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We propose a block hybrid trigonometrically fitted (BHT) method, whose coefficients are functions of the frequency and the step-
size for directly solving general second-order initial value problems (IVPs), including systems arising from the semidiscretization
of hyperbolic Partial Differential Equations (PDEs), such as the Telegraph equation. The BHT is formulated from eight discrete
hybrid formulas which are provided by a continuous two-step hybrid trigonometrically fitted method with two off-grid points.
The BHT is implemented in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring
starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHT is discussed
and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

1. Introduction

In what follows, we consider the numerical solution of the
general second order IVPs of the form

𝑦
󸀠󸀠
= 𝑓 (𝑥, 𝑦, 𝑦

󸀠
) ,

𝑦 (𝑥
0
) = 𝑦
0
,

𝑦
󸀠
(𝑥
0
) = 𝑦
󸀠

0
,

𝑥 ∈ [𝑥
0
, 𝑥
𝑁
] ,

(1)

where 𝑓 : R × R2𝑚 → R2𝑚, 𝑁 > 0 is an integer, and 𝑚
is the dimension of the system. Problems of the form of (1)
frequently arise in several areas of science and engineering
such as classical mechanics, celestial mechanics, quantum
mechanics, control theory, circuit theory, astrophysics, and
biological sciences. Equation (1) is traditionally solved by
reducing it into a system of first-order IVPs of double
dimension and then solved using the various methods that
are available for solving systems of first-order IVPs (see

Lambert [1, 2], Hairer and Wanner in [3], Hairer [4], and
Brugnano and Trigiante [5, 6]).

Nevertheless, there are numerous methods for directly
solving the special second-order IVPs in which the first
derivative does not appear explicitly and it has been shown
that these methods have the advantages of requiring less
storage space and fewer number of function evaluations (see
Hairer [4], Hairer et al. [7], Simos [8], Lambert and Watson
[9], and Twizell and Khaliq [10]). Fewer methods have been
proposed for directly solving second-order IVPs in which the
first derivative appears explicitly (seeVigo-Aguiar andRamos
[11], Awoyemi [12], Chawla and Sharma [13], Mahmoud and
Osman [14], Franco [15], and Jator [16]). It is also the case that
some of these IVPs possess solutions with special properties
that may be known in advance and taken advantage of when
designing numerical methods. In this light, several methods
have been presented in the literature which take advantage
of the special properties of the solution that may be known in
advance (see Coleman andDuxbury [17], Coleman and Ixaru
[18], Simos [19], Vanden Berghe et al. [20], Vigo-Aguiar and
Ramos [11], Fang et al. [21], Nguyen et al. [22], Ramos and
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Vigo-Aguiar [23], Franco and Gómez [24], and Ozawa [25]).
However, most of these methods are restricted to solving
special second-order IVPs in a predictor-corrector mode.

Our objective is to present a BHT that is implemented in
a block-by-block fashion; in this way, the method does not
suffer from the disadvantages of requiring starting values and
predictors which are inherent in predictor-correctormethods
(see Jator et al. [26], Jator [27], and Ngwane and Jator [28]).
We note that multiderivative trigonometrically-fitted block
methods for 𝑦󸀠󸀠 = 𝑓(𝑥, 𝑦, 𝑦󸀠) have been proposed in Jator
[29] and Jator [27]. However, the BHT proposed in this paper
avoids the computation of higher order derivatives which
have the potential to increase computational cost, especially
when applied to nonlinear systems.We note that Ramos et al.
[30] recently proposed a trigonometrically fitted optimized
two-step hybrid blockmethod for solving the general second-
order IVPs with oscillatory solutions. However, the method
given in [30] is of an order 2; hence, in this paper, we propose
a BHT which is of order 5 and its application is extended to
solving PDEs such as the Telegraph equation.

The organization of this paper is as follows. In Section 2,
we derive the BHT for solving (1). The analysis and imple-
mentation of the BHT are discussed in Section 3. Numerical
examples are given in Section 4 to show the accuracy and
efficiency of the BHT. Finally, the conclusion of the paper is
given in Section 5.

2. Development of Method

Consider

𝑦
𝑛+2
= 𝛼
2,0
𝑦
𝑛
+ 𝛼
2,1
𝑦
𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽
2,𝑗
𝑓
𝑛+𝑗
+ 𝛽
2,𝑛+V𝑓𝑛+V + 𝛽2,𝑛+𝜖𝑓𝑛+𝜖,

𝑦
𝑛+V = 𝛼V,0𝑦𝑛 + 𝛼V,1𝑦𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽V,𝑗𝑓𝑛+𝑗 + 𝛽V,𝑛+V𝑓𝑛+V + 𝛽V,𝑛+𝜖𝑓𝑛+𝜖,

𝑦
𝑛+𝜖
= 𝛼
𝜖,0
𝑦
𝑛
+ 𝛼
𝜖,1
𝑦
𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽
𝜖,𝑗
𝑓
𝑛+𝑗
+ 𝛽
𝜖,𝑛+V𝑓𝑛+V + 𝛽𝜖,𝑛+𝜖𝑓𝑛+𝜖

(2)

which are used together with additional methods given as

ℎ𝑦
󸀠

𝑛+2
= 𝛼
󸀠

2,0
𝑦
𝑛
+ 𝛼
󸀠

2,1
𝑦
𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽
󸀠

2,𝑗
𝑓
𝑛+𝑗
+ 𝛽
󸀠

2,𝑛+V𝑓𝑛+V + 𝛽
󸀠

2,𝑛+𝜖
𝑓
𝑛+𝜖
,

ℎ𝑦
󸀠

𝑛+V = 𝛼
󸀠

V,0𝑦𝑛 + 𝛼
󸀠

V,1𝑦𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽
󸀠

V,𝑗𝑓𝑛+𝑗 + 𝛽
󸀠

V,𝑛+V𝑓𝑛+V + 𝛽
󸀠

V,𝑛+𝜖𝑓𝑛+𝜖,

ℎ𝑦
󸀠

𝑛+1
= 𝛼
󸀠

1,0
𝑦
𝑛
+ 𝛼
󸀠

1,1
𝑦
𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽
󸀠

1,𝑗
𝑓
𝑛+𝑗
+ 𝛽
󸀠

1,𝑛+V𝑓𝑛+V + 𝛽
󸀠

1,𝑛+𝜖
𝑓
𝑛+𝜖
,

ℎ𝑦
󸀠

𝑛+𝜖
= 𝛼
󸀠

𝜖,0
𝑦
𝑛
+ 𝛼
󸀠

𝜖,1
𝑦
𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽
󸀠

𝜖,𝑗
𝑓
𝑛+𝑗
+ 𝛽
󸀠

𝜖,𝑛+V𝑓𝑛+V + 𝛽
󸀠

𝜖,𝑛+𝜖
𝑓
𝑛+𝜖
,

ℎ𝑦
󸀠

𝑛
= 𝛼
󸀠

0,0
𝑦
𝑛
+ 𝛼
󸀠

0,1
𝑦
𝑛+1

+ ℎ
2

2

∑

𝑗=0

𝛽
󸀠

0,𝑗
𝑓
𝑛+𝑗
+ 𝛽
󸀠

0,𝑛+V𝑓𝑛+V + 𝛽
󸀠

0,𝑛+𝜖
𝑓
𝑛+𝜖
,

(3)

where 𝛼
𝑗,0
, 𝛼
𝑗,1
, and 𝛽

𝑗,𝑗
, 𝑗 = 0, V, 1, 𝜖, 2, are coefficients that

depend on the step-length ℎ and frequency𝑤.The coefficients
of the method are chosen so that the method integrates IVP
(1) exactly where the solutions are members of the linear
space ⟨1, 𝑥, 𝑥2, 𝑥3, 𝑥4, sin(𝑤𝑥), cos(𝑤𝑥)⟩.

