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We propose a block hybrid trigonometrically fitted (BHT) method, whose coeflicients are functions of the frequency and the step-
size for directly solving general second-order initial value problems (IVPs), including systems arising from the semidiscretization
of hyperbolic Partial Differential Equations (PDEs), such as the Telegraph equation. The BHT is formulated from eight discrete
hybrid formulas which are provided by a continuous two-step hybrid trigonometrically fitted method with two off-grid points.
The BHT is implemented in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring
starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHT is discussed
and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

1. Introduction

In what follows, we consider the numerical solution of the
general second order IVPs of the form

y'=f(xny),
y (%) = yo,
’ ’ ¢))
¥ (x0) = Yo
x € [xg,xn]

where f : R x R* — R, N > 0 is an integer, and m
is the dimension of the system. Problems of the form of (1)
frequently arise in several areas of science and engineering
such as classical mechanics, celestial mechanics, quantum
mechanics, control theory, circuit theory, astrophysics, and
biological sciences. Equation (1) is traditionally solved by
reducing it into a system of first-order IVPs of double
dimension and then solved using the various methods that
are available for solving systems of first-order IVPs (see

Lambert [1, 2], Hairer and Wanner in [3], Hairer [4], and
Brugnano and Trigiante [5, 6]).

Nevertheless, there are numerous methods for directly
solving the special second-order IVPs in which the first
derivative does not appear explicitly and it has been shown
that these methods have the advantages of requiring less
storage space and fewer number of function evaluations (see
Hairer [4], Hairer et al. [7], Simos [8], Lambert and Watson
[9], and Twizell and Khaliq [10]). Fewer methods have been
proposed for directly solving second-order IVPs in which the
first derivative appears explicitly (see Vigo-Aguiar and Ramos
[11], Awoyemi [12], Chawla and Sharma [13], Mahmoud and
Osman [14], Franco [15], and Jator [16]). It is also the case that
some of these IVPs possess solutions with special properties
that may be known in advance and taken advantage of when
designing numerical methods. In this light, several methods
have been presented in the literature which take advantage
of the special properties of the solution that may be known in
advance (see Coleman and Duxbury [17], Coleman and Ixaru
(18], Simos [19], Vanden Berghe et al. [20], Vigo-Aguiar and
Ramos [11], Fang et al. [21], Nguyen et al. [22], Ramos and
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Vigo-Aguiar [23], Franco and Gomez [24], and Ozawa [25]).
However, most of these methods are restricted to solving
special second-order IVPs in a predictor-corrector mode.

Our objective is to present a BHT that is implemented in
a block-by-block fashion; in this way, the method does not
suffer from the disadvantages of requiring starting values and
predictors which are inherent in predictor-corrector methods
(see Jator et al. [26], Jator [27], and Ngwane and Jator [28]).
We note that multiderivative trigonometrically-fitted block
methods for y" = f(x, y, ') have been proposed in Jator
[29] and Jator [27]. However, the BHT proposed in this paper
avoids the computation of higher order derivatives which
have the potential to increase computational cost, especially
when applied to nonlinear systems. We note that Ramos et al.
[30] recently proposed a trigonometrically fitted optimized
two-step hybrid block method for solving the general second-
order IVPs with oscillatory solutions. However, the method
given in [30] is of an order 2; hence, in this paper, we propose
a BHT which is of order 5 and its application is extended to
solving PDEs such as the Telegraph equation.

The organization of this paper is as follows. In Section 2,
we derive the BHT for solving (1). The analysis and imple-
mentation of the BHT are discussed in Section 3. Numerical
examples are given in Section 4 to show the accuracy and
efficiency of the BHT. Finally, the conclusion of the paper is
given in Section 5.

2. Development of Method

Consider

Yne2 = Q0 Y0 T %1 Vi1
2
2
+ h ZﬁZ,jfnJrj + /32,n+vfn+v + ﬁZ,nJrefrHe’
j=0
yn+v = av,Oyn + ‘xv,lyrHl
2 ®)
+ h Zﬁv,jfr&j + ﬁv,n+vfn+v + ﬂv,n+efn+e’
j=0
Ynve = Qe oVn T X1 Vni1
2
2
+h Zﬁs,jfmj + ﬁe,nwfnw + ﬁe,n+efn+e
Jj=0
which are used together with additional methods given as
h P li
V2 = %20Yn T %1 Vsl
2
hz ! ! !
+ Zlgz,jfmj + ﬁz,n+vfn+v + ﬁz,n+sfn+e’
j=0
h P i
Yy = “v,oyn + ‘Xv,lyn+1

2
2 ! ! !
+h Zﬂv,jfrwj + ﬁv,n+1/f‘rl+v + ﬁv,n+efn+e’
j=0
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o = !
Vel = X100 T %11 V01
2
hz ! ! !
+ Zﬁl,jfnﬂ‘ + ﬁl,n+vfn+v + ﬁl,n+efn+e’
j=0
W = /
Yire = “e,oyn + ‘xe,lynﬂ
2
hz ! ! !
+ Zﬁe,]’fnﬂ‘ + ﬁe,n+vfn+v + ﬂe,n+efn+e’
j=0
W = o !
Vi = %,0Vn T %1 Vi1

2
2 ! ! ]
+h Zﬁo,jfmj + ﬁo,nwfnw + ﬁo,ﬂ+€fn+€’
j=0
3)

where ®jo> O 1> and [a’j)j, j = 0,v,1,¢,2, are coeflicients that
depend on the step-length h and frequency w. The coeflicients
of the method are chosen so that the method integrates IVP
(1) exactly where the solutions are members of the linear
space (1, x, X2, %, x*, sin(wx), cos(wx)).

