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We consider the existence of nontrivial solutions to elliptic equations with decaying cylindrical potentials and subcritical exponent.
We will obtain a local minimizer by using Ekeland’s variational principle.

1. Introduction

In this paper, we study the existence of nontrivial solutions of
the following problem:
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in R
𝑁

, 𝑦 ̸= 0, 𝑢 > 0,

(P
𝜆,𝜇

)

where 𝑦 ∈ R𝑘, and let 𝑘 and 𝑁 be integers such that 𝑁 ≥ 3

and 𝑘 belongs to {1, . . . , 𝑁}. 2∗ = 2𝑁/(𝑁 − 2) is the critical
Sobolev exponent, 𝛾 ≤ 2

∗, 0 ≤ 𝑎 < 1, 𝑔 is a continuous
function on R𝑁, and 𝜆 and 𝜇 are parameters which we will
specify later.

We denote point 𝑥 in R𝑁 by the pair (𝑦, 𝑧) ∈ R𝑘 ×R𝑁−𝑘,
D1,2
0

= D1,2
0
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with 𝜇 < 𝜇

𝑘

= ((𝑘 − 2)/2)

2 for 𝑘 ̸= 2.
From the Hardy inequality, it is easy to see that the norm

‖𝑢‖

𝜇

is equivalent to ‖𝑢‖.

We define the weighted Sobolev space D := H
𝜇

∩

𝐿

𝛾

(R𝑁, |𝑦|−𝑏𝑑𝑥) ∩ 𝐿

2

(R𝑁, |𝑦|−2𝑑𝑥) with 𝑏 = 𝑎𝛾, which is a
Banach space with respect to the norm defined by N(𝑢) :=

‖𝑢‖

𝜇

+ (∫

R𝑁
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𝛾

𝑑𝑥)

1/𝛾.
Mymotivation of this study is the fact that such equations

arise in the search for solitary waves of nonlinear evolution
equations of the Schrödinger or Klein-Gordon type (cf.
[1–3]). Roughly speaking, a solitary wave is a nonsingular
solution which travels as a localized packet in such a way that
the physical quantities corresponding to the invariances of
the equation are finite and conserved in time. Accordingly, a
solitary wave preserves intrinsic properties of particles such
as the energy, the angular momentum, and the charge, whose
finiteness is strictly related to the finiteness of the 𝐿2-norm.
Owing to their particle-like behavior, solitary waves can be
regarded as a model for extended particles and they arise in
many problems ofmathematical physics, such as classical and
quantum field theory, nonlinear optics, fluid mechanics, and
plasma physics (see, e.g., [4]).

Several existence and nonexistence results are available
in the case 𝑘 = 𝑁, and we quote, for example, [5–7] and
the references therein. When 𝜇 = 0, 𝑔(𝑥) ≡ 1; problem
(P
𝜆,𝜇

) has been studied in the famous papers by Brézis and
Nirenberg [8] and Xuan [9] which consider the existence and
nonexistence of nontrivial solutions to quasilinear Brézis-
Nirenberg-type problems with singular weights.

Concerning the existence result in the case 𝑘 < 𝑁, we
cite [10, 11] and the references therein. As noticed in [10], for
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𝜇 < 0 and 𝑎 = 0, Badiale and Rolando have considered the
problem (P

0,𝜇

). They established the existence of nontrivial
nonnegative radial solution when 𝛽 ∈ (0, 2) and 𝛾 ∈ (2

𝛽

, 2

∗

)

or 𝛽 ∈ (2, +∞) and 𝛾 ∈ (2

∗

, 2

𝛽

); in addition, if the function
𝑓(𝑢) = |𝑢|

𝛾−1

𝑢 is odd, then (P
0,𝜇

) has infinitely many radial
solutions. In [5], Badiale et al. proved the nonexistence of
nonzero classical solutions when 𝑘 ≤ 𝑁 and the pair (𝛽, 𝛾)
belongs to the light gray region. That is, (𝛽, 𝛾) ∈ A = A

1

∪

A
2

∪A
3

, where

A
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2
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(2)
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We say that 𝑢 ∈ D is a weak solution of the problem (P
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) if
it is a nontrivial nonnegative function and satisfies
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Throughout this work, we consider the following regionsR
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,
R
2

, such that

R
1

:= {(2, 𝛾) ∈R
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2
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with 2

2−2𝑎

= 2𝑁/(𝑁 − (2 − 2𝑎)).
Concerning the perturbation 𝑔, we assume

𝑔 ∈ 𝐿

∞

(R
𝑁

) ,

𝑔 (𝑥) > 0 ∀𝑥 ∈ R
𝑁

.