The main method has the form

𝑦
𝑛+2
=

1

∑

𝑖=0

𝛼
𝑖
𝑦
𝑛+𝑖
+ ℎ
2

2

∑

𝑗=0

𝛽
𝑗
𝑓
𝑛+𝑗
+ 𝛽
𝑛+V𝑓𝑛+V + 𝛽𝑛+𝜖𝑓𝑛+𝜖, (4)

where 𝛼
𝑖
, 𝑖 = 0, 1, and 𝛽

𝑗
, 𝑗 = 0, V, 1, 𝜖, 2, are to be

determined coefficient functions of the frequency and step-
size. To derive the main method and additional methods, we
initially seek a continuous local approximation Π(𝑥) on the
interval [𝑥

𝑛
, 𝑥
𝑛+2
] of the form

Π (𝑥) = 𝛼
0
(𝑥) 𝑦
𝑛
+ 𝛼
1
(𝑥) 𝑦
𝑛+1
+ ℎ
2
∑

𝑗

𝛽
𝑗
(𝑥) 𝑓
𝑛+𝑗
,

𝑗 = 0, V, 1, 𝜖, 2
(5)

which represents our CHT andwhere𝛼
0
(𝑥),𝛼
1
(𝑥), and𝛽

𝑗
(𝑥),

𝑗 = 0, V, 1, 𝜖, 2, are continuous coefficients.The first derivative
of (5) is given by

Π
󸀠

(𝑥) =
𝑑

𝑑𝑥
Π (𝑥) . (6)

We assume that 𝑦
𝑛+𝑗
= Π(𝑥

𝑛+𝑗
) is the numerical approxima-

tion to the analytical solution 𝑦(𝑥
𝑛+𝑗
), 𝑦󸀠
𝑛+𝑗
= Π
󸀠
(𝑥
𝑛+𝑗
) is the

numerical approximation to 𝑦󸀠(𝑥
𝑛+𝑗
), and 𝑓

𝑛+𝑗
= Π
󸀠󸀠
(𝑥
𝑛+𝑗
) is

an approximation to 𝑦󸀠(𝑥
𝑛+𝑗
), 𝑗 = 0, V, 1, 𝜖, 2.

The following theorem shows how continuous method
(5) is constructed. This is done by requiring that on the
interval from 𝑥

𝑛
to 𝑥
𝑛+2
= 𝑥
𝑛
+ 2ℎ the exact solution is

locally approximated by function (5) with (6) obtained as a
consequence.

Theorem 1. Let 𝐹
𝑖
(𝑥) = 𝑥

𝑖, 𝑖 = 0, 1, 2, 3, 4, 𝐹
5
(𝑥) =

sin𝑤𝑥, and 𝐹
6
(𝑥) = cos𝑤𝑥 be basis functions and 𝐾 =
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(𝑦
𝑛
, 𝑦
𝑛+1
, 𝑓
𝑛
, 𝑓
𝑛+V, 𝑓𝑛+1, 𝑓𝑛+𝜖, 𝑓𝑛+2)

𝑇 a vector, where 𝑇 is the
transpose. Define the matrix 𝐺 by

𝐺 =

(
(
(
(
(
(
(
(

(

𝐹
0
(𝑥
𝑛
) ⋅ ⋅ ⋅ 𝐹

6
(𝑥
𝑛
)

𝐹
0
(𝑥
𝑛+1
) ⋅ ⋅ ⋅ 𝐹

6
(𝑥
𝑛+1
)

𝐹
󸀠󸀠

0
(𝑥
𝑛
) ⋅ ⋅ ⋅ 𝐹

󸀠󸀠

6
(𝑥
𝑛
)

𝐹
󸀠󸀠

0
(𝑥
𝑛+V) ⋅ ⋅ ⋅ 𝐹

󸀠󸀠

6
(𝑥
𝑛+V)

𝐹
󸀠󸀠

0
(𝑥
𝑛+1
) ⋅ ⋅ ⋅ 𝐹

󸀠󸀠

6
(𝑥
𝑛+1
)

𝐹
󸀠󸀠

0
(𝑥
𝑛+𝜖
) ⋅ ⋅ ⋅ 𝐹

󸀠󸀠

6
(𝑥
𝑛+𝜖
)

𝐹
󸀠󸀠

0
(𝑥
𝑛+2
) ⋅ ⋅ ⋅ 𝐹

󸀠󸀠

6
(𝑥
𝑛+2
)

)
)
)
)
)
)
)
)

)

(7)

and𝐺
𝑖
is obtained by replacing the 𝑖𝑡ℎ column of𝐺 by the vector

𝐾. Let the following conditions be satisfied:

Π(𝑥
𝑛
) = 𝑦
𝑛
,

Π
󸀠
(𝑥
𝑛
) = 𝑦
󸀠

𝑛
,

Π
󸀠󸀠
(𝑥
𝑛
+ 𝑗) = 𝑓

𝑛+𝑗
, 𝑗 = 0, V, 1, 𝜖, 2;

(8)

then continuous representations (5) and (6) are equivalent to
the following:

Π (𝑥) =

6

∑

𝑖=0

det (𝐺
𝑖
)

det (𝐺)
𝐹
𝑖
(𝑥) , (9)

Π
󸀠

(𝑥) =
𝑑

𝑑𝑥
(

6

∑

𝑖=0

det (𝐺
𝑖
)

det (𝐺)
𝐹
𝑖
(𝑥)) . (10)

Proof. We use the approach given in Jator [16] with appropri-
ate notational modification. Let method (5) be defined by the
assumed basis functions:

𝛼
0
(𝑥) =

6

∑

𝑖=0

𝛼
𝑖+1,0
𝐹
𝑖
(𝑥) ,

𝛼
1
(𝑥) =

6

∑

𝑖=0

𝛼
𝑖+1,1
𝐹
𝑖
(𝑥) ,

ℎ
2
𝛽
𝑗
(𝑥) =

6

∑

𝑖=0

ℎ
2
𝛽
𝑖+1,𝑗
𝐹
𝑖
(𝑥) ,

(11)

where 𝛼
𝑖+1,0

, 𝛼
𝑖+1,1

, and ℎ2𝛽
𝑖+1,𝑗

, are coefficients to be deter-
mined. Substituting (11) into (5), we get

Π (𝑥) =

6

∑

𝑖=0

𝛼
𝑖+1,0
𝐹
𝑖
(𝑥) 𝑦
𝑛
+

6

∑

𝑖=0

𝛼
𝑖+1,1
𝐹
𝑖
(𝑥) 𝑦
𝑛+1

+∑

𝑗

6

∑

𝑖=0

ℎ
2
𝛽
𝑖+1,𝑗
𝐹
𝑖
(𝑥) 𝑓
𝑛+𝑗

(12)

which is simplified to

Π (𝑥) =

6

∑

𝑖=0

(𝛼
𝑖+1,0
𝐹
𝑖
(𝑥) 𝑦
𝑛
+ 𝛼
𝑖+1,1
𝐹
𝑖
(𝑥) 𝑦
𝑛+1

+∑

𝑗

ℎ
2
𝛽
𝑖+1,𝑗
𝐹
𝑖
(𝑥) 𝑓
𝑛+𝑗
)

(13)

and expressed as

Π (𝑥) =

6

∑

𝑖=0

ℓ
𝑖
𝐹
𝑖
(𝑥) , (14)

where

ℓ
𝑖
= 𝛼
𝑖+1,0
𝑦
𝑛
+ 𝛼
𝑖+1,1
𝑦
𝑛+1
+∑

𝑗

ℎ
2
𝛽
𝑖+1,𝑗
𝑓
𝑛+𝑗
. (15)

By imposing conditions (8) on (14), we obtain a system of six
equations which can be expressed as

𝐺𝐿 = 𝐾, (16)

where 𝐿 = (ℓ
0
, ℓ
1
, . . . , ℓ

6
)
𝑇 is a vector whose coefficients are

determined via Cramer’s rule as

ℓ
𝑖
=
det (𝐺

𝑖
)

det (𝐺)
, 𝑖 = 0, 1, . . . , 6, (17)

where 𝐺
𝑖
is obtained by replacing the 𝑖th column of 𝐺 by 𝐾.