The main method has the form

1 2
Yne2 = Z(xiynﬂ' + hZZﬁjfrHj + ﬁn+vfn+v + [))n+efn+e’ (4)
i=0 j=0

where «;, i = 0,1, and [3j, j = 0,162, are to be
determined coefficient functions of the frequency and step-
size. To derive the main method and additional methods, we
initially seek a continuous local approximation IT(x) on the
interval [x,, x,,,,] of the form

I (x) = 0ty (X) Yy, + 06y (%) Yy + B2 Y B (%) oo
i (5)
j=0,v,1,¢2

which represents our CHT and where oty (x), o, (x), and 3 (x),
j =0,v,1,¢,2,are continuous coeflicients. The first derivative
of (5) is given by

' (x) = %H(x). (6)

We assume that y,,, ; = I1(x,, ;) is the numerical approxima-

n+j
tion to the analytical solution y(x,,, ), v, i= ' (x,,, ;) is the
),and f,.; = " (x

an approximation to y'(xn+j), j=0,v,1,¢2.

The following theorem shows how continuous method
(5) is constructed. This is done by requiring that on the
interval from x, to x,,, = x, + 2h the exact solution is
locally approximated by function (5) with (6) obtained as a
consequence.

numerical approximation to y'(x,,, j nej) i

Theorem 1. Let Fi(x) = X, i = 01,234, Fi(x) =
sinwx, and Fg(x) = coswx be basis functions and K
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T )
V> Vs> Jwor Jniws Jrsts Frves fuia)” @ vector, where T is the
transpose. Define the matrix G by

Fy(x,) - Fg(x,)
Fy(%pe1) - Fg(%p41)
Fy (x,) - F (x,)
G=| F (%) o F (x0) )
F(;’ (1) o Fen (%s1)
) (Xpe) 0 Fo (%)
) (%p12) o+ Fg (%00)

and G; is obtained by replacing the ith column of G by the vector
K. Let the following conditions be satisfied:

I(x,) = Y
' (x,) =y, )
H” (xn+j):fn+j’ jZO’V)Le,Z;

then continuous representations (5) and (6) are equivalent to
the following:

& det(G;)

I (x) = ZO 3ot 1 9)
det (G
~ dx ( det (G) ) ' (10)

Proof. We use the approach given in Jator [16] with appropri-
ate notational modification. Let method (5) be defined by the
assumed basis functions:

6
% (x) = Z‘XHI,OFi (%),
i=0
6
x) (%) = Z‘XHl,lFi (), (11)
i=0
6
hzﬁj (x) = thﬁiJrl,jFi (x),
i=0

where o, o, @, ,, and hzﬁm)j, are coeflicients to be deter-
mined. Substituting (11) into (5), we get

6 6
IM(x) = Z‘le,OFi (%) Y + Z"‘m,lpi (%) Y1
i=0 i=0
(12)

6
+ Zzhzﬁm,]’Fi (%) fosj

7 i=0

3
which is simplified to
6
I(x) = Z %ig1,0F; (%) Y + i1 1 Fi (%) Yo
i=0
(13)
+ thﬁm,]‘Fi (x) fn+j>
J
and expressed as
6
11 (x) = ZeiFi (X) > (14)
i=0

where

2
€= Q1 0Vn + Ky Vpr + Zh Bisv,jfuij- (15)
J

By imposing conditions (8) on (14), we obtain a system of six
equations which can be expressed as

GL=K, (16)

T . .
where L = (€,,¢,,...,¢)" is a vector whose coefficients are
determined via Cramer’s rule as

_ det(G))

. i=0,1,....6 17
i~ detG) a7

where G; is obtained by replacing the ith column of G by K.
In order to obtain the continuous approximation, we use the
elements of L to rewrite (14) as

_ &det(G;)
1 (x) = ZO et (18)
whose first derivative is given by
oy d [(det(G)
I (x) = - <,Zo TG F, (x)). (19)

O

Remark 2. In the derivation of the BHT, the basis functions
F(x) = x,i = 0,1,2,3,4, F;(x) = sinwx, and
Fy(x) = cos wx are chosen because they are simple to analyze.
Nevertheless, other possible bases are possible (see Nguyen et
al. [22]).

2.1. Specification of the Method. We note that continuous
methods (9) and (10) which are equivalent to forms (5) and
(6) are used to generate three discrete methods and five
additional methods. The discrete and additional methods are
then applied as a BHT for solving (1). We choose v = 1/2,
€ = 3/2 and evaluating (9) at x = x,,,, x = x,,,, and
X = X, respectively, gives the three discrete methods y,,,, =
(x, + 2h), y,., = l(x, + vh), and y,,. = II(x, + eh) which
take the form of the main method. Evaluating (10) at x = x,,,
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X = Xy X = Xpp1> X = X0 a0d X = Xx,,,,, respectively, gives  2h). The coefficients and their corresponding Taylor series
the additional methods y, = I'(x,), y,,, = IT'(x, + vh),  equivalence of y,., ., Vpie» Vuszr WY hYlerr hYrs WYL, and
yo =0 (x,+h),y, =T(x,+eh),and y , = '(x, +  hy,, are, respectively, given as follows:

1
(xv,O = E’
1
“v,l = E’
(—7142 + (13142 - 144) cos (u/2) + 48 cos (u) + 96) csct (u/4)
Puo = 76812
19 22142 233u? 19916 1543u8 26281u!°

_ _ — _ U
1920 1935360 232243200 27249868800 34780741632000 128549621071872000

W (23u2 -12 (uz + 32) cos (u/2) + (13142 + 144) cos (u) + 240) csct (u/4)

Pur =~ 768u?
_ K . 79h° . 79K u’* s 611" u° .\ 4099h°u® . 17390°u" .
T 160 241920 29030400 = 3406233600  47823519744000  16068702633984000
(20)
((17u2 - 144) cos (u/2) + (u2 + 72) cos (u) + 72) csct (u/4)
Pur = 38412
7 194 83u’ u® 577u® 773u®

)

— - - - + + + -
960 64512 38707200 100925440  63764692992000 856997473812480

(5u2 + (uz + 48) cos (u/2) — 48) cot? (u/4) csc? (u/4)
192u?

