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We prove that there is no bijective map between the set of all positive definite operators and the set of all self-adjoint operators
on a Hilbert space with dimension greater than 1 which preserves the usual order (the one coming from the concept of positive
semidefiniteness) in both directions. We conjecture that a similar assertion is true for general noncommutative 𝐶∗-algebras and
present a proof in the finite dimensional case.

1. Introduction and Results

It is a trivial fact that the logarithmic function𝑓(𝑡) = log 𝑡, 𝑡 >
0, is an order isomorphism from the set ]0,∞[ of positive real
numbers onto the real line ]−∞,∞[; that is, it is a bijective
map such that

𝑡 ≤ 𝑠 ⇐⇒ 𝑓 (𝑡) ≤ 𝑓 (𝑠) (1)

holds for all 𝑡, 𝑠 ∈ ]0,∞[. In this paper we prove the fact
that there is no similar transformation in higher dimensions
meaning that there is no such bijective map from the set of
all positive definite operators onto the set of all self-adjoint
operators on a complex Hilbert space 𝐻 with dim𝐻 > 1

which preserves the usual order ≤ (the one coming from the
concept of positive semidefiniteness) in both directions.

In what follows in a unital𝐶∗-algebraA the set of all self-
adjoint elements is denoted by A

𝑠
. An element 𝐴 ∈ A

𝑠
is

called positive semidefinite (here we borrow the terminology
ofmatrix theory rather than that of operator theorywhere the
term “positive” is commonly used) if the spectrum of𝐴 lies in
[0,∞[.We use the notationA

+
for the set of all such elements

of A
𝑠
. The concept of positive semidefiniteness induces an

order (more precisely a partial order) ≤ on A
𝑠
. We write

𝐴 ≤ 𝐵 if 𝐵−𝐴 is positive semidefinite.The invertible positive
semidefinite elements of A are called positive definite and
their set is denoted byA−1

+
.

For a complex Hilbert space 𝐻, 𝐵(𝐻) stands for the 𝐶∗-
algebra of all bounded linear operators on𝐻. The first result
of the paper reads as follows.

Theorem 1. Let𝐻 be a complexHilbert space with dim𝐻 > 1.
Then 𝐵(𝐻)−1

+
is not order isomorphic to 𝐵(𝐻)

𝑠
; that is, there is

no bijective transformation 𝜙 : 𝐵(𝐻)−1
+
→ 𝐵(𝐻)

𝑠
for which

𝐴 ≤ 𝐵 ⇐⇒ 𝜙 (𝐴) ≤ 𝜙 (𝐵) (2)

holds for any 𝐴, 𝐵 ∈ 𝐵(𝐻)−1
+
.

For the proof of this result we recall the following asser-
tionwhich describes the structure of all order automorphisms
of 𝐵(𝐻)

+
. It appeared as Theorem 1 in [1].

Proposition 2. Let 𝐻 be a complex Hilbert space with
dim𝐻 > 1. Assume 𝜙 : 𝐵(𝐻)

+
→ 𝐵(𝐻)

+
is a bijective map

which satisfies

𝐴 ≤ 𝐵 ⇐⇒ 𝜙 (𝐴) ≤ 𝜙 (𝐵) (3)

for any 𝐴, 𝐵 ∈ 𝐵(𝐻)
+
. Then there is an invertible bounded

either linear or conjugate linear operator 𝑇 on 𝐻 such that 𝜙
is of the form

𝜙 (𝐴) = 𝑇𝐴𝑇
∗

, 𝐴 ∈ 𝐵 (𝐻)
+
. (4)
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Observe that the conclusion in this proposition is obvi-
ously not true in the one-dimensional case; there is no similar
structural result for all strictly increasing bijections of the
interval [0,∞[.

Proof of Theorem 1. For temporary use introduce the follow-
ing notation. For any 𝐴 ∈ 𝐵(𝐻)

𝑠
denote

]0, 𝐴] = {𝑋 ∈ 𝐵 (𝐻)
−1

+
: 𝑋 ≤ 𝐴} ,

[𝐴,∞[ = {𝑋 ∈ 𝐵 (𝐻)
𝑠
: 𝑋 ≥ 𝐴} ,

]−∞,𝐴] = {𝑋 ∈ 𝐵 (𝐻)
𝑠
: 𝑋 ≤ 𝐴} .

