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We give a characterization of the control for ill-posed problems of oscillating solutions. More precisely, we study the control of
Cauchy elliptic problems via a regularization approach which generates incomplete information. We obtain a singular optimality
system characterizing the no-regret control for the Cauchy problem.

1. Introduction

Cauchy problems for partial differential equations of elliptic
type are present in many physical systems such as plasma
physics [1], mechanical engineering [2], or electrocardiog-
raphy [3]. One of the important examples is the Helmholtz
equation and its applications in acoustic, wave propagation
and scattering, vibration of the structure, and electromag-
netic scattering (see [4–6] and the references therein). Here,
we investigate a Cauchy problem for the Laplacian elliptic
operator:

Δ𝑧 = 0, (1)

where 𝑧 = 𝑧(𝑥), on an open set Ω ⊂ R3 of class C2, of
boundary 𝜕Ω = Γ. Dirichlet and Neumann conditions are
prescribed on a part of the boundary Γ

0
⊂ Γ, Γ

0
̸= Γ:

𝑧 = V
0
,

𝜕𝑧

𝜕]
= V
1

on Γ
0
.

(2)

The goal is to reconstruct the solution on Ω and its trace on
Γ
1
= Γ \ Γ

0
from a perturbed system, under the assumption

that the solution exists for the exact data V
0
and V

1
which

here are control variables.This problem is a classical example

of ill-posed problems. So, regularization methods may be
considered.

Theoretical concepts and also computational implemen-
tation related to the Cauchy problem of the elliptic equation
have been discussed by many authors, and a lot of methods
were provided (see, e.g., Qian et al. [7] for the 4th-order
regularization method or Xiong and Fu [8]). Generally, it
is assumed that instead of exact data some noisy boundary
conditions V𝜀

0
and V𝜀
1
are given with the error bound.

But, in this paper, we consider another regularization
method of the Laplacian, where we introduce a new data:

𝑧 = 𝑔
0
,

𝜕𝑧

𝜕]
= 𝑔
1

on Γ
1

(3)

with 𝑔
0
and 𝑔

1
being unknown functions. Hence, we have

a regularized problem but with incomplete data. A special
optimal control method of problems of incomplete data
should then be applied. We here use a method that we find
well adapted: the low-regret control concept, introduced by
Lions in the late 80s (see, e.g., [9, 10] and the references
therein).

In [11, 12], the control of distributed system with incom-
plete data is performed. The proof of the existence and
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characterization of the no-regret control is obtained as the
limit of the low-regret control. Here, we admit the possibility
of making a choice of controls V slightly worse than by doing
better than V = 0 (i.e., better than a noncontrolled system),
with respect to certain criteria (cost function):

𝐽 (𝑢
𝛾
, 𝑔) ≤ 𝐽 (0, 𝑔) + 𝛾

𝑔


2

𝑌

∀𝑔 in a Hilbert space 𝑌,
(4)

where 𝛾 is the small positive parameter that tends to 0, with
𝑔 being the pollution or the incomplete data.

This method is previously introduced by Savage [13] in
statistics. Lions was the first to use it to control distributed
systems of incomplete data, motivated by a number of
applications in economics and ecology. In this paper, we
generalize the method to ill-posed problems of elliptic type.

It seems that the control of Cauchy system for elliptic
operators is globally an open problem. Lions in [14] proposed
a method of approximation by penalization and obtained a
singular optimality system, under a supplementary hypothe-
sis of Slater type. In [15], Sougalo andNakoulima analyzed the
Cauchy problem using a regularization method, consisting
in viewing a singular problem as a limit of a family of well-
posed problems. They have obtained a singular optimality
system for the considered control problem, also assuming
the Slater condition. Unfortunately, the recent paper by
Massengo Mophou and Nakoulima [16] is the same as the
one by Sougalo and Nakoulima (1998) using the same old
references, and nothing new is brought.

In the present paper, we use another approximation
method which consists in considering the elliptic Cauchy
problem as a singular limit of sequence of well-posed elliptic
problems, where the Slater condition is not used and where
we apply the low-regret control notion.The same analysis can
be generalized to the Helmholtz equation with no difficulty.

The paper is organized as follows. In Section 2, we present
the regularization method. In Section 3, the optimal control
of the regularized system is discussed and the approximated
optimality system is presented.We pass to the limit in the last
section; we show that we obtain a singular optimality system
for the low-regret and no-regret controls to the original
problem of Laplacian.

2. Existence of Solutions to Cauchy
Elliptic Problems

LetΩ be an open bounded subset of 𝑅𝑛, with a boundary Γ of
class𝐶2, Γ = Γ

0
∪Γ
1
with Γ

0
∩Γ
1
= 0.The boundaries Γ

0
and Γ
1

are nonempty and are of positive measure. We consider here
the problem:

Δ𝑧 = 0 in Ω,

𝑧 = V
0
,

𝜕𝑧

𝜕]
= V
1

on Γ
0
,

(5)

with 𝑧 ∈ 𝐿
2
(Ω) and (V

0
, V
1
) ∈ 𝐿

2
(Γ
0
) × 𝐿

2
(Γ
0
). Problem

(5) is a Cauchy problem for the Laplacian operator. It is well
known that it is ill-posed in the sense that it does not admit
a solution in general and that existing solutions (if any) are
unstable. This problem is present in many applications, so it
is important to control the Cauchy data.