ﬁv,e ==

R S S (/. 2633u"°
T 480 15120 7257600 212889600 1707982848000  2008587829248000

EEN

(5u2 + (142 + 48) cos (u/2) — 48) csct (u/4)

w2 76812

1, 31’ . 67u* . 109u° s 18127u® . 649311 .
71920 1935360 232243200 27249868800  382588157952000  128549621071872000

)

w1
€,0 2’
3
(XE,I = 5’
(u2 + (Su2 - 16) cos (u/2) + 16 cos (u)) csc (u/4)
Beo =~ 25612
17 53u° 11u® 19u® 6427u® 115092

=——+ + - - - +
1920 645120 25804800 27249868800 127529385984000  14283291230208000

(2317 — 40 cos (u/2) + (5u° + 48) cos (u) — 48) csc* (u/4)
e 25612

_2 W u' . u® s 167u® s 2633u'"’
T 160 5040 2419200 70963200 569327616000  669529276416000

)

3 (— (71,12 + 16) cos (u/2) + (u2 - 8) cos (u) + 24) csc (u/4)
128u?

ﬁe,l =

_67 11’ 17u* 173u° 12277u® 49729u"° .
T 320 107520 12902400 4541644800  21254897664000  7141645615104000
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~ (19u2 + 4(u2 + 32) cos (u/2) + (uz + 16) cos (u) — 144) csct (u/4)
Pee = 256u2

13 u? u 5u° 691u® u'°

=—+ + + + e,
480 16128 460800 136249344 1449197568000 186856243200

(Suz + (u2 + 48) cos (u/2) - 48) csc’ (u/4)

ez 25612
13w et 109w 18127t 649311
T 640 645120 77414400 9083289600  127529385984000  42849873690624000
(21)
oo =1,
0 =2,
(u2 + 2u? cos (u/2) + 6 cos (1) — 6) csct (u/4)
ﬁZ,O - 4812
_1, u? . A (. A 2633u"’
T 60 7560 3628800 106444800 853991424000  1004293914624000 ’
(5142 + (uz + 12) cos (u) — 12) csct (u/4) 4 u? ut u® 167u® 2633u'°
= = — - - + + + Tt
ﬁz,v 24u? 15 1890 907200 26611200 213497856000 251073478656000
(—10142 cos (1/2) + (uz - 18) cos (u) + 18) csct (u/4) (22)
T 2412
B W Wt W e 2633
T30 1260 604800 17740800 142331904000  167382319104000
(5u2 + (u2 + 12) cos (u) — 12) csct (u/4) 4 u? ut ub 167u® 2633110
= =— - - + + + +ee,
ﬁZ,e 24u? 15 1890 907200 26611200 213497856000 251073478656000
(uz + 2u” cos (u/2) + 6 cos (1) — 6) csct (u/4)
Bro=- 4812
1 u? u® 167u® 2633u™®

=—+ + - - -
60 7560 3628800 106444800 853991424000 1004293914624000
Qoo = -1,
!
Ay, = 1,

- csct (u/4) (—7142 + 10u? cos (14/2) — 6 cos (5u/4) sec (14/4) — 6u sin (5u/4) sec (u/4) + 6)

0.0 ™ 96u?

!

_ 53 19t vt e’ 461287t 12773u
T 360 15120 2419200 638668800 83691159552000  95647039488000
Bos
csc? (u/4) sec (u/4) (5142 cos (5u/4) + 6 (u2 + 4) cos (u/4) + (u2 - 6) cos (3u/4) — 6usin (3u/4) — 18usin (5u/4) — 18 cos (5u/4))
T 961>

