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The paper is mainly used to provide the equivalence of two algorithms of independent component analysis (ICA) based on the
information bottleneck (IB). In the viewpoint of information theory, we attempt to explain the two classical algorithms of ICA by
information bottleneck. Furthermore, via the numerical experiments with the synthetic data, sonic data, and image, ICA is proved
to be an edificatory way to solve BSS successfully relying on the information theory. Finally, two realistic numerical experiments are
conducted via FastICA in order to illustrate the efficiency and practicality of the algorithm as well as the drawbacks in the process
of the recovery images the mixing images.

1. Introduction

Information theory is found by Claude Elwood Shannon
(1948) in one of his famous academic papers, “AMathematical
Theory of Communication,” where he gave the definition of
information and information entropy based on the proba-
bility theory which build a bridge between the information
theory and the numerical mathematics. Some basic concep-
tions (entropy, negentropy, mutual information, and so on)
in the information theory have been successfully used to
elaborate the independent components (ICs) and to deal with
the problems on the application of the blind source separation
(BSS). In the past decades, the information theory has been
applied successfully into many fields such as clustering [1],
medical examination [2], independent component analysis
[3], feature learning [4], and telecommunication [5–8]. The
purpose of this paper is to use the information bottleneck to
derive themaximumof themutual information (MI) between

the mixing data and the recovery data which is no more than
the MI of the recovery data and the original sources.

The rest of the paper is organized as follows. In Section 2,
we first explain the information theory and introduce some
important formulas. In Section 3, based on the entropy,
the mutual information (MI), and negentropy, information
bottleneck is used to illustrate the equivalence of the two
classical algorithms, informax [3] and FastICA [9]. At last,
by a series of experiments of synthetic data, sonic data, and
image in Section 4, it is easy to compare the accuracy and
complexity of the two algorithms. However, the ambiguity of
the direction and scale of the recovery matrix lead the results
of the image to the opposite.

2. Information Theory

According to the explanation of communication theory by
Warren Weaver, “information” is not related to what you
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do say but to what you could say. That is, information is
a measure of one’s freedom of choice when one selects a
message [6, 7, 10].

At first, people focused attention on the “meaningful”
or “relevant” information, which is crucial in solving the
problem of transmitting information. Then, some scholars
argue that lossy source compression provides a natural
quantitative approach to “relevant information” [11, 12].

So, information bottleneck, which is going to seek for a
tradeoff between the compression and the representation and
preserving meaningful information, could be decomposed
into the following aspects:

(1) how to define the “meaningful” or “relevant” informa-
tion;

(2) how to extract the efficient representation of relevant
information in order to transmit it speedily;

(3) how to recover the information as exactly and com-
prehensively as possible only based on the efficient
representation of relevant information.

People regard the possible results of the uncertainty or
fuzzy as the surprise or information [13], and the smaller
probability of the results occurring, the bigger surprise or
the more information people obtained. So, entropy 𝐻(𝑋),
a measure of the chaotic degree, is defined to measure the
uncertainty of information. Assume that 𝑋 is a discrete
random variable, and probability density function (pdf)
𝑝(𝑥) = Pr(𝑋 = 𝑥), 𝑥 ∈ 𝜒; then, entropy is defined as

𝐻(𝑋) = −∑

𝑥∈𝜒

𝑝 (𝑥) log (𝑝 (𝑥)) . (1)

Moreover, it is easy to generalize it to more than two
random variables, the joint entropy. On the other hand,
mutual information (MI), a measure of dependency of two
different random variable sets, is regarded as the reduction of
uncertainty of the random variable, given the other random
variable. Consider two random variables 𝑋 and 𝑌, with
the joint pdf 𝑝(𝑥, 𝑦) and marginal pdfs 𝑝(𝑥) and 𝑝(𝑦),
respectively. MI can be written as follows:

𝐼 (𝑋; 𝑌) = ∑

𝑥∈𝜒

∑

𝑦∈Y

𝑝 (𝑥, 𝑦) log(
𝑝 (𝑥, 𝑦)

𝑝 (𝑥) 𝑝 (𝑦)
)

= 𝐸
𝑝(𝑥,𝑦)

log(
𝑝 (𝑥, 𝑦)

𝑝 (𝑥) 𝑝 (𝑦)
) .