In order to obtain the continuous approximation, we use the
elements of 𝐿 to rewrite (14) as

Π (𝑥) =

6

∑

𝑖=0

det (𝐺
𝑖
)

det (𝐺)
𝐹
𝑖
(𝑥) , (18)

whose first derivative is given by

Π
󸀠

(𝑥) =
𝑑

𝑑𝑥
(

6

∑

𝑖=0

det (𝐺
𝑖
)

det (𝐺)
𝐹
𝑖
(𝑥)) . (19)

Remark 2. In the derivation of the BHT, the basis functions
𝐹
𝑖
(𝑥) = 𝑥

𝑖, 𝑖 = 0, 1, 2, 3, 4, 𝐹
5
(𝑥) = sin𝑤𝑥, and

𝐹
6
(𝑥) = cos𝑤𝑥 are chosen because they are simple to analyze.

Nevertheless, other possible bases are possible (see Nguyen et
al. [22]).

2.1. Specification of the Method. We note that continuous
methods (9) and (10) which are equivalent to forms (5) and
(6) are used to generate three discrete methods and five
additional methods.The discrete and additional methods are
then applied as a BHT for solving (1). We choose V = 1/2,
𝜖 = 3/2 and evaluating (9) at 𝑥 = 𝑥

𝑛+2
, 𝑥 = 𝑥

𝑛+V, and
𝑥 = 𝑥

𝑛+𝜖
, respectively, gives the three discretemethods𝑦

𝑛+2
=

Π(𝑥
𝑛
+ 2ℎ), 𝑦

𝑛+V = Π(𝑥𝑛 + Vℎ), and 𝑦𝑛+𝜖 = Π(𝑥𝑛 + 𝜖ℎ) which
take the form of the main method. Evaluating (10) at 𝑥 = 𝑥

𝑛
,



4 International Journal of Differential Equations

𝑥 = 𝑥
𝑛+V, 𝑥 = 𝑥𝑛+1, 𝑥 = 𝑥𝑛+𝜖, and 𝑥 = 𝑥𝑛+2, respectively, gives

the additional methods 𝑦󸀠
𝑛
= Π
󸀠
(𝑥
𝑛
), 𝑦󸀠
𝑛+V = Π

󸀠
(𝑥
𝑛
+ Vℎ),

𝑦
󸀠

𝑛+1
= Π
󸀠
(𝑥
𝑛
+ ℎ), 𝑦󸀠

𝑛+𝜖
= Π
󸀠
(𝑥
𝑛
+ 𝜖ℎ), and 𝑦󸀠

𝑛+2
= Π
󸀠
(𝑥
𝑛
+

2ℎ). The coefficients and their corresponding Taylor series
equivalence of 𝑦

𝑛+V, 𝑦𝑛+𝜖, 𝑦𝑛+2, ℎ𝑦
󸀠

𝑛
, ℎ𝑦󸀠
𝑛+V, ℎ𝑦

󸀠

𝑛+1
, ℎ𝑦󸀠
𝑛+𝜖

, and
ℎ𝑦
󸀠

𝑛+2
are, respectively, given as follows:

𝛼V,0 =
1

2
,

𝛼V,1 =
1

2
,

𝛽V,0 =
(−7𝑢
2
+ (13𝑢

2
− 144) cos (𝑢/2) + 48 cos (𝑢) + 96) csc4 (𝑢/4)

768𝑢2

= −
19

1920
−
221𝑢
2

1935360
−
233𝑢
4

232243200
−
199𝑢
6

27249868800
−
1543𝑢

8

34780741632000
−

26281𝑢
10

128549621071872000
+ ⋅ ⋅ ⋅ ,

𝛽V,V = −
ℎ
2
(23𝑢
2
− 12 (𝑢

2
+ 32) cos (𝑢/2) + (13𝑢2 + 144) cos (𝑢) + 240) csc4 (𝑢/4)

768𝑢2

= −
17ℎ
2

160
+
79ℎ
2
𝑢
2

241920
+
79ℎ
2
𝑢
4

29030400
+
61ℎ
2
𝑢
6

3406233600
+
4099ℎ

2
𝑢
8

47823519744000
+
1739ℎ

2
𝑢
10

16068702633984000
+ ⋅ ⋅ ⋅ ,

𝛽V,1 =
((17𝑢

2
− 144) cos (𝑢/2) + (𝑢2 + 72) cos (𝑢) + 72) csc4 (𝑢/4)

384𝑢2

= −
7

960
−
19𝑢
2

64512
−
83𝑢
4

38707200
−
𝑢
6

100925440
+

577𝑢
8

63764692992000
+

773𝑢
10

856997473812480
+ ⋅ ⋅ ⋅ ,

𝛽V,𝜖 = −
(5𝑢
2
+ (𝑢
2
+ 48) cos (𝑢/2) − 48) cot2 (𝑢/4) csc2 (𝑢/4)

192𝑢2

= −
1

480
+
𝑢
2

15120
+
𝑢
4

7257600
−
𝑢
6

212889600
−
167𝑢
8

1707982848000
−

2633𝑢
10

2008587829248000
+ ⋅ ⋅ ⋅ ,

𝛽V,2 =
(5𝑢
2
+ (𝑢
2
+ 48) cos (𝑢/2) − 48) csc4 (𝑢/4)
768𝑢2

=
1

1920
+
31𝑢
2

1935360
+
67𝑢
4

232243200
+
109𝑢
6

27249868800
+
18127𝑢

8

382588157952000
+

64931𝑢
10

128549621071872000
+ ⋅ ⋅ ⋅ ,

(20)

𝛼
𝜖,0
= −
1

2
,

𝛼
𝜖,1
=
3

2
,

𝛽
𝜖,0
= −
(𝑢
2
+ (5𝑢

2
− 16) cos (𝑢/2) + 16 cos (𝑢)) csc4 (𝑢/4)

256𝑢2

=
17

1920
+
53𝑢
2

645120
+
11𝑢
4

25804800
−
19𝑢
6

27249868800
−

6427𝑢
8

127529385984000
−

11509𝑢
10

14283291230208000
+ ⋅ ⋅ ⋅ ,

𝛽
𝜖,V =
(23𝑢
2
− 4𝑢
2 cos (𝑢/2) + (5𝑢2 + 48) cos (𝑢) − 48) csc4 (𝑢/4)

256𝑢2

=
21

160
−
𝑢
2

5040
−
𝑢
4

2419200
+
𝑢
6

70963200
+
167𝑢
8

569327616000
+
2633𝑢

10

669529276416000
+ ⋅ ⋅ ⋅ ,

𝛽
𝜖,1
=
3 (− (7𝑢

2
+ 16) cos (𝑢/2) + (𝑢2 − 8) cos (𝑢) + 24) csc4 (𝑢/4)