T

2 13 29u° 67u’ 465598 26753u™®

——+—+ + + +
5 3780 53222400 1814400 4184557977600  100429391462400

, csct (u/4) (2142 cos (u/2) + (u2 - 6) cos (1) — 6usin (u) + 6)
o1~ 1612

EEN

_i Lz 23u* 331u® ub N 703u'®
T 12 360 1209600 1072963584000 9676800 = 334764638208000
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!
ﬁ(),e
csc? (u/4) sec (u/4) (uz cos (5u/4) + 6 (u2 + 4) cos (u/4) + (5142 - 18) cos (3u/4) — 18usin (3u/4) — 6u sin (5u/4) — 6 cos (5u/4))
T 9612
2w w1 307 15019u”
T 45 86400 3780 31933440 2988969984000  55794106368000
, csct (u/4) (u2 +2 (uz - 6) cos (u/2) — 6u sin (3u/4) sec (u/4) + 12)
ﬁo,z = 96u?
L et A 450681 269639u
T 120 3024 1451520 212889600  83691159552000  2008587829248000 ’
(23)
oc",)o = -1,
‘x\lz,l =1,
, csc® (u/4) sec (1/4) ((uz + 8) sin (11/2) — 4u + 8 sin (1) — 8u cos (u/2))
ﬁv,o = 64“2
_ 13z 67ut o 1549u® 1205803u°  9739u
T 480 32256 6451200 6812467200  223176425472000  72873934848000
, ((u2 + 24) sin (1/2) - 12u) (3 cos (1/2) + 2) csc® (u/4) sec (u/4)
ﬁv,v == 9612
_ 7109w 139wt 49514 2469314 4329211u"
T 144 80640 5806080 10218700800 22317642547200  16068702633984000 ’
, csct (u/4) (uz cos (u/2) — (uz + 18) cos (u) — 18u sin (u/2) + 18) (24)
T 4817
1, s . 23u* ) 19u° . 7213u° . 4289u"°
T 10 1120 2419200 212889600 9299017728000 = 669529276416000
2 . 3
ﬁ’ ~ ((u + 24) sin (1/2) — 12u) (cos (u/2) +2) csc” (u/4) sec (u/4)
we T 96u?

83u° 11192474° 13973214 .

7 13u? 109u* . .
111588212736000  5356234211328000

=—+ + +
240 80640 9676800 227082240

csc? (u/4) (uz —12ucsc (u/2) + 24)

!
w2 9612

7 37u 419u* 577u’ 577u’ 11480991 169051u®
1440 161280 58060800 2919628800 2919628800  223176425472000  1285496210718720 ’

‘Xi,o =-1
(xi,l =1,
, csct (u/4) sec (u/4) (2u2 cos (3u/4) + (uz - 6) cos (u/4) + 6 (usin (u/4) + cos (5u/4)))
ﬁl,o == 9612
1 u' 61u’ 215521 1769u'° '

T 72730240 172800 319334400  41845579776000  13390585528320

;o csct (u/4) sec (u/4) (u2 cos (5u/4) + (5u2 - 12) cos (u/4) + 6usin (u/4) + 3 cos (3u/4) + 9 cos (5u/4))
4812

Ly~

EEN

5u° 17569u® 267983u'°

13 s 41u* .
1004293914624000

=—- + + +
45 15120 3628800 12773376 1673823191040
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(—10u2 cos (u/2) + (142 - 18) cos (u) + 18) csct (u/4)
Bra= 48u?

!

B W W W e 2633
T 60 2520 1209600 35481600 284663808000  334764638208000

, csc? (u/4) sec (u/4) ((5u2 - 12) cos (u/4) + (uz + 9) cos (3u/4) + 3 (cos (5u/4) — 2u sin (u/4)))
Le = 4812

oW Wt s 406493u®  8S817u
T 45 2160 80640 319334400 41845579776000  334764638208000

Y

!

- csct (u/4) sec (u/4) ((uz - 2) cos (u/4) + 2 (cos (3u/4) — usin (u/4)))

L2 3212

Lot o9t 103669u® 5911
360 1 6048 © 1814400 159667200 ~ 20922789888000  45649723392000

EEN

(25)

csc? (u/4) sec (u/4) (7142 cos (3u/4) + (171,12 - 24) cos (u/4) + 24 (cos (5u/4) — usin (u/4)))
0= 38412

!

_31 s 29t 3847u° . 3313369u° L 28177u"
T 1440 13824 3870720 20437401600  669529276416000  218621804544000

B,
esc* (u/4) sec (u/4) (7u cos (5u/4) + 12 (7u® - 8) cos (u/4) + (5u* + 24) cos (3u/4) — 72usin (u/4) — 24u sin (3u/4) + 72 cos (5u/4) )
- 38412

EEN

_ 19 167d" 359 1117u° 47629u° 4023451u"°
T80 241920 29030400 3406233600 5150225203200  16068702633984000

BN

, csct (u/4) (—7u2 cos (u/2) + (uz - 6) cos (1) + 6usin (1/2) + 6) (26)

el ™ 1612

38 u? 19u* 31u® 54371u® 14821u'

15 10080 2419200 212889600  27897053184000  669529276416000

Bic
csct (u/4) sec (u/4) (5142 cos (5u/4) + 12 (7u2 - 8) cos (u/4) + (7142 + 72) cos (3u/4) — 24usin (u/4) — 72u sin (3u/4) + 24 cos (5u/4))
N 38412

_157, 1991° . 221u N 97u’ s 3965821u° s 499747u"
© 720 241920 9676800 185794560  334764638208000  1785411403776000

sy

csct (u/4) (7u2 + (Suz + 24) cos (1/2) — 12u sin (3u/4) sec (u/4) — 24)

!

&2 192u?

_ b dow? se7wt el 3748337 7902Mu
96 483840 58060800 6812467200  669529276416000  584316459417600 ’

oc;,oz—l,

0‘;,1 =L

(2 cos (1/2) + 1) csc* (u/4) sec (u/4) ((142 - 2) cos (u/4) + 2 (cos (3u/4) — usin (u/4)))

20~ 32u?

!

1 u* 7u’ 156349u° 6109u"° .
© 120 5040 115200 30412800  27897053184000  44635285094400

PR
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;o csct (u/4) sec (u/4) ((26u2 - 24) cos (u/4) + (7142 + 6) cos (3u/4) +3 ((uz + 6) cos (5u/4) — 2u (3 sin (3u/4) + sin (5u/4))))

2,v

96u?
MWt 7 2201 127674l
T 45 1260 1814400 159667200 199264665600  45649723392000
, csct (u/4) (26u2 cos (u/2) + (uz + 18) cos (1) — 18 (usin (u) + 1))
2177 48u?
7 W u? us 40218 5969u'°

=—+—+ + - - +
20 280 48384 21288960 4649508864000 334764638208000

ceey

!