Denote by𝐴 the closed subset of (𝐿2(Γ
0
))
2
×𝐿
2
(Ω) defined

by

𝐴 = {((V
0
, V
1
) , 𝑧) ∈ (𝐿

2
(Γ
0
))
2

× 𝐿
2
(Ω) , Δ𝑧

= 0 in Ω, 𝑧|Γ0
= V
0
,
𝜕𝑧

𝜕]

Γ0

= V
1
} ,

(6)

and suppose that 𝐴 ̸= 0. We will call any control-state pair
(V
0
, V
1
, 𝑧) ∈ 𝐴 admissible couple.

Let 𝐽 be a strictly convex cost functional, defined for all
admissible control-state couples (V

0
, V
1
, 𝑧) by

𝐽 (V
0
, V
1
, 𝑧) =

𝑧 − 𝑧𝑑


2

𝐿
2
(Ω)
+ 𝑁
0

V0


2

𝐿
2
(Γ0)

+ 𝑁
1

V1


2

𝐿
2
(Γ0)

,

(7)

where 𝑧
𝑑
and (𝑁

0
, 𝑁
1
) are, respectively, given in 𝐿2(Ω) and in

(𝑅
+
\ {0})
2. We want to find the couple control-state solution

of

inf 𝐽 (V
0
, V
1
, 𝑧) , (V

0
, V
1
, 𝑧) ∈ 𝐴. (8)

According to the structure of 𝐽, problem (8) admits a unique
solution (𝑢

0
, 𝑢
1
, 𝑦) that we should characterize. To obtain a

singular optimality system (SOS) associated with (𝑢
0
, 𝑢
1
, 𝑦),

Lions [14] has proposed a method of approximation by
penalization. He obtained SOS, under the supplementary
hypothesis of Slater type:

The admissible set of controls has a nonempty interior. (9)

Here, we do not consider Slater hypothesis, but instead we
consider the no-regret and low-regret techniques.

3. The Low-Regret and No-Regret Control

Due to the ill-posedness of the Cauchy elliptic problem, it
is impossible to solve it directly [17]. This requires special
techniques as the technique of regularization. Our method
consists in regularizing (5) into an elliptic problem of
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incomplete data. For any 𝜀 > 0, we consider the regularized
problem:

Δ
2
𝑧
𝜀
+ 𝜀𝑧
𝜀
= 0 in Ω,

𝑧
𝜀
−
𝜕Δ𝑧
𝜀

𝜕]
= V
0
,

𝜕𝑧
𝜀

𝜕]
+ Δ𝑧
𝜀
= V
1

on Γ
0
,

𝜀𝑧
𝜀
−
𝜕Δ𝑧
𝜀

𝜕]
= 𝜀𝑔
0
,

𝜀
𝜕𝑧
𝜀

𝜕]
+ Δ𝑧
𝜀
= 𝜀𝑔
1

on Γ
1
.

(10)

We denote V fl (V
0
, V
1
) and 𝑔 fl (𝑔

0
, 𝑔
1
) for simplicity.

We begin by an important remark.

Remark 1. For every fixed 𝜀𝑔
0
and 𝜀𝑔

1
we assume the

existence of a unique solution to (10). Indeed, in the following
subsections, 𝜀𝑔

0
and 𝜀𝑔

1
are considered as data perturbations,

and the solution of (10) may not exist in the sense of
Hadamard [18].

3.1. Back to the Original Problem. We show how to come back
to the original Cauchy problem, starting from (10). Indeed, if
we put 𝜀 = 0 and we do the change of variables 𝜂 = Δ𝑧, we
obtain

Δ𝜂 = 0 in Ω,

𝜕𝜂

𝜕]
= 0,

𝜂 = 0

on Γ
1
,

(11)

𝑧 −
𝜕𝜂

𝜕]
= V
0
,

𝜕𝑧

𝜕]
+ 𝜂 = V

1

on Γ
0
.

(12)

Using the uniqueness property of the solution of the Laplace
equation and the unique continuation theorem of Mizohata
[19], we deduce from (11) that we also have

𝜕𝜂

𝜕]
= 𝜂 = 0 on Γ

0
. (13)

Hence, conditions (12) become

𝑧 = V
0
,

𝜕𝑧

𝜕]
= V
1

on Γ
0
,

(14)

that is, the same conditions of the original problem (5).