(5)

Assume now that 𝜙 is an order isomorphism from 𝐵(𝐻)
−1

+

onto 𝐵(𝐻)
𝑠
, that is, a bijective map 𝜙 : 𝐵(𝐻)

−1

+
→ 𝐵(𝐻)

𝑠

which satisfies (2). Denote 𝜙(𝐼) = 𝐸, 𝜙(2𝐼) = 𝐹. Clearly,
𝜙([𝐼,∞[) = [𝐸,∞[, and 𝜙(]0, 2𝐼]) = ]−∞, 𝐹], and the maps
𝐴 󳨃→ 𝜙(𝐴 + 𝐼) − 𝐸 and 𝐴 󳨃→ −𝜙((𝐴 + (1/2)𝐼)

−1

) + 𝐹 are
order automorphisms of 𝐵(𝐻)

+
. We know the structure of

those automorphisms. By Proposition 2 we have invertible
bounded either linear or conjugate linear operators 𝑇, 𝑆 on
𝐻 such that

𝜙 (𝐴 + 𝐼) − 𝐸 = 𝑇𝐴𝑇
∗

,

− 𝜙 ((𝐴 + (
1

2
) 𝐼)

−1

) + 𝐹 = 𝑆𝐴𝑆
∗

,

𝐴 ∈ 𝐵 (𝐻)
+
.

(6)

Elementary calculation shows that

𝜙 (𝐵) = 𝑇 (𝐵 − 𝐼) 𝑇
∗

+ 𝐸, 𝐵 ∈ [𝐼,∞[ ,

𝜙 (𝐵) = −𝑆 (𝐵
−1

− (
1

2
) 𝐼) 𝑆

∗

+ 𝐹, 𝐵 ∈ ]0, 2𝐼] .

(7)

Therefore, it follows that

𝑇𝐵𝑇
∗

= −𝑆𝐵
−1

𝑆
∗

+ 𝐺, 𝐼 ≤ 𝐵 ≤ 2𝐼 (8)

holds with some 𝐺 ∈ 𝐵(𝐻)
𝑠
. In particular, we have 𝑡2𝑇𝑇∗ =

−𝑆𝑆
∗

+𝑡𝐺 for all real numbers 1 ≤ 𝑡 ≤ 2which implies𝑇𝑇∗ =
0, a clear contradiction.

The proof of Theorem 1 is surprisingly short but let
us emphasize that it uses Proposition 2 which is a highly
nontrivial result; it tells that the group of order isomorphisms
of 𝐵(𝐻)

+
is the smallest possible, it consist only of the trivial

order automorphisms 𝐴 󳨃→ 𝑇𝐴𝑇
∗.

We conjecture that the conclusion in Theorem 1 is valid
for every noncommutative 𝐶∗-algebra, too. As for a com-
mutative 𝐶∗-algebra A, we do have an order isomorphism
from A−1

+
onto A

𝑠
. In fact, to see this, we recall that A

is isomorphic to an algebra 𝐶(𝑋) of all complex valued
continuous functions on a compact Hausdorff space 𝑋, the
usual order becoming the pointwise order among functions.
Now consider the map 𝑓 󳨃→ log ∘𝑓 which is obviously an
order isomorphism from 𝐶(𝑋)

−1

+
onto 𝐶(𝑋)

𝑠
.

Unfortunately, we do not have a proof for our conjecture
concerning general noncommutative𝐶∗-algebras but inwhat

follows we present a proof in the particular case of finite
dimensional 𝐶∗-algebras.

Theorem 3. LetA be a finite dimensional 𝐶∗-algebra. If there
is an order isomorphism between A−1

+
and A

𝑠
, then A is

necessarily commutative.