ﬁz,e
csc? (u/4) sec (u/4) (7u2 cos (5u/4) + (26142 - 24) cos (u/4) +3 (uz + 6) cos (3u/4) — 6usin (3u/4) — 18u sin (5u/4) + 6 cos (5u/4))

- 9612

2 W 23 u® 72143u° 6119w

T3 252 604800 1971200 6974263296000  23911759872000 ’

, csct (u/4) (—5u2 +2 (7142 + 6) cos (u/2) — 6u sin (5u/4) sec (u/4) — 12)

2277 961

_5% W et 57t 148307u°  262967u”

7360 720 7257600 638668800  27897053184000 = 2008587829248000

Remark 3. We note that the Taylor series expansions in
(20) through (27) must be used when 4 — 0 because
the corresponding trigonometric coefficients given in these
equations are vulnerable to heavy cancelations (see [8]).

2.2. Block Form. In this subsection, the BHT method is for-
mulated from the eight discrete hybrid formulas stated in (2)
and (3). We emphasize that these eight formulas are provided
by the continuous two-step hybrid trigonometrically fitted
method with two off-grid points given by (5) and its first
derivative (6). First, we define the following vectors:

Yy+1

T
= [yn-f—v’ Vs> Ynrer Yna2o hy:ﬁ—v’ hy;,1+1’ hy:H-e’ hy:H—Z] >

T
Y;A. = [yn—e>yn—l>yn—v’yn’hy;—v’hyr{l—l’hy;—e’hy;] > ( )
28

F[ﬁ-l

T
= [f;+v’j;+1’f;+e’j;+2’hj:+v’hf:+l’hf;+e’hf:+2] >

T
Fy = [fn—e’fn—l’fn—v’ fn’hfri—v’ hfri—l’hfn’—e’hfn,] >

wherey =0,...,N; n=0,..., N. The three discrete methods
whose coefficients are specified by (2) and the five additional
methods in (3) whose coeflicients are specified by (20) to (27)
are combined to give the BHT method, which is expressed as

2
AY,y = AgY, + h (ByF, + BiF,,;), (29)

where A, A,, By, and B, are matrices of dimension eight
whose elements characterize the method and are given by the
coeflicients of (2) and (3).

(27)

3. Error Analysis and Stability

3.1. Local Truncation Error (LTE). Define the local truncation
error of (29) as

L[Z(x);h] = Z,,, - |AZ, + WBF, + i’CF,,|, (30)
where

Zypor = [y (nn) sy (1) 5 ¥ (i) > ¥ (%012
By (n) 1y (i) o1y () 1 (2000)]
Z, =y (xue) sy (nr)s ¥ (x02) v (30) By (,0) »
By (0t) oy () by ()]
wit = [ Gnves Ynre) s f Bt V) > f (s Yoans)
f (xn+2>yn+2) ’hf’ (xn+v’yn+v) > hfl (xn+1’ )’n+1) >
B (S e Bf (Renr yia)]
Fu=[f (oo Yuee)s £ s Yt ) s f (s V)
I (o 70) s B (%o Ye) s B (%ts V) »

B! (s Yn) o B ()]
LIZ(x);h) = [L, [2(x)sh], Ly [z (x)3h],...,

el

(31)

Ly [z (x);h]]"

is linear different operator.
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Suppose that Z(x) is sufficiently differentiable. Then, a
Taylor series expansion of the terms in (30) about the point x
gives the following expression for local truncation error:

L[Z(x);h] = CyZ (x) + C,hZ' (x) + -+~
(32)
+Ch1Z (x) + -+,

where C;,i =0, 1,..., are constant coeflicients (see [16]).

Definition 4. Block method (29) has algebraic order of at least
p > 1 provided there exists a constant C,,,, # 0 such that the

local truncation error E,, satisfies | E,, || = Cp+zhp+2 +O(hP?3),
where || - || is the maximum norm.

Remark 5. (i) The local truncation error constants (Ep )

of (yn+v’ Yo+ Vnver yn+2’hyr,1+v’ hyr,wrl’hyr,ﬁe’ hyrll+2)T of
block method (29) are given, respectively, by C, =
(—1/61440, —1/5040, 1/61440, 0, —1/5040, 61/645120,
~1/40320, 61/645120,-1/5040)", where C, = C, = C, =
C,-C,-C.=C. 0.

(ii) From the local truncation error constant computa-
tion, it follows that method (29) has order p of at least five.

3.2. Stability. The linear stability of the BHT is discussed by
applying the method to the test equation " = —A?y, where A
is a real constant (see [17]). Letting Y = Ah, it is easily shown
as in [18] that the application of (29) to the test equation yields
Y =M (Y5u)Y,,

(33)

-1

M (Y:u)=(A,-Y*B,) (A, +Y’B,),

where the matrix M(Y?;u) is the amplification matrix which
determines the stability of the method. In the spirit of [21],
the spectral radius of p(M (Y%, 1)) can be obtained from the
characteristics equation

p’ =20 (Y5u) p+© (Y5u) =0, (34)

where T(Y%;u) = trace M(Y%:u) and ©(Y:u) =
det M(Y?; u) are rational functions.

Definition 6. A region of stability is a region in the g-u plane,
throughout which p(M (Y:u) < 1 and any closed curve
given by p(M(Y?u)) = 1 defines the stability boundary of
the method (see [21]). We note that the plot for the stability
region of the BHT method is given in Figure 1.