(𝐺)

In our work, we prove the existence of at least one critical
point of 𝐼

𝜆,𝜇

by Ekeland’s variational principle in [12].
We will state our main result.

Theorem 1. Assume that 2 < 𝑘 ≤ 𝑁, 𝜇 < 𝜇

𝑘

, 0 < 𝑎 < 1, and
(𝐺) hold.

If (2, 𝛾) ∈ R
1

∪ R
2

, then there exists Λ∗ > 0 such that
the problem (P

𝜆,𝜇

) has at least one nontrivial solution for any
𝜆 > Λ

∗.

This paper is organized as follows. In Section 2, we give
some preliminaries. Section 3 is devoted to the proof of
Theorem 1.

2. Preliminaries

We list here a few integrals inequalities. The first inequality
that we need is the weighted Hardy inequality [13]
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The starting point for studying (P
𝜆,𝜇

) is the Hardy-Sobolev-
Maz’ya inequality that is peculiar to the cylindrical case𝑘 < 𝑁

and that was proved by Gazzini and Musina in [14]. It states
that there exists positive constant 𝐶

𝛾

such that
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) is related to a family of
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Definition 2. Assume 2 ≤ 𝑘 < 𝑁, 0 < 𝜇 ≤ 𝜇
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.

Lemma 3. Let (𝑢
𝑛
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and (𝑢

𝑛

) is bounded in D. Going if necessary to a subse-
quence, we can assume that there exists 𝑢 ∈ D such that
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3. Existence Result

Firstly, we require the following lemmas.
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𝑛→∞

󵄩

󵄩

󵄩

󵄩

V
𝑛

󵄩

󵄩

󵄩

󵄩

2

𝜇

= lim
𝑛→∞

∫

R𝑁

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

−𝑏
󵄨

󵄨

󵄨

󵄨

V
𝑛

󵄨

󵄨

󵄨

󵄨

𝛾

= 𝛼 ≥ 0. (22)

Assuming that 𝛼 > 0, we have by definition of 𝑆
𝜇,𝛾

𝛼 ≥ 𝑆

𝜇,𝛾

𝑙

(2/𝛾)

, (23)

and so

𝛼 ≥ (𝑆

𝜇,𝛾

)

𝛾/(𝛾−2)

.

(24)

Then, we get

𝛿 ≥ 𝐼

𝜆,𝜇

(𝑢) + (

(𝛾 − 2)

2𝛾

) (𝑆

𝜇,𝛾

)

𝛾/(𝛾−2)

. (25)

Therefore, if not, we obtain 𝛼 = 0. That is, 𝑢
𝑛

→ 𝑢 inD.

Lemma 5. Suppose that 2 < 𝑘 ≤ 𝑁, 𝜇 < 𝜇

𝑘

, and (𝐺) hold. If
(2, 𝛾) ∈ R

1

∪R
2

, then there exist Λ∗ > 0 and 󰜚 and ] positive
constants such that, for all 𝜆 > Λ

∗,

(i) there exist 𝜔 ∈ R𝑁 such that 𝐼
𝜆,𝜇

(𝜔) < 0,

(ii) we have

𝐼

𝜆,𝜇

(𝑢) ≥ ] > 0 𝑓𝑜𝑟 ‖𝑢‖

𝜇

= 󰜚

0

. (26)