The proof of this theorem is very similar in spirit to that
ofTheorem 1. However, to carry it out we need some auxiliary
results. To begin with, we first recall that it is well known that
any finite dimensional 𝐶∗-algebraA is isomorphic to a finite
direct sum of full operator algebras over finite dimensional
Hilbert spaces. So we may and do assume that we have
positive integers 𝑛

1
, . . . , 𝑛

𝑚
such that

A = 𝐵 (C
𝑛
1) ⊕ ⋅ ⋅ ⋅ ⊕ 𝐵 (C

𝑛
𝑚) . (9)

Now, themain auxiliary result followswhich describes the
structure of all order automorphisms ofA

𝑠
.

Theorem 4. Let 𝜙 be an order automorphism of the setA
+
=

𝐵(C𝑛1)
+
⊕ ⋅ ⋅ ⋅ ⊕ 𝐵(C𝑛𝑚)

+
of all positive semidefinite elements of

the 𝐶∗-algebra A in (9). Then there is a permutation 𝜑 of the
set {1, . . . , 𝑚} such that 𝑛

𝑖
= 𝑛
𝜑(𝑖)

, 𝑖 = 1, . . . , 𝑚 and we have

𝜙 (𝐴
1
, . . . , 𝐴

𝑚
) = (𝜙

𝜑(1)
(𝐴
𝜑(1)
) , . . . , 𝜙

𝜑(𝑚)
(𝐴
𝜑(𝑚)

)) ,

𝐴
𝑖
∈ 𝐵 (C

𝑛
𝑖)
+
, 𝑖 = 1, . . . , 𝑚,

(10)

where for any 𝑖 ∈ {1, . . . , 𝑚} with 𝑛
𝑖
> 1 there is an invertible

either linear or conjugate linear operator 𝑇
𝑖
on C𝑛𝑖 such that

𝜙
𝑖
(𝐴
𝑖
) = 𝑇
𝑖
𝐴
𝑖
𝑇
∗

𝑖
, 𝐴
𝑖
∈ 𝐵 (C

𝑛
𝑖)
+

(11)

while for any 𝑖 ∈ {1, . . . , 𝑚} with 𝑛
𝑖
= 1 we have a strictly

increasing bijection 𝑓
𝑖
of the interval [0,∞[ such that

𝜙
𝑖
(𝐴
𝑖
) = 𝑓
𝑖
(𝐴
𝑖
) , 𝐴

𝑖
∈ 𝐵 (C

𝑛
𝑖)
+
= [0,∞[ . (12)

In the proof of this theorem we will need the following
statement about the structure of all Jordan ∗-automorphisms
of finite dimensional𝐶∗-algebras.The result is no doubt very
well known but we still could not find any authentic reference
in the literature. Hence, to make our paper self-contained, we
present it with a short complete proof. Recall that a Jordan
∗-homomorphism from a ∗-algebraR into another oneR󸀠

is a linear map 𝜙 : R → R󸀠 which satisfies 𝜙(𝐴2) = 𝜙(𝐴)2
for all 𝐴 ∈ R, or equivalently, 𝜙(𝐴𝐵 + 𝐵𝐴) = 𝜙(𝐴)𝜙(𝐵) +

𝜙(𝐵)𝜙(𝐴) holds for all 𝐴, 𝐵 ∈ R, and 𝜙 also fulfills 𝜙(𝐴∗) =
𝜙(𝐴)
∗, 𝐴 ∈R. A Jordan ∗-isomorphism is a bijective Jordan

∗-homomorphism.

Proposition 5. Let 𝜙 be a Jordan ∗-automorphism of the 𝐶∗-
algebraA = 𝐵(C𝑛1)⊕⋅ ⋅ ⋅⊕𝐵(C𝑛𝑚).Then there is a permutation
𝜑 of {1, . . . , 𝑚} such that 𝑛

𝑖
= 𝑛
𝜑(𝑖)

, 𝑖 = 1, . . . , 𝑚 and we have

𝜙 (𝐴
1
, . . . , 𝐴

𝑚
) = (𝜙

𝜑(1)
(𝐴
𝜑(1)
) , . . . , 𝜙

𝜑(𝑚)
(𝐴
𝜑(𝑚)

)) ,

𝐴
𝑖
∈ 𝐵 (C

𝑛
𝑖) , 𝑖 = 1, . . . , 𝑚,

(13)
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where for any 𝑖 = 1, . . . , 𝑚 the map 𝜙
𝑖
is either of the form