3.3. Implementation. We emphasize that the main method
and the additional methods specified by (20)-(27) are com-
bined to form block method BHT (29), which is used to
solve (1) without requiring starting values and predictors.
BHT is implemented in a block-by-block fashion using a
Mathematica 10.0 code, enhanced by the feature NSolve]
for linear problems while nonlinear problems were solved
by Newtons method enhanced by the feature FindRoot]]
(see Keiper and Gear [35]). Mathematica can symbolically

10

-10 s n n 1 s s s 1 s s s 1 s s s 1]
0 20 40 60 80

FIGURE 1: The stability region for the BHT plotted in the (g, u)-plane.

compute derivatives and so the entries of the Jacobian matrix
which involve partial derivatives are automatically generated.
In what follows, we summarize how BHT is applied.

Step 1. Choose N, h = (b — a)/N, and the number of
blocks I' = N/2. Using (29), n = 0, u = 0, the values of

(Y1720 Y1 V320 J’z)T and (J’{/z’ J’{’ )’g/p J’;)T are simultaneously

obtained over the subinterval [x,, x,], as y, and y}, are known
from IVP (1).

Step 2. Forn = 2, u = 1, the values of (y5/2,y3,y7/2,y4)T

and (y: /2> Vi /2> yfl)T are simultaneously obtained over the

subinterval [x,, x,], as y, and y; are known from the previous
block.

Step 3. The process is continued for n = 4,...,N — 2 and
¢ = 2,...,I to obtain the numerical solution to (1) on the
subintervals [x, x,], [X5, X4, . . > [Xn_2> XN]-

4. Numerical Examples

In this section, numerical experiments are performed using
a code in Mathematica 10.0 to illustrate the accuracy and
efficiency of the method.

Example 1. We consider the following inhomogeneous IVP
by Simos [8]:

y" = =100y + 99sin (x),
)’(0) =1,

y' (0) = 11,

(35)

x € [0,1000]
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FIGURE 2: Efficiency curve for Example 1.
F1Gure 3: Efficiency curves for Example 2.
TABLE 1: Results, with w = 10, for Example 1.
O thod Si 8
ur metho imos [8] TABLE 2: Results, with w = 1.01, for Example 2.
N Err N Err
1000 1.9%107° 1000 14x 107! Our method Simos [8] Ixaru and Berghe [31]
2000 89x107° 2000 3.5x 1072 N Err N Err N Err
4000 42x107° 4000 1.1x107° 300 77x107° 300 1.7x107° 300 1.1x107°
8000 9.7x 1071 8000 8.4x107° 600 17x10° 600 19x10™* 600 54%107°
16000 6.7 x 107" 16000 55%107° 1200 1.4x10° 1200 1.4x107° 1200 1.9x107°
32000 43%x107" 32000 3.5%x1077 2400 1.9%x107 2400 8.7x1077 2400 62x107°

where the analytical solution is given by
Exact: y (x) = cos (10x) + sin (10x) + sin (x) . (36)

This example was solved using the order 5 BHT and
the end-point errors (Err = |y(xy) — yy|) obtained were
compared to the order 4 exponentially fitted method given
in Simos [8]. In Tablel, it is shown that BHT is more
efficient than the method in Simos [8]. We also compare the
computational efficiency of the two methods in Figure 2 by
considering the FNEs (number of function evaluations) over
N integration steps for each method. Our method (BHT)
requires fewer number of function evaluations. Hence, for
this example, BHT performs better.

Example 2. We consider the nonlinear Duffing equation
which was also solved by Simos [8] and Ixaru and Berghe [31]:

"+ y+ 9y’ = Beos (Qx),
y(0) = Gy, (37)
y' (0) = 0.
The analytical solution is given by

Exact: y (x) = C, cos (Qx) + C, cos (3Q2x)
(38)
+ C; cos (5Qx) + C, cos (7Qx) ,

where Q = 1.01, B = 0.002, C, = 0.200426728069, C, =
0.200179477536, C, = 0.246946143 x 107, C; =0.304016 x
107, and C, = 0.374 x 10™°. We choose w = 1.01.

We compare the end-point global errors for our method
with those of Simos [8] and Ixaru and Berghe [31]. We see
from Table 2 that the results produced by our method are
competitive to those given in Simos [8] and Ixaru and Berghe
[31]. Hence our method is more accurate and efficient as
demonstrated in Figure 3.

Example 3. We consider the nonlinear perturbed system on
the range [0, 10], with & = 1072 that was also solved in Fang
et al. [21]:

v 425y +e(y +y5) = e, (x),
yl (0) = 1’
y(0) =0,
1 2 2 (39)
¥y +25y, + ()] +y5) = &g, (x),
¥,(0) =¢,

5 (0) =5,
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TABLE 3: A comparison of methods for Example 3.
ARKNS5(3) TFARKN5(3) BHT
N (rejected) -log,,(Err) N (rejected) —log, ,(Err) N —log,,(Err)
42 (15) 2.82 29 (6) 278 50 3.42
86 (7) 4.96 88 (9) 5.33 100 4.61
260 (5) 716 262 (8) 7.85 260 752
812 (3) 9.37 811 (4) 10.38 810 10.43
where TABLE 4: Steps and absolute errors, with w = 1, for

Example 4 [0, 507].

@ (x)=1+ & + 2esin (5x + xz) + 2 cos (xz)
+ (25 - 4x) sin (x7),
@, (x)=1+ &* + 2¢esin (Sx + x2) —2sin (xz)

+ (25 - 4x2) cos (xz) s

and the exact solution is given by y, (x) = cos(5x) + esin(x?),
¥,(x) = sin(5x) + ecos(x?), representing a periodic motion
of constant frequency with small perturbation of variable
frequency.