128𝑢2

=
67

320
+
11𝑢
2

107520
−
17𝑢
4

12902400
−
173𝑢
6

4541644800
−
12277𝑢

8

21254897664000
−
49729𝑢

10

7141645615104000
+ ⋅ ⋅ ⋅ ,
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𝛽
𝜖,𝜖
=
(19𝑢
2
+ 4 (𝑢

2
+ 32) cos (𝑢/2) + (𝑢2 + 16) cos (𝑢) − 144) csc4 (𝑢/4)

256𝑢2

=
13

480
+
𝑢
2

16128
+
𝑢
4

460800
+
5𝑢
6

136249344
+
691𝑢
8

1449197568000
+

𝑢
10

186856243200
+ ⋅ ⋅ ⋅ ,

𝛽
𝜖,2
= −
(5𝑢
2
+ (𝑢
2
+ 48) cos (𝑢/2) − 48) csc4 (𝑢/4)
256𝑢2

= −
1

640
−
31𝑢
2

645120
−
67𝑢
4

77414400
−
109𝑢
6

9083289600
−
18127𝑢

8

127529385984000
−

64931𝑢
10

42849873690624000
+ ⋅ ⋅ ⋅ ,

(21)
𝛼
2,0
= 1,

𝛼
2,1
= 2,

𝛽
2,0
= −
(𝑢
2
+ 2𝑢
2 cos (𝑢/2) + 6 cos (𝑢) − 6) csc4 (𝑢/4)

48𝑢2

=
1

60
+
𝑢
2

7560
+
𝑢
4

3628800
−
𝑢
6

106444800
−
167𝑢
8

853991424000
−

2633𝑢
10

1004293914624000
+ ⋅ ⋅ ⋅ ,

𝛽
2,V =
(5𝑢
2
+ (𝑢
2
+ 12) cos (𝑢) − 12) csc4 (𝑢/4)
24𝑢2

=
4

15
−
𝑢
2

1890
−
𝑢
4

907200
+
𝑢
6

26611200
+
167𝑢
8

213497856000
+
2633𝑢

10

251073478656000
+ ⋅ ⋅ ⋅ ,

𝛽
2,1
=
(−10𝑢

2 cos (𝑢/2) + (𝑢2 − 18) cos (𝑢) + 18) csc4 (𝑢/4)
24𝑢2

=
13

30
+
𝑢
2

1260
+
𝑢
4

604800
−
𝑢
6

17740800
−
167𝑢
8

142331904000
−
2633𝑢

10

167382319104000
+ ⋅ ⋅ ⋅ ,

𝛽
2,𝜖
=
(5𝑢
2
+ (𝑢
2
+ 12) cos (𝑢) − 12) csc4 (𝑢/4)
24𝑢2

=
4

15
−
𝑢
2

1890
−
𝑢
4

907200
+
𝑢
6

26611200
+
167𝑢
8

213497856000
+
2633𝑢

10

251073478656000
+ ⋅ ⋅ ⋅ ,

𝛽
2,2
= −
(𝑢
2
+ 2𝑢
2 cos (𝑢/2) + 6 cos (𝑢) − 6) csc4 (𝑢/4)

48𝑢2

=
1

60
+
𝑢
2

7560
+
𝑢
4

3628800
−
𝑢
6

106444800
−
167𝑢
8

853991424000
−

2633𝑢
10

1004293914624000
+ ⋅ ⋅ ⋅ ,

(22)

𝛼
󸀠

0,0
= −1,

𝛼
󸀠

0,1
= 1,

𝛽
󸀠

0,0
=
csc4 (𝑢/4) (−7𝑢2 + 10𝑢2 cos (𝑢/2) − 6 cos (5𝑢/4) sec (𝑢/4) − 6𝑢 sin (5𝑢/4) sec (𝑢/4) + 6)

96𝑢2

= −
53

360
−
19𝑢
2

15120
−
37𝑢
4

2419200
−
163𝑢
6

638668800
−
461287𝑢

8

83691159552000
−
12773𝑢

10

95647039488000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

0,V

= −
csc4 (𝑢/4) sec (𝑢/4) (5𝑢2 cos (5𝑢/4) + 6 (𝑢2 + 4) cos (𝑢/4) + (𝑢2 − 6) cos (3𝑢/4) − 6𝑢 sin (3𝑢/4) − 18𝑢 sin (5𝑢/4) − 18 cos (5𝑢/4))

96𝑢2

= −
2

5
+
13𝑢
2

3780
+
29𝑢
6

53222400
+
67𝑢
4

1814400
+
46559𝑢

8

4184557977600
+
26753𝑢

10

100429391462400
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

0,1
=
csc4 (𝑢/4) (2𝑢2 cos (𝑢/2) + (𝑢2 − 6) cos (𝑢) − 6𝑢 sin (𝑢) + 6)

16𝑢2

=
1

12
−
𝑢
2

360
−
23𝑢
4

1209600
−
331𝑢
8

1072963584000
−
𝑢
6

9676800
+

703𝑢
10

334764638208000
+ ⋅ ⋅ ⋅ ,
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𝛽
󸀠

0,𝜖

= −
csc4 (𝑢/4) sec (𝑢/4) (𝑢2 cos (5𝑢/4) + 6 (𝑢2 + 4) cos (𝑢/4) + (5𝑢2 − 18) cos (3𝑢/4) − 18𝑢 sin (3𝑢/4) − 6𝑢 sin (5𝑢/4) − 6 cos (5𝑢/4))

96𝑢2

= −
2

45
−
𝑢
4

86400
+
𝑢
2

3780
−
13𝑢
6

31933440
−
32027𝑢

8

2988969984000
−
15019𝑢

10

55794106368000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

0,2
=
csc4 (𝑢/4) (𝑢2 + 2 (𝑢2 − 6) cos (𝑢/2) − 6𝑢 sin (3𝑢/4) sec (𝑢/4) + 12)

96𝑢2

=
1

120
+
𝑢
2

3024
+
13𝑢
4

1451520
+
47𝑢
6

212889600
+
452681𝑢

8

83691159552000
+
269639𝑢

10

2008587829248000
+ ⋅ ⋅ ⋅ ,

(23)
𝛼
󸀠

V,0 = −1,

𝛼
󸀠

V,1 = 1,

𝛽
󸀠

V,0 =
csc3 (𝑢/4) sec (𝑢/4) ((𝑢2 + 8) sin (𝑢/2) − 4𝑢 + 8 sin (𝑢) − 8𝑢 cos (𝑢/2))

64𝑢2

=
13

480
+
17𝑢
2

32256
+
67𝑢
4

6451200
+
1549𝑢

6

6812467200
+
1205803𝑢

8

223176425472000
+
9739𝑢

10

72873934848000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

V,V = −
((𝑢
2
+ 24) sin (𝑢/2) − 12𝑢) (3 cos (𝑢/2) + 2) csc3 (𝑢/4) sec (𝑢/4)

96𝑢2

=
7

144
−
109𝑢
2

80640
−
139𝑢
4

5806080
−
4951𝑢

6

10218700800
−
246931𝑢

8

22317642547200
−
4329211𝑢

10

16068702633984000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

V,1 =
csc4 (𝑢/4) (𝑢2 cos (𝑢/2) − (𝑢2 + 18) cos (𝑢) − 18𝑢 sin (𝑢/2) + 18)

48𝑢2

= −
1

10
+
𝑢
2

1120
+
23𝑢
4

2419200
+
19𝑢
6

212889600
+
7213𝑢

8

9299017728000
+
4289𝑢

10

669529276416000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

V,𝜖 = −
((𝑢
2
+ 24) sin (𝑢/2) − 12𝑢) (cos (𝑢/2) + 2) csc3 (𝑢/4) sec (𝑢/4)