3.2. Cost Function and Low-Regret Control. Consider the cost
functional

𝐽
𝜀
(V, 𝑔) = 𝑧𝜀 (V, 𝑔) − 𝑧𝑑



2

𝐿
2
(Ω)
+ 𝑁
0

V0


2

𝐿
2
(Γ0)

+ 𝑁
1

V1


2

𝐿
2
(Γ0)

(15)

that we want to minimize in the context of no-regret control
due to the presence of the incomplete data 𝑔.

Definition 2. We say that 𝑢 ∈ (𝐿2(Γ
0
))
2 is a no-regret control

for (5)–(15), if 𝑢 is a solution to the following problem:

inf
V∈(𝐿2(Γ0))2

( sup
𝑔∈(𝐿
2
(Γ1))
2

(𝐽
𝜀
(V, 𝑔) − 𝐽

𝜀
(0, 𝑔))) . (16)

As seen in [11], the no-regret control is difficult to
characterize directly. Below, we define the low-regret control
which tends to the no-regret control when the parameter of
penalization tends to zero. In the case of no pollution 𝑔, the
no-regret control and the classical control are the same.

3.2.1. The Low-Regret Control. As in [20], we define the
low-regret control as the solution to the following MinMax
problem:

inf
V∈(𝐿2(Γ0))2

( sup
𝑔∈(𝐿
2
(Γ1))
2

[𝐽
𝜀
(V, 𝑔) − 𝐽

𝜀
(0, 𝑔) − 𝛾

𝑔0


2

𝐿
2
(Γ1)

− 𝛾
𝑔1



2

𝐿
2
(Γ1)
]) , (17)

where 𝛾 is a strictly positive parameter. The solution to
problem (17), if it exists, will be the low-regret control.

Now, we introduce 𝜉
𝜀
fl 𝜉
𝜀
(V, 0) solution to the adjoint

problem
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Δ
2
𝜉
𝜀
+ 𝜀𝜉 = 𝑧

𝜀 (V, 0) in Ω,

𝜉
𝜀
−
𝜕

𝜕]
(Δ𝜉
𝜀
) = 0,

𝜕𝜉
𝜀

𝜕]
+ Δ𝜉
𝜀
= 0

on Γ
0
,

𝜀𝜉
𝜀
−
𝜕

𝜕]
(Δ𝜉
𝜀
) = 0,

𝜀
𝜕𝜉
𝜀

𝜕]
+ Δ𝜉
𝜀
= 0

on Γ
1
.

(18)

Then we have the following result.

Proposition 3. The low-regret control is the solution to the
classical optimal control problem

inf
V∈(𝐿2(Γ0))2

J
𝛾

𝜀
(V) (19)

with
J
𝛾

𝜀
(V) fl 𝐽

𝜀
(V, 0) − 𝐽

𝜀
(0, 0)

+
𝜀
2

𝛾
(
𝜉𝜀


2

𝐿
2
(Γ1)

+



𝜕𝜉
𝜀

𝜕]



2

𝐿
2
(Γ1)

) .

(20)

Proof. After simple computations we have

𝐽
𝜀
(V, 𝑔) − 𝐽

𝜀
(0, 𝑔) = 𝐽

𝜀
(V, 0) − 𝐽

𝜀
(0, 0)

+ 2 ⟨𝑧
𝜀
(V, 0) , 𝑧

𝜀
(0, 𝑔)⟩ ,

(21)

where ⟨⋅, ⋅⟩ is the inner product in 𝐿2(Ω). To estimate the
integral ⟨𝑧

𝜀
(V, 0), 𝑧

𝜀
(0, 𝑔)⟩ in (21), we use the Green formula:

⟨Δ
2
𝑧, 𝜓⟩ = ⟨𝑧, Δ

2
𝜓⟩ + ⟨

𝜕

𝜕]
(Δ𝑧) , 𝜓⟩

Γ

− ⟨Δ𝑧,
𝜕𝜓

𝜕]
⟩

Γ

+ ⟨
𝜕𝑧

𝜕]
, Δ𝜓⟩

Γ

− ⟨𝑧,
𝜕

𝜕]
(Δ𝜓)⟩

Γ

,

(22)

together with (18). We have

⟨𝑧
𝜀
(V, 0) , 𝑧

𝜀
(0, 𝑔)⟩ = ⟨Δ

2
𝜉
𝜀
+ 𝜀𝜉
𝜀
, 𝑧
𝜀
(0, 𝑔)⟩

= 0 + ⟨
𝜕

𝜕]
(Δ𝜉
𝜀
) , 𝑧
𝜀
⟩

Γ

− ⟨Δ𝜉
𝜀
,
𝜕𝑧
𝜀

𝜕]
⟩

Γ

+ ⟨
𝜕𝜉
𝜀

𝜕]
, Δ𝑧
𝜀
⟩

Γ

− ⟨𝜉
𝜀
,
𝜕

𝜕]
(Δ𝑧
𝜀
)⟩

Γ

= −𝜀 ⟨𝜉
𝜀
, 𝑧
𝜀
⟩
Γ1

− ⟨𝜉
𝜀
,
𝜕

𝜕]
(Δ𝑧
𝜀
)⟩

Γ1

+ ⟨𝜀
𝜕𝜉
𝜀

𝜕]
,
𝜕𝑧
𝜀

𝜕]
⟩

Γ1

+ ⟨
𝜕𝜉
𝜀

𝜕]
, Δ𝑧
𝜀
⟩

Γ1

= ⟨𝜉
𝜀
, 𝜀𝑔
0
⟩
Γ1
+ ⟨

𝜕𝜉
𝜀

𝜕]
, 𝜀𝑔
1
⟩

Γ1

,

(23)

