(26)

+ JXU K (x;5t) f ( ZP‘(I) 7 Zﬁ(l) ]+3>
+h (xi,l) =

forl = 1,2,...,N. Applying Simpson’s rule to approximate
the integral in (26), one obtains

ol (Z St oy Sutrto

k=01r=0 k=0 s=1

ey (o. 34 S )
4 ; 3 (27)
(o ) (% S S
q=0

3
X~’l 3
+ ?IK (xi,l’xi,l) f <xi,l’ Z.”,(;) zq + Zﬁ(l) ]+ >
h (x,-’l) =0.
Obviously, (27) can be written in the following matrix form:

g, (M?,B?)=RY, i=01,..,N-1, (28

5’? (j+c<—l

= 0if j = 0, and 1 otherwise. Consequently, (21) for
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where y € I. Applying the results of Blank [30], we may
evaluate the fractional differential operator of order ¢ for the
the collocation solution (23) at x = x; + ¢;h as follows:

i 3
D o) = g (2 Fufs

k=07r=0

| (24)
S i—k,o k
S,
k=0 s=0
where
-, k=0
V—o Y - (25)
J(+e-1) Hkl_v;l, k>1
I=1
where
g (M, B) = N* ZZw ka0
il F(I—OC) parter] Lr r
i m ik, ;
$ St St
k=0 s=1
( ZV(I) q, Zﬁm J+3>
(29)

4x,l Xi, il !
—K( . ) < ZM() q
i 11 !
+Zﬁ( J+3> K (x5 x ,z)f< Z'u()q
+Zﬁ(1) ]+3>’ l:l,l,...,N,

MY = W, W), B = (B, BY), and RO =
[~h(x;y), ..., —h(x; \)]'. Here [-] means the transpose of the

vector. Based on the given definition of the approximate
spline u, it can be easily verified that

0
uy
!"(0) a
M9 = EO) = . (30)
Uy i)
0) a,

H3
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4.2. Multiple Shooting Method. For simplicity, let us rewrite
problem (1)-(2b) in the following form:

Zy:=D% (x)+ L K(x,t) f(t:y)dt =-h(x), (3

subject to
)’(0) = 610,
)” 0)=a,
(32)
y (1) = by,
}” (1) =by.

The solution of problem (31)-(32) can be determined by
solving the problem on the subintervals [x;,x; ], for i =
0,1,...,N — 1. In order to apply the shooting method, we
introduce the following set of initial value problems:

L[y = D%, (x) + jo K(0) f (6 y,)dt = h(x),

(33)
X; £ X < X
subject to
i (x;) = ay;
J’i’ (xi) = Q4ir1>
Y (34)
Yi (xi) = Q4it2>
i,” (xi) = Q4413

where a,,a,,...,a4y_; are unknown real parameters. The
solution of problem (33)-(34) will be obtained by the method
described in the previous subsection, where the parameters
ay,05,...,04y_ are determined by solving the following
algebraic system

(1)

)’(()n) (xpaz : a3) =N (xl’a4 : a7),

)’z(fi (% Ayiy 2 Oyiy) = J’i(n) (% Ay; : Agi3) >

(35)
a1 (L gy gt duny) = bos
!
In-t (L agy ) = by
wheren = 0 : 3 and g; : g, represents a;,a;,,,...,a,, Itis

worth mentioning that we use shooting method of order five
(N =5) in our computations which are done using Matlab.

5. Numerical Results

Example 1. Consider the following nonlinear fourth order
fractional integrodifferential equations:

D%y (x) + Lx (t+1)y* (t)dt + h(x) = 0,

(36)
O0<x<1
subject to
)’(0) =1,
y' (0) =0,
(37)
)’(1) =2,
y' (1) =3,

where a = 3.7, h(x) = -x%/8—x"/7-2x°|5-x*/2 - x* |2 - x,
and the exact solution is y(x) = x> + 1. Divide the domain
[0, 1] into five subinterval such that

—-

1l
o

[x;,x;,.;] where x; =02i, i=0,1,...,5, (38)

1

and then apply the multiple shooting method of order five
yields to solve the following five initial value problems:

Zyl=-h(x), 0<x<02,
0 (0,5) =1,
5 (0,:) =3,
Vo (0,2) = ay,
vy (0,2) = as,
Zyn]=-h(x), 02<x<04,
1 (0.2,:) = ay,
y1(0.2,:) = as,
y (02,) = ag,
7"(0.2,) = a,,
Zy,]=-h(x), 04<x<06,
¥, (0.4,2) = ag,
yé (0.4,:) = aq,
3 (04,2) = ay,
7, (0.4,) = ayy,
Z [yl =-h(x), 06<x<08,



6
y3 (0'6) :) = a12)
y; (0.6,:) = a3,
yi (0.6,2) = ayy,
yi" (0.6,:) = a5,
Ly =-h(x), 08<x<10,
2 (0.8, 1) = A6
yzlt (0.8,:) = a,7,
yi (0.8,2) = ayg,
yi" (0.8,:) = a9,
(39)
where
Z[y] =D (x) +J (t+1)y* (t)dt. (40)
0

Here y,(x,:) = yo(x,a5a3), (%) = y(xa, @ ay),
Y(%,0) = yy(x,ag 1 oay), y3(x,:) = ys(x.a, ¢ a5), and
yu(x,1) = ya(x,a56 : a19). The above initial value problems
(39) are solved using the collocation method with the follow-
ing collocation points:

1+ cos(/8)

1 5 >

1+ cos(37/8)

Q= -5
(41)

1+ cos(57/8)

C3 = —)

2
1+ cos (77/8)
¢ = —

Notice that these collocations points are generated from the
roots of the Chebyshev polynomials of degree four. To find
the parameters a;, i = 2 : 19 we solve the following algebraic
system:

357 (02,0, : @) = 3" (02,0, : ay),
J’in) (0‘4) a : ‘17) = )’;n) (0-4’ dg : ‘111) >
yé”) (0.6,a4 : a;,) = ygn) (0.6,a5, : a5),
(42)
;Vgn) (0-8"112 : ‘115) = )’z(;n) (0-& A6 ¢ a19) >
Y4 (1"116 : ‘119) =2,

}’2 (Lay : ag) =3,
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forn =0, 1,2, 3, using Matlab software. Hence, we obtain

a, = 5.999999998,
a; = 6.000000001,
a, = 1.008000002,
as = 0.120000003,
ag = 1.199999998,
a, = 6.000000001,
ag = 1.063999996,
a, = 0.48000005,

a,o = 2.40000002,

(43)

ay, = 6000000002,
ay, = 1.21600007,

a5 = 1.08000008,

ay, = 3.599999995,
a5 = 5.999999994,
a6 = 1.51199989,

a,; = 1.919999990,
a5 = 4.800000012,

a9 = 5.999999986.

The graph of the exact and approximate solutions and the
graph of the error function are, respectively, given in Figures
land 2. It is clearly seen that the two solutions are in excellent
agreement. In addition, the computed L, error norm is given

by
4 Xit1 2
)=yl = Y | )=y )
i=0 Y %i (44)
=21x107".

Example 2. Consider the following nonlinear fourth order
fractional integrodifferential equations:

3
3t 1) E,, (x*)=0,

D%y (x) + L £y (t)dt - ((x’:

(45)
O0<x<l1
subject to
y(0) =1,
") = ——,
7 of (@) o
y(1) =E,, (1),
E (1)

! o,
)= 22~
4 ( ) (04
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FIGURE 1: The exact and approximate solutions for Example 1.
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F1GURE 2: Computed absolute error between the present numerical
solution and the exact one for Example 1.

where & = 3.5 and the exact solution is y(x) = E, , (x*). Here
E,p(2) = Y o2o(Z"/T(an + f3)) represents the Mittag-Leffler
function. Using the multiple shooting method of order five
and then following the same steps in the previous example,
the parameters a;, i = 2,3,..., 19 are found to be

a, = 0.000396825,
a; = 0.0000000504,
a, = 1.0172022865,
as = 0.086051128,
as = 0.0003969266,
a, = 0.0000000503,
ag = 1.034420446,
ag = 1.49160490,
a,, = 0.000397028,
a,, = 0.0000000504,
a,, = 1.051654498,
a5 = 0.086209945,

a,, = 0.000397123,

ot e
coococooooo™
— =R GE TN ]800 i~
T T T T T T

01 02 03 04 05 06 07 08 09 1

(=}

—— Exact solution
Approximate solution

F1GURE 3: The exact and approximate solutions for Example 2.
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F1GURE 4: Computed absolute error between the present numerical
solution and the exact one for Example 2.

a,s = 0.0000000505,
a6 = 1.068904427,
a,, = 0.086289345,
ays = 0.000397224,

ay5 = 0.0000000504.
(47)

The exact solution is graphed along with the graph of the
approximate solution for & = 3.5 in Figure 3. Moreover, the
computed absolute error between the numerical and exact
solutions is given in Figure 4 which shows a satisfactory
agreement. The computed L, error norm is given by

4 Xir1
=yl = Y | () = 3 ()
i=0 IXi (48)

=1.87x 107",

Example 3. Consider the following nonlinear fourth order
fractional integrodifferential equations

D“y(x)+ny2(t)dt+H(x) ~0, 0<x<1 (49)



8
subject to
y (0) =0,
}” (0) =1,
(50)
y (1) = 0.84,
y' (1) = 0.54,

where a = 3.25and H(x) = 0.005-0.13x—x". By implement-
ing the present algorithm, the parameters a;, i = 2,3,...,19
are found to be

a, =0,

a; = -1,

a, = 0.198669,
as = 0.980067,
ag = —0.198669,
a, = —0.980067,
ag = 0.389418,
ag = 0.921061,

a,, = —0.389418,
(51)

a,, = —-0.921061,

a, = 0.564642,

a,; = 0.825336,

ayy = —0.564642

a5 = —0.825336,

ays = 0.717356,

a,, = 0.696707

ayg = —0.717356,

ayy = —0.696707.

Figure 5 shows the graph of the approximate solution. Since
the actual solution for this problem is unknown, we may
measure the error of the approximation by using the residual
function, R(x), defined by

R(x) := D*u(x) + J W () dt+H (x). (52)
0
The graph of the residual function, R(x), is displayed in

Figure 6. It is clearly evident from Figure 6 that Max {|R(x)| :
0 < x <1} =0.0056.

6. Conclusion and Future Work

In this paper, we have solved special class of higher-order
nonlinear integrodifferential equations of order 4 subject to
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0.8
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0.4 -
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0.2
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x

F1GURE 5: The exact and approximate solutions for Example 3.

0.004
0.002
0
& 0.2 0.4 0.6 0.8 1.0
-0.002 x
—0.004

F1GUre 6: Computed residual, R(x), for Example 3.

boundary conditions. The method of solution is based on
conjugate collocation and spline technique with shooting
method. The numerical results for given examples demon-
strate the efficiency and accuracy of the present method. It
should be noted that applying Theorem 5 causes two difficul-
ties. Firstly, the Lipschitz constant for f(x, y) with respect to
y is not easy to find and, secondly, the necessary condition
(0 < LM/aI'(x) < 1) does not satisty several cases of the
problem (1)-(2b). Therefore, a further discussion on weaker
necessary conditions should be followed in the future work
to cover wider range of problem (1)-(2b).
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