96𝑢2

=
7

240
+
13𝑢
2

80640
+
109𝑢
4

9676800
+
83𝑢
6

227082240
+
1119247𝑢

8

111588212736000
+
1397321𝑢

10

5356234211328000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

V,2 =
csc2 (𝑢/4) (𝑢2 − 12𝑢 csc (𝑢/2) + 24)

96𝑢2

= −
7

1440
−
37𝑢
2

161280
−
419𝑢
4

58060800
−
577𝑢
6

2919628800
−
577𝑢
6

2919628800
−
1148099𝑢

8

223176425472000
−
169051𝑢

10

1285496210718720
+ ⋅ ⋅ ⋅ ,

(24)

𝛼
󸀠

1,0
= −1,

𝛼
󸀠

1,1
= 1,

𝛽
󸀠

1,0
= −

csc4 (𝑢/4) sec (𝑢/4) (2𝑢2 cos (3𝑢/4) + (𝑢2 − 6) cos (𝑢/4) + 6 (𝑢 sin (𝑢/4) + cos (5𝑢/4)))
96𝑢2

=
1

72
−
𝑢
2

30240
−
𝑢
4

172800
−
61𝑢
6

319334400
−
215521𝑢

8

41845579776000
−
1769𝑢

10

13390585528320
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

1,V =
csc4 (𝑢/4) sec (𝑢/4) (𝑢2 cos (5𝑢/4) + (5𝑢2 − 12) cos (𝑢/4) + 6𝑢 sin (𝑢/4) + 3 cos (3𝑢/4) + 9 cos (5𝑢/4))

48𝑢2

=
13

45
−
𝑢
2

15120
+
41𝑢
4

3628800
+
5𝑢
6

12773376
+
17569𝑢

8

1673823191040
+
267983𝑢

10

1004293914624000
+ ⋅ ⋅ ⋅ ,
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𝛽
󸀠

1,1
=
(−10𝑢

2 cos (𝑢/2) + (𝑢2 − 18) cos (𝑢) + 18) csc4 (𝑢/4)
48𝑢2

=
13

60
+
𝑢
2

2520
+
𝑢
4

1209600
−
𝑢
6

35481600
−
167𝑢
8

284663808000
−
2633𝑢

10

334764638208000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

1,𝜖
=
csc4 (𝑢/4) sec (𝑢/4) ((5𝑢2 − 12) cos (𝑢/4) + (𝑢2 + 9) cos (3𝑢/4) + 3 (cos (5𝑢/4) − 2𝑢 sin (𝑢/4)))

48𝑢2

= −
1

45
−
𝑢
2

2160
−
𝑢
4

80640
−
113𝑢
6

319334400
−
406493𝑢

8

41845579776000
−
85817𝑢

10

334764638208000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

1,2
= −

csc4 (𝑢/4) sec (𝑢/4) ((𝑢2 − 2) cos (𝑢/4) + 2 (cos (3𝑢/4) − 𝑢 sin (𝑢/4)))
32𝑢2

=
1

360
+
𝑢
2

6048
+
11𝑢
4

1814400
+
29𝑢
6

159667200
+
103669𝑢

8

20922789888000
+
5911𝑢

10

45649723392000
+ ⋅ ⋅ ⋅ ,

(25)
𝛼
󸀠

𝜖,0
= −1,

𝛼
󸀠

𝜖,1
= 1,

𝛽
󸀠

𝜖,0
= −

csc4 (𝑢/4) sec (𝑢/4) (7𝑢2 cos (3𝑢/4) + (17𝑢2 − 24) cos (𝑢/4) + 24 (cos (5𝑢/4) − 𝑢 sin (𝑢/4)))
384𝑢2

=
31

1440
+
5𝑢
2

13824
+
29𝑢
4

3870720
+
3847𝑢

6

20437401600
+
3313369𝑢

8

669529276416000
+
28177𝑢

10

218621804544000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

𝜖,V

=
csc4 (𝑢/4) sec (𝑢/4) (7𝑢2 cos (5𝑢/4) + 12 (7𝑢2 − 8) cos (𝑢/4) + (5𝑢2 + 24) cos (3𝑢/4) − 72𝑢 sin (𝑢/4) − 24𝑢 sin (3𝑢/4) + 72 cos (5𝑢/4))

384𝑢2

=
19

80
−
167𝑢
2

241920
−
359𝑢
4

29030400
−
1117𝑢

6

3406233600
−
47629𝑢

8

5150225203200
−
4023451𝑢

10

16068702633984000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

𝜖,1
=
csc4 (𝑢/4) (−7𝑢2 cos (𝑢/2) + (𝑢2 − 6) cos (𝑢) + 6𝑢 sin (𝑢/2) + 6)

16𝑢2

=
8

15
−
𝑢
2

10080
−
19𝑢
4

2419200
−
31𝑢
6

212889600
−
54371𝑢

8

27897053184000
−
14821𝑢

10

669529276416000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

𝜖,𝜖

=
csc4 (𝑢/4) sec (𝑢/4) (5𝑢2 cos (5𝑢/4) + 12 (7𝑢2 − 8) cos (𝑢/4) + (7𝑢2 + 72) cos (3𝑢/4) − 24𝑢 sin (𝑢/4) − 72𝑢 sin (3𝑢/4) + 24 cos (5𝑢/4))

384𝑢2

=
157

720
+
199𝑢
2

241920
+
221𝑢
4

9676800
+
97𝑢
6

185794560
+
3965821𝑢

8

334764638208000
+
499747𝑢

10

1785411403776000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

𝜖,2
= −

csc4 (𝑢/4) (7𝑢2 + (5𝑢2 + 24) cos (𝑢/2) − 12𝑢 sin (3𝑢/4) sec (𝑢/4) − 24)
192𝑢2

= −
1

96
−
191𝑢
2

483840
−
587𝑢
4

58060800
−
1613𝑢

6

6812467200
−
3748337𝑢

8

669529276416000
−
79621𝑢

10

584316459417600
+ ⋅ ⋅ ⋅ ,

(26)

𝛼
󸀠

2,0
= −1,

𝛼
󸀠

2,1
= 1,

𝛽
󸀠

2,0
= −
(2 cos (𝑢/2) + 1) csc4 (𝑢/4) sec (𝑢/4) ((𝑢2 − 2) cos (𝑢/4) + 2 (cos (3𝑢/4) − 𝑢 sin (𝑢/4)))

32𝑢2

=
1

120
−
𝑢
2

5040
−
𝑢
4

115200
−
7𝑢
6

30412800
−
156349𝑢

8

27897053184000
−
6109𝑢

10

44635285094400
+ ⋅ ⋅ ⋅ ,
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𝛽
󸀠

2,V =
csc4 (𝑢/4) sec (𝑢/4) ((26𝑢2 − 24) cos (𝑢/4) + (7𝑢2 + 6) cos (3𝑢/4) + 3 ((𝑢2 + 6) cos (5𝑢/4) − 2𝑢 (3 sin (3𝑢/4) + sin (5𝑢/4))))