(2)

It is easy to prove the following equations aboutMI based
on information entropy:

𝐼 (𝑋; 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌)

= 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑋)

= 𝐻 (𝑋) − 𝐻 (𝑌 | 𝑋) .

(3)

According to the last two terms, we can find the rela-
tionship between MI and entropy. if and only if 𝑋 and 𝑌 are
irrelevant.

3. The Equivalence of the Two ICA Algorithms
Based on the IBN

Information bottleneck (IBN) [14] is used to make sure to
recover the compressed information 𝑋, which is presumed
to be good representation or compression of the original
information 𝑆, to the recipient in terms of 𝑌 in the following
type:

𝑆 󳨐⇒ 𝑋 󳨐⇒ 𝑌. (4)

Now, in the terminology of information theory and opti-
mizing theory, there are two inconsistent optimal problems
that, on the one hand, we would make sure to minimize
MI between the original information 𝑆 and the compressed
information 𝑋 and, on the other hand, we want to capture
the maximum of mutual information between 𝑌 and 𝑋.
Obviously, the amount of information about 𝑌 in 𝑋 is given
by

𝐼 (𝑋; 𝑌) = Σ
𝑦
Σ
𝑥
𝑝 (𝑦, 𝑥) log(

𝑝 (𝑦, 𝑥)

𝑝 (𝑦) 𝑝 (𝑥)
) ≦ 𝐼 (𝑆; 𝑌) , (5)

while the mutual information between the independent
sources and the mixing signals is determinate but unknown
with the precondition of ICA.

ICA is studied to find the independent sources as 𝑦
𝑖
, 𝑌 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
), which is equal to the original independent

sources, 𝑆 = (𝑠
𝑖
1

, 𝑠
𝑖
2

, . . . , 𝑠
𝑖
𝑛

) ignoring the ambiguity of the
direction and scale. Furthermore, the independent sources
are the most concise, while any linear transformation of the
independent sources obtains the redundance information

𝐼 (𝑆; 𝑌) = 𝐻 (𝑆) − 𝐻 (𝑆 | 𝑌)

≦ 𝐻 (𝑆) .

(6)

If and only if 𝑌 are the independent sources the equation is
true. That is to say, we need to find the recovery matrix 𝑊,
𝑌 = 𝑊𝑋, in order to obtain the independent sources. Because
of the precondition of the unknown independent sources and
mixing matrix, the optimal problem of ICA is written by IBN
[14] as follows:

max
𝑌

𝐼 (𝑋; 𝑌) , (7)

where 𝐻(𝑆) is an theoretic maximum and 𝐻(𝑌) is an
approximate maximum.

3.1. Infomax Method. Infomax method [3] is used to tackle
the problem of separating the mixture signals 𝑋, attempting
to look for the weight matrix 𝑊 without both the mixture
matrix 𝐴 and the original signal 𝑆. We attempt to illustrate
BBS in the following:

S 𝑋=𝐴𝑆󳨀󳨀󳨀󳨀→
mixture

X 𝑌=𝑊𝑋󳨀󳨀󳨀󳨀󳨀→
recovery

Y. (8)

According to the optimization problem of ICA (16), we could
rewrite it as follows:

max
𝑊

𝐼 (𝑋; 𝑌) = 𝐻 (𝑌) − 𝐻 (𝑌𝑋) . (9)
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That is also regarded as

max
𝑊

𝐻(𝑌) . (10)

The equation can be differentiatedwith respect to a parameter
𝑊, involved in the mapping from𝑋 to 𝑌:

𝜕

𝜕𝑊
𝐼 (𝑋; 𝑌) =

𝜕

𝜕𝑊
𝐻(𝑌) . (11)

Therefore,MI between themixtures𝑋 and recoveries𝑌 could
be maximized by maximizing the entropy of the recoveries
alone. And then the gradient method is used to obtain the
learning method [3].