where 𝑧
𝜀
= 𝑧
𝜀
(0, 𝑔). Then

sup
𝑔∈(𝐿
2
(Γ1))
2

(2 ⟨𝑧
𝜀 (V, 0) , 𝑧𝜀 (0, 𝑔)⟩ − 𝛾

𝑔0


2

𝐿
2
(Γ1)

− 𝛾
𝑔1



2

𝐿
2
(Γ1)
) = sup
𝑔∈(𝐿
2
(Γ1))
2

(⟨𝜉
𝜀
, 𝜀𝑔
0
⟩
Γ1

+ ⟨
𝜕𝜉
𝜀

𝜕]
, 𝜀𝑔
1
⟩

Γ1

− 𝛾
𝑔0



2

𝐿
2
(Γ1)

− 𝛾
𝑔1



2

𝐿
2
(Γ1)
)

=
𝜀
2

𝛾

𝜉𝜀


2

𝐿
2
(Γ1)

+
𝜀
2

𝛾



𝜕𝜉
𝜀

𝜕]



2

𝐿
2
(Γ1)

(24)

thanks to the conjugate formula. Combining (17) and (21), we
obtain the desired result.

Remark 4. The no-regret control is obtained by the passage
to the limit in the positive parameter 𝛾: it is the weak
convergence of the control-state variables of the perturbed
system, which corresponds to the limit of the standard low-
regret control sequence.

3.3. Approached Optimality System. For the general theory of
the characterization of the low-regret optimal control see [10–
12]. In this paper, we generalize to the ill-posed problems of
elliptic type (5).

Proposition 5. Problem (19)-(20) admits a unique solution 𝑢𝛾
𝜀

called the low-regret control.

Proof. We haveJ𝛾
𝜀
(V) ≥ −𝐽

𝜀
(0, 0), ∀V ∈ (𝐿2(Γ

0
))
2. Then

𝑑
𝛾

𝜀
= inf

V∈(𝐿2(Γ0))2
J
𝛾

𝜀
(V) (25)

exists. Let V
𝑛
= V
𝑛
(𝜀, 𝛾) be a minimizing sequence such that

𝑑
𝛾

𝜀
= lim
𝑛→∞

J𝛾
𝜀
(V
𝑛
). Then we have

−𝐽
𝜀 (0, 0) ≤ 𝐽𝜀 (V𝑛, 0) − 𝐽𝜀 (0, 0)

+
𝜀
2

𝛾
(
𝜉𝜀 (V𝑛)



2

𝐿
2
(Γ1)

+



𝜕𝜉
𝜀

𝜕]
(V
𝑛
)



2

𝐿
2
(Γ1)

)

≤ 𝑑
𝛾

𝜀
+ 1.

(26)
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And we deduce the bounds
V𝑛
(𝐿2(Γ0))

2 ≤ 𝑐
𝛾

𝜀
,

𝑧𝜀 (V𝑛, 0) − 𝑧𝑑
𝐿2(Ω)

≤ 𝑐
𝛾

𝜀
,

𝜀

√𝛾

𝜉𝜀 (V𝑛)
𝐿2(Γ1)

≤ 𝑐
𝛾

𝜀
,

𝜀

√𝛾



𝜕𝜉
𝜀

𝜕]
(V
𝑛
)

𝐿2(Γ1)

≤ 𝑐
𝛾

𝜀
,

(27)

where the constant 𝑐𝛾
𝜀
(independent of 𝑛) is not the same each

time.
Hence, there exists 𝑢𝛾

𝜀
∈ (𝐿
2
(Γ
0
))
2 such that V

𝑛
(𝜀, 𝛾) ⇀

𝑢
𝛾

𝜀
weakly in the Hilbert space (𝐿2(Γ

0
))
2. Also, 𝑧

𝜀
(V
𝑛
, 0) →

𝑧
𝜀
(𝑢
𝛾

𝜀
, 0) (continuity with respect to the data).We also deduce

from the strict convexity of the cost function J𝛾
𝜀
that 𝑢𝛾

𝜀
is

unique.

Now we give the optimality system for the approximate
low-regret control 𝑢𝛾

𝜀
. We denote 𝑦𝛾

𝜀
fl 𝑧
𝜀
(𝑢
𝛾

𝜀
, 0). Then, we

proceed as in [20]. We first have the following.