96𝑢2

=
14

45
−
𝑢
2

1260
+
19𝑢
4

1814400
+
71𝑢
6

159667200
+
2291𝑢

8

199264665600
+
12767𝑢

10

45649723392000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

2,1
= −

csc4 (𝑢/4) (26𝑢2 cos (𝑢/2) + (𝑢2 + 18) cos (𝑢) − 18 (𝑢 sin (𝑢) + 1))
48𝑢2

=
7

20
+
𝑢
2

280
+
𝑢
4

48384
+
𝑢
6

21288960
−
4021𝑢

8

4649508864000
−
5969𝑢

10

334764638208000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

2,𝜖

=
csc4 (𝑢/4) sec (𝑢/4) (7𝑢2 cos (5𝑢/4) + (26𝑢2 − 24) cos (𝑢/4) + 3 (𝑢2 + 6) cos (3𝑢/4) − 6𝑢 sin (3𝑢/4) − 18𝑢 sin (5𝑢/4) + 6 cos (5𝑢/4))

96𝑢2

=
2

3
−
𝑢
2

252
−
23𝑢
4

604800
−
𝑢
6

1971200
−
72143𝑢

8

6974263296000
−
6119𝑢

10

23911759872000
+ ⋅ ⋅ ⋅ ,

𝛽
󸀠

2,2
= −

csc4 (𝑢/4) (−5𝑢2 + 2 (7𝑢2 + 6) cos (𝑢/2) − 6𝑢 sin (5𝑢/4) sec (𝑢/4) − 12)
96𝑢2

=
59

360
+
𝑢
2

720
+
113𝑢
4

7257600
+
157𝑢
6

638668800
+
148307𝑢

8

27897053184000
+
262967𝑢

10

2008587829248000
+ ⋅ ⋅ ⋅ .

(27)

Remark 3. We note that the Taylor series expansions in
(20) through (27) must be used when 𝑢 → 0 because
the corresponding trigonometric coefficients given in these
equations are vulnerable to heavy cancelations (see [8]).

2.2. Block Form. In this subsection, the BHT method is for-
mulated from the eight discrete hybrid formulas stated in (2)
and (3). We emphasize that these eight formulas are provided
by the continuous two-step hybrid trigonometrically fitted
method with two off-grid points given by (5) and its first
derivative (6). First, we define the following vectors:
𝑌
𝜇+1

= [𝑦
𝑛+V, 𝑦𝑛+1, 𝑦𝑛+𝜖, 𝑦𝑛+2, ℎ𝑦

󸀠

𝑛+V, ℎ𝑦
󸀠

𝑛+1
, ℎ𝑦
󸀠

𝑛+𝜖
, ℎ𝑦
󸀠

𝑛+2
]
𝑇

,

𝑌
𝜇
= [𝑦
𝑛−𝜖
, 𝑦
𝑛−1
, 𝑦
𝑛−V, 𝑦𝑛, ℎ𝑦

󸀠

𝑛−V, ℎ𝑦
󸀠

𝑛−1
, ℎ𝑦
󸀠

𝑛−𝜖
, ℎ𝑦
󸀠

𝑛
]
𝑇

,

𝐹
𝜇+1

= [𝑓
𝑛+V, 𝑓𝑛+1, 𝑓𝑛+𝜖, 𝑓𝑛+2, ℎ𝑓

󸀠

𝑛+V, ℎ𝑓
󸀠

𝑛+1
, ℎ𝑓
𝑛+𝜖
, ℎ𝑓
󸀠

𝑛+2
]
𝑇

,

𝐹
𝜇
= [𝑓
𝑛−𝜖
, 𝑓
𝑛−1
, 𝑓
𝑛−V, 𝑓𝑛, ℎ𝑓

󸀠

𝑛−V, ℎ𝑓
󸀠

𝑛−1
, ℎ𝑓
󸀠

𝑛−𝜖
, ℎ𝑓
󸀠

𝑛
]
𝑇

,

(28)

where𝜇 = 0, . . . , 𝑁; 𝑛 = 0, . . . , 𝑁.The three discretemethods
whose coefficients are specified by (2) and the five additional
methods in (3) whose coefficients are specified by (20) to (27)
are combined to give the BHTmethod, which is expressed as

𝐴
1
𝑌
𝜇+1
= 𝐴
0
𝑌
𝜇
+ ℎ
2
(𝐵
0
𝐹
𝜇
+ 𝐵
1
𝐹
𝜇+1
) , (29)

where 𝐴
0
, 𝐴
1
, 𝐵
0
, and 𝐵

1
are matrices of dimension eight

whose elements characterize the method and are given by the
coefficients of (2) and (3).

3. Error Analysis and Stability

3.1. Local Truncation Error (LTE). Define the local truncation
error of (29) as

𝐿 [𝑍 (𝑥) ; ℎ] = 𝑍
𝜇+1
− [𝐴𝑍

𝜇
+ ℎ
2
𝐵𝐹
𝜇
+ ℎ
2
𝐶𝐹
𝜇+1
] , (30)

where

𝑍
𝜇+1
= [𝑦 (𝑥

𝑛+V) , 𝑦 (𝑥𝑛+1) , 𝑦 (𝑥𝑛+𝜖) , 𝑦 (𝑥𝑛+2) ,

ℎ𝑦
󸀠
(𝑥
𝑛+V) , ℎ𝑦

󸀠
(𝑥
𝑛+1
) , ℎ𝑦
󸀠
(𝑥
𝑛+𝜖
) , ℎ𝑦
󸀠
(𝑥
𝑛+2
)]
𝑇

,

𝑍
𝜇
= [𝑦 (𝑥

𝑛−𝜖
) , 𝑦 (𝑥

𝑛−1
) , 𝑦 (𝑥

𝑛−V) , 𝑦 (𝑥𝑛) , ℎ𝑦
󸀠
(𝑥
𝑛−𝜖
) ,

ℎ𝑦
󸀠
(𝑥
𝑛−1
) , ℎ𝑦
󸀠
(𝑥
𝑛−V) , ℎ𝑦

󸀠
(𝑥
𝑛
)]
𝑇

,

𝐹
𝜇+1
= [𝑓 (𝑥

𝑛+𝜖
, 𝑦
𝑛+𝜖
) , 𝑓 (𝑥

𝑛+1
, 𝑦
𝑛+1
) , 𝑓 (𝑥

𝑛+V, 𝑦𝑛+V) ,

𝑓 (𝑥
𝑛+2
, 𝑦
𝑛+2
) , ℎ𝑓
󸀠
(𝑥
𝑛+V, 𝑦𝑛+V) , ℎ𝑓

󸀠
(𝑥
𝑛+1
, 𝑦
𝑛+1
) ,

ℎ𝑓
󸀠
(𝑥
𝑛+𝜖
, 𝑦
𝑛+𝜖
) , ℎ𝑓
󸀠
(𝑥
𝑛+2
, 𝑦
𝑛+2
)]
𝑇

,

𝐹
𝜇
= [𝑓 (𝑥

𝑛−𝜖
, 𝑦
𝑛−𝜖
) , 𝑓 (𝑥

𝑛−1
, 𝑦
𝑛−1
) , 𝑓 (𝑥

𝑛−V, 𝑦𝑛−V) ,

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) , ℎ𝑓
󸀠
(𝑥
𝑛−𝜖
, 𝑦
𝑛−𝜖
) , ℎ𝑓
󸀠
(𝑥
𝑛−1
, 𝑦
𝑛−1
) ,

ℎ𝑓
󸀠
(𝑥
𝑛−V, 𝑦𝑛−V) , ℎ𝑓

󸀠
(𝑥
𝑛
, 𝑦
𝑛
)]
𝑇

,

𝐿 [𝑍 (𝑥) ; ℎ] = [𝐿
1
[𝑧 (𝑥) ; ℎ] , 𝐿

2
[𝑧 (𝑥) ; ℎ] , . . . ,

𝐿
8
[𝑧 (𝑥) ; ℎ]]

𝑇 is linear different operator.