This problem was solved using the BHT and the maxi-
mum global errors (Err =
compared to the variable step-size trigonometrically fitted
Runge-Kutta-Nystrém method (TFARKN5(3)) given in Fang
et al. [21] and a Runge-Kutta-Nystrom method (ARKN5(3))
which was constructed by Franco [15]. In Table 3, the max-
imum global errors for the three methods are compared. In
general, the TFARKN5(3) and ARKNS5(3) are expected to
perform better because of their variable-step implementation

Our method FESDIRK4(3) [25] ESDIRK4(3) [25]
Steps Err Steps Err Steps Err
220 3.52x107° 170 2.866x 1070 277  2.153x 10°
(40) 300 1.13x10° 225 7.846x107° 496 1.494x 107"
400 1.03x107 381 1.399x107° 884 9.359x107°
600 3.49x107° 680 1.690x107* 1573 6.200x 107*
800 1.14x107" 1207 1.846x107° 2796 4.416x107°
1000 7.68x 107 2144 1.938x10°° 4970 3.412x10°°
1200 2.8x107* 3806 1.993x1077 8833 2.848x 1077
2400 1.02x107° 6762 2.021x107° 15706 2.530x 107°
0L
7 I
s 5F
- :
Max|y(x) — y|) obtained were & _
o -10 |
& I
—
15[
2000 4000 6000 8000
Steps

advantage. Nevertheless, the BHT which is implemented in
fixed step-size mode is highly competitive to these methods.

Example 4. We consider the following two-body problem
which was solved by Ozawa [25] on [0, 507]:

n_ N

1__1’_3’

n__Xa

z—_r_y

=AYy

yl (O) =1 -6 (41)
1 (0) =0,
¥, (0) =0,

, l1+e

0) = R
yz() \/l—e

—e— ESDIRKA4(3)
FESDIRK4(3)
—— Our method

FIGURE 4: Efficiency curve for Example 4.

where e (0 < e < 1) is an eccentricity. The exact solution of
this problem is

Exact: y, (x) = cos (k) —e,

¥, (x) = V1 —e€?sin (k),

where k is the solution of Kepler’s equation k = x + e sin(k).
We choose w = 1.

(42)

We show in Table 4 that the results obtained using the
BHT method are more accurate than the explicit singly diag-
onally implicit Runge-Kutta (ESDIRK) and the functionally
fitted ESDIRK (FESDIRK) methods given in Ozawa [25]. In
Figure 4, we also illustrate the efficiency advantage of the
BHT method over those in Ozawa [25].
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TABLE 5: Results, with w = 1, for Example 5.
Our method Vigo-Aguiar and Ramos [32]

N Err N Err

67 1.14x107° 67 7.11%x 1077
82 35%x 1071 82 926 x 107
97 1.3x107%° 97 87.8x107°
112 55%x 107" 12 1.12x107%°
125 29x 107! 125 271x 1071

4.1 Problems Where y' Appears Explicitly

Example 5 (Bessel's IVP). We consider the Bessel differential
equation that was also solved by Vigo-Aguiar and Ramos [11]:
xzy” + xy' + (x2 - 0.25) y=0,

2
y(1) =/ —sinl = 0.671397071418031,
4

(43)
Y (1) = (ZC()slz——sml) ~ 0.0954005144474746,
s
x €[1,8],
where the exact (analytical) solution is given by
2
Exact: y (x) = Jjj, (x) = \|— sin (x). (44)
X

This problem was chosen to demonstrate the perfor-
mance of our method on the general second-order IVP
with variable coefficients. We compare our results with
the variable-step Falkner method of order eight that was
implemented in predictor-corrector mode by Vigo-Aguiar
and Ramos [32]. The results displayed in Table 5 show that
the BHT method performs better.

Example 6. We consider the harmonic oscillator with fre-
quency Q and small perturbation & that was solved in Franco
[15] and Guo and Yan [36]:

v+ 8y +sz =0,

y (0) =0,
S (45)
!
0)=-=,
y(0)=-3
x € [0,1000]
where the analytical solution is given by
s &

Exact: y (x) = /2% cos (QZ - Z) , (46)

where Q = 1,8 = 10°% and § = 107" The problem was
solved in Guo and Yan [36] using ARKN method. In Table 6,
the errors are compared at x = 1000. We observed that the
BHT is competitive with the order 5 Runge-Kutta-Nystrom
method.
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4.2. Hyperbolic PDEs

Example 7. We consider the given Telegraph equation (see
Ding et al. [33]):

E)z_u + Zna—u + nzu
ot? ot
o’u (47)

=52t 7* sin (mx) (sin (72t) + cos (7rt))

0<x<1,0<¢t<1.

The exact solution is given by u(x, y) = sin(mx)sin(rt).

In order to solve this PDE using the BHT, we carry out the
semidiscretization of the spatial variable x using the second-
order finite difference method to obtain the following second-
order system in the second variable t:

0* 0 U, —2U, +U,_
uzm + 2 U +7_[2um_( m+1 m2 m l)
ot ot (Ax)
:gm, 0<t<1, m=l,...,M—1, (48)

u (%X,> 0) = Uy

ut (xm> 0) = l/l,:”,

where Ax = (b-a)/M, x,, =a+mAx,m=0,1,...,M,u=
[, (8)s .. > up (D] g = [g1(E)s .oy Grn(O]T, 14, (£) = 1lx, 5 1),
and g,,,(t) = g(x,,,t) = ﬂzsin(ﬂxm)(sin(rrt) +cos(rrt)), which
can be written in the form

o =f (t, u, u') , (49)

subject to the boundary conditions u(t,) = ug, u'(t,) = ug,
where f(f,u,u') = Au + g and Ais M — 1 x M — 1, matrix
arising from the semidiscretized system, and g is a vector of
constants.