Proof. (i) Let 𝑡
0

> 0 where 𝑡

0

is small, and 𝜙 ∈ 𝐶

∞

0

((R𝑘 \

{0}) × R𝑁−𝑘) such that 𝜙 ̸≡ 0. Choosing Λ∗ = |𝑡

0

𝜙|

1−𝛾, then,
if 𝜆 > Λ

∗ large enough,

𝐼

𝜆,𝜇

(𝑡

0

𝜙) := (

𝑡

2

0

2

)

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

2

𝜇

− (

𝑡

𝛾

0

𝛾

)∫

R𝑁

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

−𝑏

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

𝛾

1

− (

𝑡

𝛾

0

𝛾

)∫

R𝑁

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

−𝑏

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

𝛾

𝜆𝑔 (𝑥)

< (

𝑡

2

0

2

)

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

2

𝜇

− (

𝑡

𝛾

0

𝛾

)∫

R𝑁

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

−𝑏

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

𝛾

1

− (

𝑡

0

𝛾

)∫

R𝑁

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

−𝑏

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

𝑔 (𝑥) < 0.

(27)

Thus, if 𝜔 = 𝑡

0

𝜙, we obtain that 𝐼
𝜆,𝜇

(𝜔) < 0.
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(ii) By the Holder inequality and the definition of 𝑆
𝜇,𝛾

and
since 𝛾 > 2, we get for all 𝑢 ∈ D \ {0}

𝐼

𝜆,𝜇

(𝑢) := (

1

2

) ‖𝑢‖

2

𝜇

− (

1

𝛾

)∫

R𝑁

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

−𝑏

|𝑢|

𝛾

(1 + 𝜆𝑔 (𝑥)) 𝑑𝑥

≥ (

1

2

) ‖𝑢‖

2

𝜇

− (

1

𝛾

) 𝑆

𝜇,𝛾

‖𝑢‖

𝛾

𝜇

(1 + 𝜆

󵄨

󵄨

󵄨

󵄨

𝑔

󵄨

󵄨

󵄨

󵄨∞

) .

(28)

If 𝜆 > Λ

∗, then there exist ] > 0 and 󰜚

0

> 0 small enough
such that

𝐼

𝜆,𝜇

(𝑢) ≥ ] > 0 for ‖𝑢‖

𝜇

= 󰜚

0

. (29)

We also assume that 𝑡
0

is small enough such that ‖𝑡
0

𝜙‖

𝜇

< 󰜚

0

.
Thus, we have

𝑐

1

= inf {𝐼
𝜆,𝜇

(𝑢) : 𝑢 ∈ 𝐵

󰜚0
} < 0,

where 𝐵

󰜚0
= {𝑢 ∈ D, N (𝑢) ≤ 󰜚

0

} .

(30)

Using Ekeland’s variational principle, for the complete metric
space 𝐵

𝜌0
with respect to the norm of D, we can prove that

there exists a (𝑃𝐶)
𝑐1
sequence (𝑢

𝑛

) ⊂ 𝐵

𝜌0
such that 𝑢

𝑛

⇀ 𝑢

1

for some 𝑢
1

withN(𝑢

1

) ≤ 𝜌

0

.
Now, we claim that 𝑢

𝑛

→ 𝑢

1

. If not, by Lemma 4, we have

𝑐

1

≥ 𝐼

𝜆,𝜇

(𝑢

1

) + (

(𝛾 − 2)

2𝛾

) (𝑆

𝜇,𝛾

)

𝛾/(𝛾−2)

≥ 𝑐

1

+ (

(𝛾 − 2)

2𝛾

) (𝑆

𝜇,𝛾

)

𝛾/(𝛾−2)

> 𝑐

1

,

(31)

which is a contradiction.
Then, we obtain a critical point 𝑢

1

of 𝐼
𝜆,𝜇

for all 𝜆 > Λ

∗

large enough satisfying

𝑐

1

= (

(𝛾 − 2)

2𝛾

)

󵄩

󵄩

󵄩

󵄩

𝑢

1

󵄩

󵄩

󵄩

󵄩

2

𝜇

> 0. (32)

Proof of Theorem 1. From Lemmas 4 and 5, we can deduce
that there exists at least a nontrivial solution 𝑢

1

for our
problem (P

𝜆,𝜇

) with positive energy.
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