𝜙
𝑖
(𝐴
𝑖
) = 𝑈
𝑖
𝐴
𝑖
𝑈
∗

𝑖
, 𝐴
𝑖
∈ 𝐵 (C

𝑛
𝑖) (14)

with a unitary 𝑈
𝑖
on C𝑛𝑖 or of the form

𝜙
𝑖
(𝐴
𝑖
) = 𝑈
𝑖
𝐴
∗

𝑖
𝑈
∗

𝑖
, 𝐴
𝑖
∈ 𝐵 (C

𝑛
𝑖) (15)

with an antiunitary 𝑈
𝑖
on C𝑛𝑖 .

Proof. Theelements ofA = 𝐵(C𝑛1)⊕⋅ ⋅ ⋅⊕𝐵(C𝑛𝑚) are𝑚-tuples
having 𝑖th component in the 𝑖th coordinate space 𝐵(C𝑛𝑖). The
set of all 𝑚-tuples whose components are all zero except for
the 𝑖th one is called the 𝑖th factor in the decomposition ofA.

Clearly, 𝜙maps projections to projections. We learn from
[2, 6.3.2. Lemma] that just as any Jordan homomorphism,
𝜙 necessarily preserves the Jordan triple product, that is,
satisfies 𝜙(𝐴𝐵𝐴) = 𝜙(𝐴)𝜙(𝐵)𝜙(𝐴), 𝐴, 𝐵 ∈ A. It follows
from elementary computations (see Lemma 2 in [3]) that
in any 𝐶∗-algebra the projections 𝑃, 𝑄 commute if and
only if 𝑃𝑄𝑃 is a projection. We deduce that 𝜙 preserves
commuting projections in both directions. SinceA is linearly
generated by its projections, we obtain that 𝜙 sends the set
of all central projections onto itself. It is apparent that 𝜙
preserves the order among projections in both directions.
We then infer that 𝜙 sends the set of all nonzero minimal
central projections onto itself. A factor in the decomposition
of A can be characterized as the set of all elements 𝐴 ∈

A for which 𝐴𝑃 = 𝑃𝐴 = 𝐴 holds with a given nonzero
minimal central projection 𝑃 in A. This equality is clearly
equivalent to that 𝜙(𝐴)𝜙(𝑃) = 𝜙(𝑃)𝜙(𝐴) = 𝜙(𝐴) which
holds for all 𝐴 ∈ A meaning that 𝜙 maps a factor in the
decomposition of A onto another (not necessarily different)
factor. Since the different nonzero minimal projections are
clearly orthogonal (i.e., they have zero product), the same
holds for their images and this implies that different factors
are mapped onto different factors. Therefore, 𝜙 is the direct
sum of Jordan ∗-isomorphisms𝜓

𝑖
from 𝐵(C𝑛𝑖) onto 𝐵(C𝑛𝜑(𝑖)),

𝑖 = 1, . . . , 𝑚, where 𝜑 : {1, . . . , 𝑚} → {1, . . . , 𝑚} is a
map. We trivially obtain that 𝜑 is a permutation of {1, . . . , 𝑚}
and that 𝑛

𝑖
= 𝑛
𝜑(𝑖)

holds for all 𝑖. Therefore, 𝜓
𝑖
is a Jordan

∗-automorphism of 𝐵(C𝑛𝑖). Since these algebras are prime,
by [2, 6.3.7 Theorem] we obtain that every 𝜓

𝑖
is either a ∗-

automorphism or a ∗-antiautomorphism.The structure of ∗-
automorphisms of full operator algebras are well known to be
implemented by unitary operators (meaning that they are of
the form 𝐴 󳨃→ 𝑈𝐴𝑈

∗ with a unitary 𝑈) from which one can
easily deduce that the ∗-antiautomorphisms are of the form
𝐴 󳨃→ 𝑈𝐴

∗

𝑈
∗ with an antiunitary operator 𝑈. The proof can

be completed trivially.

We are now in a position to proveTheorem 4.