Considering the slow convergence and nonprecise and
low accuracy, HyV ̈𝑎rinen gave a FastICA based on the max-
imum of the negentropy, which is regarded as the measure
for the independency of the signal.

3.2. FastICA Method. According to the informax method
and IBN, the BBS is equal to the optimal problem as follows:

max
𝑌

𝐻(𝑌) . (12)

Then, the optimal problem can be adapted as

min
𝑌

𝐼 (𝑌) =

𝑛

∑

𝑖=1

𝐻(𝑦
𝑖
) − 𝐻 (𝑌) , (13)

where 𝑌 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) and 𝑦

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the ICs.

How can we identify and measure the independence of the
recovery data? The equivalence of the non-Gaussian random
variables and negentropy is illustrated based on the Central-
Limit Theorem [9].

Theorem 1 (Central-LimitTheorem [15]). Given certain con-
ditions, the arithmetic mean of a sufficiently large number of
iterates of independent random variables, each with a well-
defined expected value and well-defined variance, will be
approximately normally distributed.

According to the Central-Limit Theorem, if and only
if the recovery data 𝑌 is a permutation of the original
independent sources 𝑋, the non-Gaussian random variables
reaches the maximum. Consider

𝐼 (𝑌)=

𝑛

∑

𝑖=1

𝐻(𝑦
𝑖
) − 𝐻 (𝑋) − log det (𝑊)

= (−𝐻 (𝑋) − log det (𝑊))

+

𝑛

∑

𝑖=1

(𝐻 (𝑦
𝑖gauss) − 𝐽 (𝑦

𝑖
))

(14)

via the normalization of mixing data:

𝐸 {𝑦𝑦
𝑇

} = 𝑊𝐸 {𝑥𝑥
𝑇

}𝑊
𝑇

= 𝐼, (15)
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Figure 1: ICA.The synthetic independent data are plotted in (a), and
the recovery data are shown in (b) corresponding to the matrix 𝑤𝑎
in (17). In terms of every column of the matrix 𝑤𝑎, the substantial
entry, 𝑤𝑎

𝑖𝑗
, is almost a reflection of the transformation between

the original data (𝑖) and the recovery data (𝑗) by multiplying the
substantial entry 𝑤𝑎

𝑖𝑗
, accompanied by the nonzero entries, 𝑤

𝑖𝑡
, 𝑡 ̸=

𝑗. For example, in the first result of the ICA experiments, 𝑤𝑎
21

=

−0.6804 is just a proof that the original data (1) is recovered into the
recovery data (2) with a multiplicator 𝑤𝑎

21
and some noises based

on the minor numbers of 𝑤𝑎
22
and 𝑤𝑎

23
.

where 𝐼 is the 𝑛 𝑜𝑟𝑑𝑒𝑟 identical matrix. So, (10) is rewritten
as

max
𝑌

𝐽 (𝑌)

s.t. 󵄩󵄩󵄩󵄩󵄩
𝑊
2
󵄩󵄩󵄩󵄩󵄩
= 1

(16)

which is equivalent to (7) and (10). So, we can obtain the
equivalence of the two classical algorithms in the point of
IBN.