Proposition 6. The approached low-regret control 𝑢𝛾
𝜀

fl
(𝑢
𝛾

0𝜀
, 𝑢
𝛾

1𝜀
) solution to (19)-(20) is characterized by the unique

solution {𝑦𝛾
𝜀
, 𝜉
𝛾

𝜀
, 𝜌
𝛾

𝜀
, 𝑝
𝛾

𝜀
} of the optimality system

Δ
2
𝑦
𝛾

𝜀
+ 𝜀𝑦
𝛾

𝜀
= 0,

Δ
2
𝜉
𝛾

𝜀
+ 𝜀𝜉
𝛾

𝜀
= 𝑦
𝛾

𝜀
,

Δ
2
𝜌
𝛾

𝜀
+ 𝜀𝜌
𝛾

𝜀
= 0,

Δ
2
𝑝
𝛾

𝜀
+ 𝜀𝑝
𝛾

𝜀
= 𝑦
𝛾

𝜀
− 𝑧
𝑑
− 𝜌
𝛾

𝜀

𝑖𝑛 Ω,

𝑦
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑦
𝛾

𝜀
) = 𝑢
𝛾

0𝜀
,

𝜕𝑦
𝛾

𝜀

𝜕]
+ Δ𝑦
𝛾

𝜀
= 𝑢
𝛾

1𝜀
,

𝜉
𝜀
−
𝜕

𝜕]
(Δ𝜉
𝜀
) = 0,

𝜕𝜉
𝜀

𝜕]
+ Δ𝜉
𝜀
= 0,

𝜌
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝜌
𝛾

𝜀
) = 0,

𝜕𝜌
𝛾

𝜀

𝜕]
+ Δ𝜌
𝛾

𝜀
= 0,

𝑝
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑝
𝛾

𝜀
) = 0,

𝜕𝑝
𝛾

𝜀

𝜕]
+ Δ𝑝
𝛾

𝜀
= 0

𝑜𝑛 Γ
0
,

𝜀𝑦
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑦
𝛾

𝜀
) = 0,

𝜀
𝜕𝑦
𝛾

𝜀

𝜕]
+ Δ𝑦
𝛾

𝜀
= 0,

𝜀𝜉
𝜀
−
𝜕

𝜕]
(Δ𝜉
𝜀
) = 0,

𝜀
𝜕𝜉
𝜀

𝜕]
+ Δ𝜉
𝜀
= 0,

𝜀𝜌
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝜌
𝛾

𝜀
) =

𝜀
2

𝛾
𝜉
𝜀
,

𝜀
𝜕𝜌
𝛾

𝜀

𝜕]
+ Δ𝜌
𝛾

𝜀
= −

𝜀
2

𝛾

𝜕𝜉
𝜀

𝜕]

𝜀𝑝
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑝
𝛾

𝜀
) = 0,

𝜀
𝜕𝑝
𝛾

𝜀

𝜕]
+ Δ𝑝
𝛾

𝜀
= 0

𝑜𝑛 Γ
1
,

(28)

with the adjoint equation

𝑝
𝛾

𝜀
+ 𝑁
0
𝑢
𝛾

0𝜀
+ 𝑁
1
𝑢
𝛾

1𝜀
= 0 𝑖𝑛 𝐿

2
(Γ
0
) . (29)

Proof. Let 𝑢𝛾
𝜀
be the solution of (19)-(20) on 𝐿2(Γ

0
).The Euler-

Lagrange necessary condition gives for every 𝑤 fl (𝑤
0
, 𝑤
1
) ∈

(𝐿
2
(Γ
0
))
2

⟨𝑦
𝛾

𝜀
− 𝑧
𝑑
, 𝑧
𝜀 (𝑤, 0)⟩ + 𝑁0 ⟨𝑢

𝛾

0𝜀
, 𝑤
0
⟩
Γ0
+ 𝑁
1
⟨𝑢
𝛾

1𝜀
, 𝑤
1
⟩
Γ0

+ ⟨
𝜀
2

𝛾
𝜉
𝛾

𝜀
, 𝜉
𝜀 (𝑤)⟩

Γ1

+ ⟨
𝜀
2

𝛾

𝜕𝜉
𝛾

𝜀

𝜕]
,
𝜕𝜉
𝜀

𝜕]
(𝑤)⟩

Γ1

= 0,

(30)

where 𝜉𝛾
𝜀
fl 𝜉
𝜀
(𝑢
𝛾

𝜀
, 0). Denoting 𝜌𝛾

𝜀
= 𝜌(𝑢

𝛾

𝜀
, 0) as the unique

solution to

Δ
2
𝜌
𝛾

𝜀
+ 𝜀𝜌
𝛾

𝜀
= 0 in Ω,

𝜌
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝜌
𝛾

𝜀
) = 0,

𝜕𝜌
𝛾

𝜀

𝜕]
+ Δ𝜌
𝛾

𝜀
= 0

on Γ
0
,

𝜀𝜌
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝜌
𝛾

𝜀
) =

𝜀
2

𝛾
𝜉
𝛾

𝜀
,

𝜀
𝜕𝜌
𝛾

𝜀

𝜕]
+ Δ𝜌
𝛾

𝜀
= −

𝜀
2

𝛾

𝜕𝜉
𝛾

𝜀

𝜕]

on Γ
1
,

(31)
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we have by the Green formula