(31)
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Suppose that 𝑍(𝑥) is sufficiently differentiable. Then, a
Taylor series expansion of the terms in (30) about the point 𝑥
gives the following expression for local truncation error:

𝐿 [𝑍 (𝑥) ; ℎ] = 𝐶
0
𝑍 (𝑥) + 𝐶

1
ℎ𝑍
󸀠

(𝑥) + ⋅ ⋅ ⋅

+ 𝐶
𝑞
ℎ
𝑞
𝑍
𝑞

(𝑥) + ⋅ ⋅ ⋅ ,

(32)

where 𝐶
𝑖
, 𝑖 = 0, 1, . . ., are constant coefficients (see [16]).

Definition 4. Blockmethod (29) has algebraic order of at least
𝑝 ≥ 1 provided there exists a constant 𝐶

𝑝+2
̸= 0 such that the

local truncation error 𝐸
𝜇
satisfies ‖𝐸

𝜇
‖ = 𝐶
𝑝+2
ℎ
𝑝+2
+𝑂(ℎ

𝑝+3
),

where ‖ ⋅ ‖ is the maximum norm.

Remark 5. (i) The local truncation error constants (𝐶
𝑝+2
)

of (𝑦
𝑛+V, 𝑦𝑛+1, 𝑦𝑛+𝜖, 𝑦𝑛+2, ℎ𝑦

󸀠

𝑛+V, ℎ𝑦
󸀠

𝑛+1
, ℎ𝑦
󸀠

𝑛+𝜖
, ℎ𝑦
󸀠

𝑛+2
)
𝑇 of

block method (29) are given, respectively, by 𝐶
7
=

(−1/61440, −1/5040, 1/61440, 0, −1/5040, 61/645120,

−1/40320, 61/645120, −1/5040)
𝑇, where 𝐶

0
= 𝐶
1
= 𝐶
2
=

𝐶
3
= 𝐶
4
= 𝐶
5
= 𝐶
6
= 0.

(ii) From the local truncation error constant computa-
tion, it follows that method (29) has order 𝑝 of at least five.

3.2. Stability. The linear stability of the BHT is discussed by
applying the method to the test equation 𝑦󸀠󸀠 = −𝜆2𝑦, where 𝜆
is a real constant (see [17]). Letting Υ = 𝜆ℎ, it is easily shown
as in [18] that the application of (29) to the test equation yields

𝑌
𝜇+1
= 𝑀(Υ

2
; 𝑢) 𝑌
𝜇
,

𝑀 (Υ
2
; 𝑢)fl (𝐴

1
− Υ
2
𝐵
1
)
−1

(𝐴
0
+ Υ
2
𝐵
0
) ,

(33)

where the matrix𝑀(Υ2; 𝑢) is the amplification matrix which
determines the stability of the method. In the spirit of [21],
the spectral radius of 𝜌(𝑀(Υ2; 𝑢)) can be obtained from the
characteristics equation

𝜌
2
− 2Γ (Υ

2
; 𝑢) 𝜌 + Θ (Υ

2
; 𝑢) = 0, (34)

where Γ(Υ2; 𝑢) = trace𝑀(Υ2; 𝑢) and Θ(Υ2; 𝑢) =
det𝑀(Υ2; 𝑢) are rational functions.

Definition 6. A region of stability is a region in the 𝑞-𝑢 plane,
throughout which 𝜌(𝑀(Υ2; 𝑢)) ≤ 1 and any closed curve
given by 𝜌(𝑀(Υ2; 𝑢)) = 1 defines the stability boundary of
the method (see [21]). We note that the plot for the stability
region of the BHT method is given in Figure 1.

3.3. Implementation. We emphasize that the main method
and the additional methods specified by (20)–(27) are com-
bined to form block method BHT (29), which is used to
solve (1) without requiring starting values and predictors.
BHT is implemented in a block-by-block fashion using a
Mathematica 10.0 code, enhanced by the feature 𝑁𝑆𝑜𝑙V𝑒[]
for linear problems while nonlinear problems were solved
by Newton’s method enhanced by the feature 𝐹𝑖𝑛𝑑𝑅𝑜𝑜𝑡[]
(see Keiper and Gear [35]). Mathematica can symbolically

0 8020 40 60

−10

−5

0

5

10

Figure 1:The stability region for the BHTplotted in the (𝑞, 𝑢)-plane.

compute derivatives and so the entries of the Jacobian matrix
which involve partial derivatives are automatically generated.
In what follows, we summarize how BHT is applied.

Step 1. Choose 𝑁, ℎ = (𝑏 − 𝑎)/𝑁, and the number of
blocks Γ = 𝑁/2. Using (29), 𝑛 = 0, 𝜇 = 0, the values of
(𝑦
1/2
, 𝑦
1
, 𝑦
3/2
, 𝑦
2
)
𝑇 and (𝑦󸀠

1/2
, 𝑦
󸀠

1
, 𝑦
󸀠

3/2
, 𝑦
󸀠

2
)
𝑇 are simultaneously

obtained over the subinterval [𝑥
0
, 𝑥
2
], as 𝑦

0
and 𝑦󸀠
0
are known

from IVP (1).

Step 2. For 𝑛 = 2, 𝜇 = 1, the values of (𝑦
5/2
, 𝑦
3
, 𝑦
7/2
, 𝑦
4
)
𝑇

and (𝑦󸀠
5/2
, 𝑦
󸀠

3
, 𝑦
󸀠

7/2
, 𝑦
󸀠

4
)
𝑇 are simultaneously obtained over the

subinterval [𝑥
2
, 𝑥
4
], as𝑦
2
and𝑦󸀠
2
are known from the previous

block.

Step 3. The process is continued for 𝑛 = 4, . . . , 𝑁 − 2 and
𝜇 = 2, . . . , Γ to obtain the numerical solution to (1) on the
subintervals [𝑥

0
, 𝑥
2
], [𝑥
2
, 𝑥
4
], . . . , [𝑥

𝑁−2
, 𝑥
𝑁
].

4. Numerical Examples

In this section, numerical experiments are performed using
a code in Mathematica 10.0 to illustrate the accuracy and
efficiency of the method.

Example 1. We consider the following inhomogeneous IVP
by Simos [8]:

𝑦
󸀠󸀠
= −100𝑦 + 99sin (𝑥) ,

𝑦 (0) = 1,

𝑦
󸀠

(0) = 11,

𝑥 ∈ [0, 1000] ,

(35)
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Figure 2: Efficiency curve for Example 1.

Table 1: Results, with 𝜔 = 10, for Example 1.

Our method Simos [8]
𝑁 Err 𝑁 Err
1000 1.9 × 10

−3 1000 1.4 × 10
−1

2000 8.9 × 10
−6 2000 3.5 × 10

−2

4000 4.2 × 10
−8 4000 1.1 × 10

−3

8000 9.7 × 10
−11 8000 8.4 × 10

−5

16000 6.7 × 10
−11 16000 5.5 × 10

−6

32000 4.3 × 10
−13 32000 3.5 × 10

−7

where the analytical solution is given by

Exact: 𝑦 (𝑥) = cos (10𝑥) + sin (10𝑥) + sin (𝑥) . (36)

This example was solved using the order 5 BHT and
the end-point errors (Err = |𝑦(𝑥

𝑁
) − 𝑦
𝑁
|) obtained were

compared to the order 4 exponentially fitted method given
in Simos [8]. In Table 1, it is shown that BHT is more
efficient than the method in Simos [8]. We also compare the
computational efficiency of the two methods in Figure 2 by
considering the FNEs (number of function evaluations) over
𝑁 integration steps for each method. Our method (BHT)
requires fewer number of function evaluations. Hence, for
this example, BHT performs better.