Proof ofTheorem 4. Let us introduce some notion for tempo-
rary use. First recall that in the 𝑚-tuple 𝐴 = (𝐴

1
, . . . , 𝐴

𝑚
) ∈

A, the element 𝐴
𝑖
is said to be the component in the 𝑖th

coordinate space. If 𝑛
𝑖
= 1 thenwe say that it is a commutative

coordinate space and𝐴
𝑖
is called a commutative component.

We define the rank of an element 𝐴 = (𝐴
1
, . . . , 𝐴

𝑚
) ∈ A by

the sum of the ranks of its components as linear operators.

Clearly, the order inA
+
= 𝐵(C𝑛1)

+
⊕ ⋅ ⋅ ⋅ ⊕ 𝐵(C𝑛𝑚)

+
is meant

componentwise.
Now, we essentially follow the proof of Theorem 1 in [1].

Indeed, first prove that 𝜙 preserves the rank. To see this,
observe that we clearly have 𝜙(0) = 0. The rank-one elements
in A
+
can easily be characterized as the nonzero elements

𝐴 for which we have that for any 0 ≤ 𝐵, 𝐶 ≤ 𝐴 either
𝐵 ≤ 𝐶 or 𝐶 ≤ 𝐵 holds. Therefore, 𝐴 ∈ A

+
is of rank

one if and only if 𝜙(𝐴) is of rank one. Assume the same
holds for the ranks 1, . . . , 𝑘. We are going to show that then 𝜙
has the corresponding property concerning the rank (𝑘 + 1),
too. One can easily check the following characterization of
elements of rank greater than 𝑘 + 1 (cf. Lemma 2 in [1]).
The element 𝐴 ∈ A

+
is of rank greater than 𝑘 + 1 if and

only if there are elements 𝐵, 𝐶 ∈ A
+
with rank 𝑘 and rank

greater than 1, respectively, such that 𝐵, 𝐶 ≤ 𝐴 and there is
no nonzero element 𝐷 ∈ A

+
such that 𝐷 ≤ 𝐵, 𝐶. Using this

characterizationwe deduce that 𝜙 sends the set of rank-(𝑘+1)
elements onto itself. Consequently, 𝜙 preserves the rank.

We next show that 𝜙 maps factors corresponding to
commutative coordinate spaces onto factors of the same
kind. To see this, we first assert the following: for any 𝐴 ∈

𝐵(C𝑙)
+
the infimum of 𝐴 exists in 𝐵(C𝑙)

+
with every 𝑋 ∈

𝐵(C𝑙)
+
(meaning that the set {𝐴,𝑋} has infimum in 𝐵(C𝑙)

+

for every 𝑋 ∈ 𝐵(C𝑙)
+
) if and only if the rank of 𝐴 is

at most one. Indeed, we deduce this characterization from
the result Corollary 3.12 in the paper [4] of Moreland and
Gudder. To be precise, their result says that in the set of
all positive semidefinite operators on a finite dimensional
space with eigenvalues less than or equal to 1, an element
𝐴 has infimum with any other element if and only if 𝐴 is
either a projection or a matrix of rank at most 1. But in our
case there is a serious difference, namely, the eigenvalues are
not bounded from above. So, we argue as follows. If 𝐴 is a
rank-one positive semidefinite operator and𝑋 is an arbitrary
positive semidefinite operator, then multiplying them by a
suitable positive constant (observe that this multiplication as
a transformation is an order isomorphism) we can assume
that the eigenvalues of 𝐴, 𝑋 are bounded by 1 and hence
obtain that their infimum does exist. On the other hand, if
𝐴 is a positive semidefinite operator which has rank at least
two, its eigenvalues are bounded by a positive constant 𝑐,
and it has infimum with every other positive semidefinite
operator𝑋with eigenvalues not greater than 𝑐, then applying
the result of Moreland and Gudder we infer that 𝐴 is a
projectionmultiplied by 𝑐. But 𝑐 can clearly vary and hencewe
immediately arrive at a contradiction.This proves the desired
characterization of rank-one elements in 𝐵(C𝑙)

+
.