The approximation of negentropy and fixed-point algo-
rithm are applied to derive the learning rule [9].
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(c) Mixing data

Figure 2: Based on the FastICA algorithm, we separate the ran-
domly mixing data of the sinusoid, the rectangular curve, and the
sawtooth curve successfully. At the same time, the product matrix
𝑤𝑎 of the separation matrix𝑊 and the random mixing matrix 𝐴 is
presented in (18).
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Figure 3: In this numerical experiment, we add the Gaussian into
the above experiment and succeed in blindly separating the mixing
data. The product matrix 𝑤𝑎 is given in (19).
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Figure 4: The algorithm is not very efficient in separating the
sinusoid from the twoGaussian signals in themixing data.Themore
Gaussian variables there are, the more difficult it is to recover the
original data.
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Figure 5: Real sonic data (FastICA). Using the real sonic data from
thewebsite, we also can get the recovery data and the productmatrix
(20).
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(a) Independent images

(b) Mixing images

(c) Recovery images

Figure 6: Using the picture from the website and Gaussian noise mixing with the matrix 𝐴 = [2, 3; 2, 1], the Gaussian noise and the original
picture are shown in the first line, the two mixing pictures in the second line, and the recovery pictures in the third line.
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Figure 7: The recovery matrix 𝑊 is not the exact inverse of the
mixing matrix 𝐴, while the recovery data 𝑦 has the different orders
with 𝑠 and is very accurately estimated, up to multiplicative signs
(FastICA).

4. Experiments

Based on the infomax learning rule, the experiments pre-
sented here were obtained using the synthetic data as the
original data plotted in Figure 1(a). The result by infomax is
listed in Figure 1(b) corresponding to the recovery matrices
(17). Obviously, 𝑤𝑎 = 𝑊 ∗ 𝐴 is the product of the recovery
matrix and the mixture matrix so that it would be the
permutation of the approximate diagonal matrix. Then, we
can easily find that only one substantial entry (boxed) exists
in each row and column

𝑤𝑎 = (

−0.191 −0.015 −0.800

0.680 −0.020 −0.223

0.023 0.500 −0.063

) . (17)

In order to illustrate the efficiency of FastICA algorithm
and the limitation on nomore than oneGaussian variable, we
list some numerical results on the blindmixing signals shown
in Figures 2, 3, and 4, using the nonquadratic function 𝐺

1
to

approximate the negentropy. Consider

𝑤𝑎 = (

−0.707 −0.008 0.001

0.009 −0.500 0.000

0.001 −0.018 0.833

) . (18)

Figure 2 is an obvious proof to declare the efficiency
of the algorithm separating the randomly mixing data of
the sinusoid, the rectangular curve, and the sawtooth curve
successfully. And (18) revealed that the matrix 𝑊 is an
elementary transformation of the approximative inverse of
the mixing matrix 𝐴

𝑤𝑎 = (

−0.00 0.03 −0.83 −0.14

0.71 0.01 0.00 0.20

−0.06 0.01 −0.05 1.50

−0.01 0.50 0.01 −0.08

) . (19)

Table 1: The comparison of the different data on the iterative steps.

Original data set The iterative steps
Figure 2 Less than 15 steps
Figure 3 Less than 20 steps
Figure 4 Not stationary

Then, it is necessary and meaningful to add the Gaussian
variable into the original data to prove the efficiency of the
algorithm so that the result is shown in Figure 3 and the
product matrix 𝑤𝑎 is in (19). At last, based on the two
Gaussian signals in the mixing data, the algorithm is not
efficient to separate the two Gaussian signals apart shown in
Figure 4.

Furthermore, the average iterative steps on the first three
numerical experiments based on FastICA algorithm are
shown in Table 1.

After the experiments on the synthetic data, the algorithm
is also efficient on the real sonic data in Figure 5 and image
data in Figure 6. In the process of separating the image data,
the picture in Figure 7 can be obtained, because the matrix
𝑊, which alters the picture in the opposite color, is not the
exact inverse of 𝐴

𝑤𝑎 = (
−0.376 9.318

14.193 0.175
) , (20)

𝑤𝑎 = (
0.069 0.798

0.898 0.015
) . (21)

5. Conclusion

The algorithm of independent component analysis is enlight-
ened from BSS, which is a very successful application of the
information theory in speech recognition, image separation
without knowing the linear transformation. But, there are
also some disadvantages. For example, there exist the strong
preconditions that the original data should be independent
and the transformation should be linear.
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