0 = ⟨Δ
2
𝜌
𝛾

𝜀
+ 𝜀𝜌
𝛾

𝜀
, 𝜉
𝜀
(𝑤, 0)⟩

= ⟨𝜌
𝛾

𝜀
, 𝑧
𝜀
(𝑤, 0)⟩ + ⟨

𝜀
2

𝛾
𝜉
𝛾

𝜀
, 𝜉
𝜀
(𝑤, 0)⟩

Γ1

+ ⟨
𝜀
2

𝛾

𝜕𝜉
𝛾

𝜀

𝜕]
,
𝜕𝜉
𝜀

𝜕]
(𝑤, 0)⟩

Γ1

.

(32)

And as it is classical, we introduce the adjoint state 𝑝𝛾
𝜀

fl
𝑝(𝑢
𝛾

𝜀
, 0) defined by

Δ
2
𝑝
𝛾

𝜀
+ 𝜀𝑝
𝛾

𝜀
= 𝑦
𝛾

𝜀
− 𝑧
𝑑
− 𝜌
𝛾

𝜀
in Ω,

𝑝
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑝
𝛾

𝜀
) = 0,

𝜕𝑝
𝛾

𝜀

𝜕]
+ Δ𝑝
𝛾

𝜀
= 0

on Γ
0
,

𝜀𝑝
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑝
𝛾

𝜀
) = 0,

𝜀
𝜕𝑝
𝛾

𝜀

𝜕]
+ Δ𝑝
𝛾

𝜀
= 0

on Γ
1
,

(33)

and, using again the Green formula, we obtain

⟨𝑦
𝛾

𝜀
− 𝑧
𝑑
− 𝜌
𝛾

𝜀
, 𝑧
𝜀 (𝑤, 0)⟩ = ⟨𝑝

𝛾

𝜀
, 𝑤⟩
Γ0
,

∀𝑤 ∈ (𝐿
2
(Γ
0
))
2

.

(34)

And then (30) becomes

⟨𝑝
𝛾

𝜀
+ 𝑁
0
𝑢
𝛾

0𝜀
+ 𝑁
1
𝑢
𝛾

1𝜀
, 𝑤⟩
Γ0
= 0, ∀𝑤 ∈ (𝐿

2
(Γ
0
))
2 (35)

which is (29).

4. Singular Optimality System (SOS)

In this section, we give the SOS for the low-regret control
for the Cauchy problem (5). We first show the following
estimates.

Lemma 7. There is a positive constant 𝐶 such that
𝑢
𝛾

𝜀0

𝐿2(Γ0)
≤ 𝐶,

𝑢
𝛾

𝜀1

𝐿2(Γ0)
≤ 𝐶,

𝑦
𝛾

𝜀

𝐿2(Ω)
≤ 𝐶,

𝜀

√𝛾

𝜉
𝛾

𝜀

𝐿2(Γ1)
≤ 𝐶,

𝜀

√𝛾



𝜕𝜉
𝛾

𝜀

𝜕]

𝐿2(Γ1)

≤ 𝐶.

(36)

Proof. Since𝑢𝛾
𝜀
is the approximate low-regret control, we have

𝐽
𝛾

𝜀
(𝑢
𝛾

𝜀
) ≤ 𝐽
𝛾

𝜀
(V) , ∀V ∈ (𝐿2 (Γ

0
))
2

. (37)

In the particular case where V = 0, we obtain
𝑦
𝛾

𝜀
− 𝑧
𝑑



2

𝐿
2
(Ω)
+ 𝑁
0

𝑢
𝛾

𝜀0



2

𝐿
2
(Γ0)

+ 𝑁
1

𝑢
𝛾

𝜀1



2

𝐿
2
(Γ0)

+
𝜀
2

𝛾
(
𝜉
𝛾

𝜀



2

𝐿
2
(Γ1)

+



𝜕𝜉
𝛾

𝜀

𝜕]



2

𝐿
2
(Γ1)

)

≤
𝑧𝜀 (0, 0) − 𝑧𝑑



2

𝐿
2
(Ω)

+
𝜀
2

𝛾
(
𝜉𝜀 (0, 0)



2

𝐿
2
(Γ1)

+



𝜕𝜉
𝜀

𝜕]
(0, 0)



2

𝐿
2
(Γ1)

) .

(38)

But,
𝑧
𝜀
(0, 0) = 0 in Ω,

𝜉
𝜀
(0, 0) =

𝜕𝜉
𝜀

𝜕]
(0, 0) = 0 on Γ

1
.