After this, one can easily verify that the nonzero compo-
nent of a nonzero rank-one element 𝐴 of A

+
belongs to a

commutative coordinate space if and only if for every rank-
two element 𝐵 ∈ A

+
with 𝐵 ≥ 𝐴 we have that 𝐵 has infimum

in A
+
with all elements 𝑋 ∈ A

+
. Due to this characteri-

zation the rank-one elements with nonzero components in
a commutative coordinate space are mapped into elements
of the same type. Clearly all such elements with nonzero
component in the same commutative coordinate space are
all comparable. This gives us that a factor corresponding to
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a commutative coordinate space is mapped into a factor of
the same type. Since 𝜙−1 has the same preserver properties
as 𝜙, it follows that 𝜙 in fact maps such factors onto such
factors. Again, using the comparability reasoning, we see
that 𝜙 permutes the commutative coordinate spaces among
themselves and clearly acts on each of them as a strictly
increasing bijection of the real interval [0,∞[. Let us now
consider the noncommutative coordinate spaces. We claim
that the restriction of our transformation onto the set of all
elements of A

+
with zero commutative components maps

that set onto itself. In fact, if the image 𝜙(𝐴) of such an
element 𝐴 has a nonzero commutative component, then we
can find a rank-one element 𝑅 with nonzero commutative
component which is below 𝜙(𝐴); that is, 𝑅 ≤ 𝜙(𝐴) holds.
Taking preimage we would obtain that the rank-one element
𝜙
−1

(𝑅) with a nonzero commutative component is below our
original element 𝐴 which has commutative components all
zero.This is a clear contradiction.Therefore, the so restricted
transformation can be considered as an order automorphism
on the direct sum of full sets of all positive semidefinite
operators on Hilbert spaces with dimension at least 2.

From this point on we can literally follow our argument
given on the pages 5907-5908 in [1] using a beautiful result
of Rothaus [5] and verify that the above transformation
is additive and positive homogeneous and hence it can be
extended to a linear order isomorphism on the direct sum
of the corresponding full operator algebras. Still following
the argument given in [1] we apply a theorem of Kadison
[6] to see that this map is a Jordan ∗-automorphism of the
underlying algebra followed by multiplication with a fixed
positive definite element from both sides. The structure of
Jordan ∗-automorphisms of the algebras under considera-
tion is described in Proposition 5. Therefore, we know the
structure of the order isomorphism 𝜙 on the direct sum
of the noncommutative factors as well as on the direct
sum of the commutative ones. In fact, we see that 𝜙 is
of the required form on the set of elements having only
commutative nonzero components as well as on the set of
elements having only noncommutative nonzero components.
But an arbitrary element ofA

+
is the supremum of two such

elements (one of the former type and one of the latter type)
and since 𝜙 preserves supremum (whenever it exists), we
complete the proof of the theorem.

After this preparationwe can now easily prove our second
main result Theorem 3.

Proof of Theorem 3. Assume, on the contrary, that in the
decomposition A = 𝐵(C𝑛1) ⊕ ⋅ ⋅ ⋅ ⊕ 𝐵(C𝑛𝑚) we have, for
example, 𝑛

1
̸= 1 and there exists an order isomorphism

𝜙 from A−1
+

onto A
𝑠
. We apply an argument similar to

the proof of Theorem 1 to reach a contradiction. Namely,
define the order automorphisms 𝐴 󳨃→ 𝜙(𝐴 + 𝐼) − 𝜙(𝐼) and
𝐴 󳨃→ −𝜙((𝐴 + (1/2)𝐼)

−1

) + 𝜙(2𝐼) ofA
+
. Apply the structural

result Theorem 4 for these maps and consider only the first
components of their images. Just as in the proof ofTheorem 1
we deduce the identity

𝑇
𝑖
𝐵
𝑖
𝑇
∗

𝑖
= −𝑆
𝑗
𝐵
−1

𝑗
𝑆
∗

𝑗
+ 𝐺
𝑖𝑗
, 𝐼 ≤ 𝐵 ≤ 2𝐼 (16)

for some given indices 𝑖, 𝑗 ∈ {1, . . . , 𝑚} where 𝑇
𝑖
, 𝑆
𝑗
are

invertible either linear or conjugate linear operators and𝐺
𝑖𝑗
is

a self-adjoint operator.We clearly have 𝑖 = 𝑗 and then, exactly
like in that proof, we arrive at a contradiction.This verifies the
statement.