The boundary conditions are chosen accordingly. This
example was chosen to demonstrate that the BHT can be
used to solve the Telegraph equation. In Table 7, the results
produced by the BHT using At = 1/100 and space step Ax =
1/100 are compared to scheme (3.12) (A, = 1/12,and A, =
5/6), time step At = 1/200, and space step Ax = 1/100, given
in Ding et al. [33]. It is obvious from Table 5 that the BHT is
more accurate than the method given in [33]. Moreover, the
errors produced by BHT method using At = 1/100 and space
step Ax = 1/100 are given in Figure 5.
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TABLE 6: Errors at x = 1000, for Example 6.

BHT ARKN
h Error (8 = 107°) Error (8 = 107'°) h Error (8 = 107%) Error (8 = 107'%)
1 412x107° 111 x 107" 12 9.05x107® 9.00 x 107"
12 7.06 x 10710 2.19x 107" 1/4 5.43 %107 7.06 x 107"
1/4 1.23x 1071 3.12x 107" 1/8 2.03x107"° 2.87x 107"
1/8 523 x 107" 5.44 x 107" 116 7.25x 10712 3.56 x 107"
1/16 5.62 x 10712 2.94x 107" 1/32 3.45x 107" 591 x 107"
v Error

0003}
0.002 %
0.001 &

0.000

0.0

(a) N=M=10

0.00003 {
0.00002 &
0.00001 §

Error

0
0.0

(b) N=M =100

FIGURE 5: Absolute errors for Example 7.

TABLE 7: Results, with w = 7, for Example 7.

Our method Ding et al. [33]
X Err Err
0.2 2.06x 107" 9.62x107"°
0.4 3.33x107"° 1.56 x 107°
0.6 3.33x 107" 1.56 x 107°
0.8 2.06 x 10710 9.62 x 1071

Example 8. We consider the wave equation given in Franco
[15]. A problem representing a vibrating string with speed w
is given by

o’u ’u 2
ﬁ—x(l—x)$+(w —2)u:0

0<x<l1, 0<t<5
u(0,t) =0, (50)
u(l,t) =0,
u(x,0)=x(1-x),
u, (x,0) =0,

where the initial and Dirichlet boundary conditions have
been chosen such that the solution is given by u(x,t) = x(1 -
x)coswt. In order to solve this PDE using the BHT, we carry

out the semidiscretization of the spatial variable x using the
second-order finite difference method to obtain the following
second-order system in the second variable ¢:

du,,
ot?

(um+1 B Zum + um—l)
(Ax)*

- x, (1-x,)+
+(w2—2)um=gm, m=1,...,M-1, (51)

u(xm’o) = Xm (1 _xm)>

u, (x,,0)=0, 0<t<5,

where Ax = (b—-a)/M, x,, =a+mAx,m=0,1,...,M,u=

[y (), up (D1, g = (g1 GO Uy (£) = lx,,, 1),
and g,,(t) = g(x,,,t) = 0, which can be written in the form

v =f(tu), (52)

subject to the boundary conditions u(ty) = uy, u'(t,) = uy,
where f(t,u) = Au+ g, and Ais M — 1 x M — 1, matrix
arising from the semidiscretized system, and g is a vector of
constants.

In Figure 6, we give the errors produced by the BHT
which show that the method performs very well on this
problem.
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15x10°F
1.0x 107§
50x 10710 F
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Error

(b) N=M=4

FIGURE 6: Absolute errors for Example 8.

TaBLE 8: Comparison of methods for Example 9.

N Method in [34] Our method N RK4

10 L12x 107 2.23x 107 250 Overflow
20 1.69x 107° 336 %107 500 Overflow
40 1.22x107® 2.44 %1078 1000 Overflow
80 9.79 x 1071 1.96x 107" 2000 Overflow
160 1.06 x 107" 213x107% 4000  1.20x 107"
320 154x107 248x 107 8000  7.94x107"

Example 9. We consider the following mildly stiff IVP which
was also solved in [34]:

y" =-1001y" - 1000y,
)’(0) =1,
y' (0) = -1, (53)

x €[0,10]
Exact: y(x) =¢ .

This example is given to show that the method still
performs well on problems with nontrigonometric solutions.
The problem was solved using the BHT and the results
obtained were compared with the polynomial based method
given in [34] and the standard fourth-order Runge-Kutta
method (RK4). The results given in Table 8 show that the
BHT is competitive with the method in [34] and is superior to
RK4 which are designed for problems with nontrigonometric
solutions.

5. Conclusion

We have presented a BHT method whose coefficients are
functions of the frequency and the step-size for directly
solving general second-order initial value problems (IVPs),

including systems arising from the semidiscretization of
hyperbolic PDEs, such as the Telegraph equation. The BHT
is implemented in a block-by-block fashion; in this way,
the method does not suffer from the disadvantages of
requiring starting values and predictors which are inherent
in predictor-corrector methods. We have also shown that
the BHT method has a reasonably wide stability region and
enjoys accuracy and efficiency advantages when compared to
existing methods in the literature. Our future research will
be to incorporate a technique for accurately estimating the
frequency as suggested in [37, 38] as well as implementing
the method in a variable-step mode.
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