(39)

Then
𝑦
𝛾

𝜀
− 𝑧
𝑑



2

𝐿
2
(Ω)
+ 𝑁
0

𝑢
𝛾

𝜀0



2

𝐿
2
(Γ0)

+ 𝑁
1

𝑢
𝛾

𝜀1



2

𝐿
2
(Γ0)

+
𝜀
2

𝛾
(
𝜉
𝛾

𝜀



2

𝐿
2
(Γ1)

+



𝜕𝜉
𝛾

𝜀

𝜕]



2

𝐿
2
(Γ1)

) ≤
𝑧𝑑



2

𝐿
2
(Ω)

= 𝐶.

(40)

Remark 8. From Section 3.1, we showed how to come back
from the bi-Laplacian problem to the original one. We will
use these techniques in this last part.

Theorem 9. The low-regret control 𝑢𝛾 for problem (5) is
characterized by the unique solution {𝑦

𝛾
, 𝜉
𝛾
, 𝜌
𝛾
, 𝑝
𝛾
} of the

optimality system:

Δ𝑦
𝛾
= 0,

Δ𝜉
𝛾
= 0,

Δ𝜌
𝛾
= 0,

Δ𝑝
𝛾
= 𝑦
𝛾
− 𝑧
𝑑
+ 𝜌
𝛾

𝑖𝑛 Ω,

𝑦
𝛾
= 𝑢
𝛾

0
,

𝜉
𝛾
= 0,

𝜌
𝛾
= 0,

𝑝
𝛾
= 0,

𝜕𝑦
𝛾

𝜕]
= 𝑢
𝛾

1
,

𝜕𝜉
𝛾

𝜕]
= 0,
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𝜕𝜌
𝛾

𝜕]
= 0,

𝜕𝑝
𝛾

𝜕]
= 0

𝑜𝑛 Γ
0
,

(41)

with the adjoint equation

𝑝
𝛾
+ 𝑁
0
𝑢
𝛾

0
+ 𝑁
1
𝑢
𝛾

1
= 0 𝑖𝑛 𝐿

2
(Γ
0
) . (42)

Proof. From the optimality system (28) in Proposition 6, we
deduce that 𝑦𝛾

𝜀
is solution of the system

Δ
2
𝑦
𝛾

𝜀
+ 𝜀𝑦
𝛾

𝜀
= 0, in Ω,

𝑦
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑦
𝛾

𝜀
) = 𝑢
𝛾

0𝜀
,

𝜕𝑦
𝛾

𝜀

𝜕]
+ Δ𝑦
𝛾

𝜀
= 𝑢
𝛾

1𝜀

on Γ
0
,

𝜀𝑦
𝛾

𝜀
−
𝜕

𝜕]
(Δ𝑦
𝛾

𝜀
) = 0,

𝜀
𝜕𝑦
𝛾

𝜀

𝜕]
+ Δ𝑦
𝛾

𝜀
= 0,

on Γ
1
.

(43)

As in Section 3.1, we denote

𝜂
𝛾

𝜀
= Δ𝑦
𝛾

𝜀
. (44)

Then system (43) is written as

Δ𝜂
𝛾

𝜀
+ 𝜀𝑦
𝛾

𝜀
= 0, in Ω,

𝑦
𝛾

𝜀
−
𝜕𝜂
𝛾

𝜀

𝜕]
= 𝑢
𝛾

0𝜀
,

𝜕𝑦
𝛾

𝜀

𝜕]
+ 𝜂
𝛾

𝜀
= 𝑢
𝛾

1𝜀

on Γ
0
,

𝜀𝑦
𝛾

𝜀
−
𝜕𝜂
𝛾

𝜀

𝜕]
= 0,

𝜀
𝜕𝑦
𝛾

𝜀

𝜕]
+ 𝜂
𝛾

𝜀
= 0,

on Γ
1
.

(45)

From estimates (36) of Lemma 7, sequence (𝑦𝛾
𝜀
) is bounded

in 𝐿2(Ω) by constant 𝑀. Hence, there exists a subsequence
still denoted by (𝑦𝛾

𝜀
), such that

𝑦
𝛾

𝜀
⇀ 𝑦
𝛾 weakly in 𝐿2 (Ω) (46)

as 𝜀 → 0. We deduce from the first equation in (45) that
Δ𝜂
𝛾

𝜀

 ≤ 𝜀
𝑦
𝛾

𝜀

 ≤ 𝜀𝑀 → 0. (47)

That is,

Δ𝜂
𝛾

𝜀
⇀ 0 weakly in 𝐿2 (Ω) . (48)

Using the same arguments and from the last two equations in
(45) we have

𝜕𝜂
𝛾

𝜀

𝜕]
⇀ 0,

𝜂
𝛾

𝜀
⇀ 0

in 𝐿2 (Γ
1
)

(49)

when 𝜀 → 0. We resume by

Δ𝜂
𝛾
= 0 in Ω,

𝜕𝜂
𝛾

𝜕]
= 0,

𝜂
𝛾
= 0

on Γ
1
.