Remark 6. Weconclude the paper with a few remarks. First of
all we note that one could consider a seemingly more general
problem. To formulate it, take a 𝐶∗-algebra A and for any
interval 𝐼 ⊂ R define A(𝐼) as the set of all elements in
A
𝑠
with spectrum contained in 𝐼. The existence of an order

isomorphism (with respect to the usual order) among pairs
of sets A(𝐼), A(𝐽) defines an equivalence relation on the
collection of all those sets. Now one may pose the problem
that, considering all open intervals of the real line, howmany
equivalence classes we have.However, the fact is that one does
not obtain anything essentially new by raising that question.
The reason is the following. Clearly, for any two bounded
open intervals 𝐼, 𝐽 ⊂ R the corresponding sets A(𝐼), A(𝐽)
are order isomorphic (via a simple affine transformation on
A). Next, the map 𝐴 󳨃→ −(𝐴 − 𝐼)

−1

− 𝐼 gives an order
isomorphismbetweenA(]0, 1[) andA(]0,∞[) and this latter
set is obviously order isomorphic to any A(]𝑎,∞[), 𝑎 ∈ R.
Furthermore, the map 𝐴 󳨃→ −𝐴

−1 is an order isomorphism
fromA(]0,∞[) ontoA(] −∞, 0[) and this latter set is order
isomorphic to any A(] −∞, 𝑏[), 𝑏 ∈ R. Consequently, the
setsA(𝐼) for any proper open interval 𝐼 ⊂ R are in the same
equivalence class. Hence the only interesting question is to
explore if for any proper open interval 𝐼, say, for 𝐼 = ]0,∞[
we have thatA(𝐼) is order isomorphic toA(𝐽), 𝐽 = ]−∞,∞[.
But this is exactly the problem we have treated above in the
casewhereA = 𝐵(𝐻) and formulated a conjecture for general
𝐶
∗-algebrasA.
Apparently, one can go further and consider all sorts of

intervals, not only the open ones. Clearly, there is no order
isomorphism between A(𝐼) and A(𝐽) if one of the intervals
𝐼, 𝐽 is open but the other one is not. That means that we then
have new equivalence classes. Actually, we have three of them
which are easily seen to correspond to all bounded closed
intervals, to all intervals of one of the two forms [𝑎, 𝑏[, [𝑎,∞[,
𝑎, 𝑏 ∈ R, and to all intervals of one of the two forms ]𝑎, 𝑏],
]∞, 𝑏], 𝑎, 𝑏 ∈ R, respectively.

Above we have discussed the question of the existence
of order isomorphisms among pairs of sets A(𝐼), A(𝐽). One
might want to get further and be interested in the structure
of all order isomorphisms between the sets A(𝐼), A(𝐽)
which belong to the same equivalence class. Since within
one equivalence class we can easily find order isomorphisms
between different elements (see above), the question reduces
to the problem of describing all order automorphisms of one
particular element in that class. Let us consider the casewhere
A = 𝐵(𝐻), dim𝐻 > 1. We already know that there are
five equivalence classes. As for the interval 𝐼 = ] − ∞,∞[,
the structure of order automorphisms of the corresponding
set has been described in Theorem 2 in [1]. Concerning the
interval 𝐼 = ]0,∞[, similar result was obtained inTheorem 1
in [7]. As for 𝐼 = [0,∞[, we refer toTheorem 1 in [1] whichwe
have reformulated in Proposition 2. Concerning the interval
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𝐼 = ]−∞, 0], the description of all order automorphisms
can easily be deduced from the one relating to the previous
interval [0,∞[. So, only one question remains, the one that
concerns the closed unit interval [0, 1]. In fact, this problem
proved to be very deep and it has recently been solved by
Šemrl. For his corresponding result see Corollary 1.2 in [8]
(we also refer to Theorem 3.1 in [9]). All the results that have
just beenmentioned concern the particular𝐶∗-algebra𝐵(𝐻).
We close this paragraph by telling that as for the case of
general 𝐶∗-algebrasA, we do not see hope to obtain similar
precise descriptions of the order automorphism groups of the
related sets.