(50)

Using the unique continuation theorem of Mizohata [19], we
deduce from (50) that we also have

𝜂
𝛾
≡ 0 everywhere on Ω. (51)

Then,

𝜕𝜂
𝛾

𝜕]
= 𝜂
𝛾
= 0 on Γ

0
. (52)

From another side, estimates (36) also give

(𝑢
𝛾

𝜀0
, 𝑢
𝛾

𝜀1
) ⇀ (𝑢

𝛾

0
, 𝑢
𝛾

1
) weakly in 𝐿2 (Γ

0
) × 𝐿
2
(Γ
0
) . (53)

We come back to the notation 𝜂
𝛾
= Δ𝑦

𝛾. System (45)
transforms to

Δ𝑦
𝛾
= 0, in Ω,

𝑦
𝛾
= 𝑢
𝛾

0
,

𝜕𝑦
𝛾

𝜕]
= 𝑢
𝛾

1

on Γ
0
.

(54)

Again, we use the estimates of Lemma 7 and from (36) we
deduce the following limits:

𝜀

√𝛾
𝜉
𝛾

𝜀
⇀ 𝜆
𝛾

0
weakly in 𝐿2 (Γ

1
) ,

𝜀

√𝛾

𝜕𝜉
𝛾

𝜀

𝜕]
⇀ 𝜆
𝛾

1
weakly in 𝐿2 (Γ

1
) .

(55)



8 International Journal of Differential Equations

Hence, from the optimality system (28) we deduce that both

𝜀
2

𝛾
𝜉
𝛾

𝜀
,
𝜀
2

𝛾

𝜕𝜉
𝛾

𝜀

𝜕]
tend to 0 when 𝜀 → 0. (56)

Now, as abovewe use the same arguments andwe obtain𝜌
𝜀
⇀

𝜌
𝛾 in 𝐿2(Ω) solution to (41). Finally we have

Δ𝜉
𝛾
= 𝑦
𝛾
, in Ω,

𝜉
𝛾
= 0,

𝜕𝜉
𝛾

𝜕]
= 0

on Γ
0
.

(57)

From another side, we deduce from (29)

𝑝
𝛾

𝜀
= −𝑁
0
𝑢
𝛾

0𝜀
− 𝑁
1
𝑢
𝛾

1𝜀
in 𝐿2 (Γ

0
) (58)

and finally, from (36) and (53), that

𝑝
𝛾

𝜀
⇀ 𝑝
𝛾
= −𝑁
0
𝑢
𝛾

0
− 𝑁
1
𝑢
𝛾

1
weakly in 𝐿2 (Γ

0
) . (59)

We now easily deduce the singular optimality system of
the no-regret control for (5) by the following.

Corollary 10. The no-regret control 𝑢 for problem (5) is char-
acterized by the unique solution {𝑦, 𝜉, 𝜌, 𝑝} of the optimality
system:

Δ𝑦 = 0,

Δ𝜉 = 0,

Δ𝜌 = 0,

Δ𝑝 = 𝑦 − 𝑧
𝑑
+ 𝜌

𝑖𝑛 Ω,

𝑦 = 𝑢
0
,

𝜉 = 0,

𝜌 = 0,

𝑝 = 0,

𝜕𝑦

𝜕]
= 𝑢
1
,

𝜕𝜉

𝜕]
= 0,

𝜕𝜌

𝜕]
= 0,

𝜕𝑝

𝜕]
= 0

𝑜𝑛 Γ
0
,

(60)

with the adjoint equation

𝑝 + 𝑁
0
𝑢
0
+ 𝑁
1
𝑢
1
= 0 𝑖𝑛 𝐿

2
(Γ
0
) . (61)

Proof. Wehere pass to the limit in 𝛾 → 0. From the equalities
in (41) we easily deduce the limits:

𝜉
𝛾
⇀ 𝜉 = 0,

𝜌
𝛾
⇀ 𝜌 = 0,

𝑝
𝛾
⇀ 𝑝 = 0

on Γ
0
.

(62)

Then from the adjoint equation (42) we obtain

(𝑢
𝛾

0
, 𝑢
𝛾

1
) ⇀ (𝑢

0
, 𝑢
1
) weakly in 𝐿2 (Γ

0
) × 𝐿
2
(Γ
0
) . (63)

Hence sequences (𝑦𝛾)
𝛾
and (𝜕𝑦𝛾/𝜕])

𝛾
are bounded in 𝐿2(Γ

0
)

and we obtain the weak convergence:

𝑦
𝛾
⇀ 𝑦 = 𝑢

0
,

𝜕𝑦
𝛾

𝜕]
⇀

𝜕𝑦

𝜕]
= 𝑢
1

on Γ
0
.

(64)

The same applies to the other limits.

5. Conclusion

In this work, we obtain a characterization of the control for
the ill-posed Laplacian Cauchy problem, using the no-regret
concept. The method consists in considering the elliptic
Cauchy problem as a singular limit of sequence of well-posed
elliptic problems.

The regularization approach generates incomplete infor-
mation which implies the use of the low-regret approach.
In case of no perturbation, the no-regret optimal control
function is the same as the classical control one.
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