Now we turn back to the question of the nonexistence of
order isomorphisms between A(]0,∞[) and A(]−∞,∞[).
Above we have formulated the conjecture that such a trans-
formation exists only ifA is commutative. In fact, we believe
that even more is true: we suspect that if we have a bijective
map 𝜙 : A(]−∞,∞[) → A(]0,∞[) with the property that

𝐴 ≤ 𝐵 󳨐⇒ 𝜙 (𝐴) ≤ 𝜙 (𝐵) (17)

holds for any 𝐴, 𝐵 ∈ A(]−∞,∞[), then A is necessarily
commutative. A few comments on this modified conjecture
follow. First, we refer to the paper [10]where it was shown that
if the exponential function on the interval [0,∞[ ismonotone
increasing relative to a given 𝐶∗-algebra A (meaning that
for any 𝐴, 𝐵 ∈ A

𝑠
with 0 ≤ 𝐴 ≤ 𝐵 we have exp(𝐴) ≤

exp(𝐵)), then the algebra A is commutative. In [11] this
result was extended for any continuous monotone increasing
and nonconcave real function on [0,∞[ in the place of
the exponential function. However, it is apparent that a
nonconstant continuous monotone increasing function from
]−∞,∞[ to ]0,∞[ cannot be concave. Therefore, it follows
easily that if there is a nonconstant continuous monotone
increasing function 𝑓 : ]−∞,∞[→ ]0,∞[ with the property
that

𝐴 ≤ 𝐵 󳨐⇒ 𝑓 (𝐴) ≤ 𝑓 (𝐵) (18)

holds for any 𝐴, 𝐵 ∈ A(]−∞,∞[), then A is necessarily
commutative. It is important to point out here that 𝑓(𝐴)
originates from the continuous function calculus and 𝑓 is a
real function and not a transformation onA

𝑠
. Therefore, the

above argument does not prove our conjecture at all; it only
gives some hope that it might be true.

To finish our remarks, we recall that above we have dealt
with the usual order ≤ among the self-adjoint elements of a
𝐶
∗-algebra. Quite naturally, one may ask what happens if we

consider other orders. Probably the most well-known order
on the operator space 𝐵(𝐻)

𝑠
which is different from ≤ is the

one called spectral order. It was defined byOlson [12] in terms
of the spectral resolution of operators as follows. Let 𝐴, 𝐵 ∈
𝐵(𝐻)
𝑠
with corresponding spectral measures 𝐸

𝐴
, 𝐸
𝐵
defined

on the Borel subsets of R. We write

𝐴 ⪯ 𝐵 iff 𝐸
𝐴
(]−∞, 𝑡]) ≥ 𝐸

𝐵
(]−∞, 𝑡]) , 𝑡 ∈ R. (19)

The relation⪯ called spectral order is a partial order on𝐵(𝐻)
𝑠
.

The main result in [12] says that every nonempty subset of
𝐵(𝐻)
𝑠
which has an upper bound necessarily has supremum

(a similar assertion is valid concerning the existence of the
infimum).This is the propertywhichmakes the spectral order
so useful. In fact, we recall the surprising result of Kadison
presented in [13] that 𝐵(𝐻)

𝑠
equipped with the usual order ≤

is a so-called antilattice: for any𝐴, 𝐵 ∈ 𝐵(𝐻)
𝑠
, the supremum

of the set {𝐴, 𝐵} exists if and only if 𝐴, 𝐵 are comparable, that
is, if we have either 𝐴 ≤ 𝐵 or 𝐵 ≤ 𝐴. This strange property of
the order ≤ motivated Olson to introduce the spectral order
on 𝐵(𝐻)

𝑠
. Now, if we consider our starting isomorphism

problem (see Theorem 1) for the spectral order, the question
is just easy. For any continuous bijectivemonotone increasing
function 𝑓 : ] −∞,∞[→ ]0,∞[, the transformation 𝐴 󳨃→

𝑓(𝐴) is apparently a spectral order isomorphism from 𝐵(𝐻)
𝑠

onto 𝐵(𝐻)−1
+
.
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