Example 2. We consider the nonlinear Duffing equation
whichwas also solved by Simos [8] and Ixaru and Berghe [31]:

𝑦
󸀠󸀠
+ 𝑦 + 𝑦

3
= 𝐵 cos (Ω𝑥) ,

𝑦 (0) = 𝐶
0
,

𝑦
󸀠

(0) = 0.

(37)

The analytical solution is given by

Exact: 𝑦 (𝑥) = 𝐶
1
cos (Ω𝑥) + 𝐶

2
cos (3Ω𝑥)

+ 𝐶
3
cos (5Ω𝑥) + 𝐶

4
cos (7Ω𝑥) ,

(38)
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Figure 3: Efficiency curves for Example 2.

Table 2: Results, with 𝜔 = 1.01, for Example 2.

Our method Simos [8] Ixaru and Berghe [31]
𝑁 Err 𝑁 Err 𝑁 Err
300 7.7 × 10

−5
300 1.7 × 10

−3
300 1.1 × 10

−3

600 1.7 × 10
−6
600 1.9 × 10

−4
600 5.4 × 10

−5

1200 1.4 × 10
−8
1200 1.4 × 10

−5
1200 1.9 × 10

−6

2400 1.9 × 10
−10
2400 8.7 × 10

−7
2400 6.2 × 10

−8

where Ω = 1.01, 𝐵 = 0.002, 𝐶
0
= 0.200426728069, 𝐶

1
=

0.200179477536, 𝐶
2
= 0.246946143 × 10

−3, 𝐶
3
= 0.304016 ×

10
−6, and 𝐶

4
= 0.374 × 10

−9. We choose 𝜔 = 1.01.

We compare the end-point global errors for our method
with those of Simos [8] and Ixaru and Berghe [31]. We see
from Table 2 that the results produced by our method are
competitive to those given in Simos [8] and Ixaru and Berghe
[31]. Hence our method is more accurate and efficient as
demonstrated in Figure 3.

Example 3. We consider the nonlinear perturbed system on
the range [0, 10], with 𝜀 = 10−3 that was also solved in Fang
et al. [21]:

𝑦
󸀠󸀠

1
+ 25𝑦

1
+ 𝜀 (𝑦

2

1
+ 𝑦
2

2
) = 𝜀𝜑

1
(𝑥) ,

𝑦
1
(0) = 1,

𝑦
󸀠

1
(0) = 0,

𝑦
󸀠󸀠

2
+ 25𝑦

2
+ 𝜀 (𝑦

2

1
+ 𝑦
2

2
) = 𝜀𝜑

2
(𝑥) ,

𝑦
2
(0) = 𝜀,

𝑦
󸀠

2
(0) = 5,

(39)
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Table 3: A comparison of methods for Example 3.

ARKN5(3) TFARKN5(3) BHT
𝑁 (rejected) −log

10
(Err) 𝑁 (rejected) −log

10
(Err) 𝑁 −log

10
(Err)

42 (15) 2.82 29 (6) 2.78 50 3.42
86 (7) 4.96 88 (9) 5.33 100 4.61
260 (5) 7.16 262 (8) 7.85 260 7.52
812 (3) 9.37 811 (4) 10.38 810 10.43

where

𝜑
1
(𝑥) = 1 + 𝜀

2
+ 2𝜀 sin (5𝑥 + 𝑥2) + 2 cos (𝑥2)

+ (25 − 4𝑥
2
) sin (𝑥2) ,

𝜑
2
(𝑥) = 1 + 𝜀

2
+ 2𝜀 sin (5𝑥 + 𝑥2) − 2 sin (𝑥2)

+ (25 − 4𝑥
2
) cos (𝑥2) ,

(40)

and the exact solution is given by 𝑦
1
(𝑥) = cos(5𝑥) + 𝜀sin(𝑥2),

𝑦
2
(𝑥) = sin(5𝑥) + 𝜀cos(𝑥2), representing a periodic motion

of constant frequency with small perturbation of variable
frequency.

This problem was solved using the BHT and the maxi-
mum global errors (Err = Max|𝑦(𝑥) − 𝑦|) obtained were
compared to the variable step-size trigonometrically fitted
Runge-Kutta-Nyströmmethod (TFARKN5(3)) given in Fang
et al. [21] and a Runge-Kutta-Nyström method (ARKN5(3))
which was constructed by Franco [15]. In Table 3, the max-
imum global errors for the three methods are compared. In
general, the TFARKN5(3) and ARKN5(3) are expected to
perform better because of their variable-step implementation
advantage. Nevertheless, the BHT which is implemented in
fixed step-size mode is highly competitive to these methods.

Example 4. We consider the following two-body problem
which was solved by Ozawa [25] on [0, 50𝜋]:

𝑦
󸀠󸀠

1
= −
𝑦
1

𝑟3
,

𝑦
󸀠󸀠

2
= −
𝑦
2

𝑟3
,

𝑟 = √𝑦2
1
+ 𝑦2
2
,

𝑦
1
(0) = 1 − 𝑒,

𝑦
󸀠

1
(0) = 0,

𝑦
2
(0) = 0,

𝑦
󸀠

2
(0) = √

1 + 𝑒

1 − 𝑒
,

(41)

Table 4: Steps and absolute errors, with 𝜔 = 1, for
Example 4 [0, 50𝜋].

Our method FESDIRK4(3) [25] ESDIRK4(3) [25]
Steps Err Steps Err Steps Err
220 3.52 × 10−5 170 2.866 × 10

−1 277 2.153 × 10
0

300 1.13 × 10−6 225 7.846 × 10−3 496 1.494 × 10
−1

400 1.03 × 10−7 381 1.399 × 10−3 884 9.359 × 10
−3

600 3.49 × 10−10 680 1.690 × 10−4 1573 6.200 × 10−4

800 1.14 × 10−11 1207 1.846 × 10−5 2796 4.416 × 10−5

1000 7.68 × 10−13 2144 1.938 × 10−6 4970 3.412 × 10−6

1200 2.8 × 10−14 3806 1.993 × 10−7 8833 2.848 × 10−7

2400 1.02 × 10−13 6762 2.021 × 10−8 15706 2.530 × 10−8
Lo

g 1
0
(E

rr
or

M
ax
)
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Figure 4: Efficiency curve for Example 4.

where 𝑒 (0 ≤ 𝑒 < 1) is an eccentricity. The exact solution of
this problem is

Exact: 𝑦
1
(𝑥) = cos (𝑘) − 𝑒,

𝑦
2
(𝑥) = √1 − 𝑒2 sin (𝑘) ,

(42)

where 𝑘 is the solution of Kepler’s equation 𝑘 = 𝑥 + 𝑒 sin(𝑘).
We choose 𝜔 = 1.

We show in Table 4 that the results obtained using the
BHTmethod are more accurate than the explicit singly diag-
onally implicit Runge-Kutta (ESDIRK) and the functionally
fitted ESDIRK (FESDIRK) methods given in Ozawa [25]. In
Figure 4, we also illustrate the efficiency advantage of the
BHT method over those in Ozawa [25].
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Table 5: Results, with 𝜔 = 1, for Example 5.

Our method Vigo-Aguiar and Ramos [32]
𝑁 Err 𝑁 Err
67 1.14 × 10

−9 67 7.11 × 10
−7

82 3.5 × 10
−10 82 9.26 × 10

−8

97 1.3 × 10
−10 97 87.8 × 10

−9

112 5.5 × 10
−11 112 1.12 × 10

−10

125 2.9 × 10
−11 125 2.71 × 10

−11

4.1. Problems Where 𝑦󸀠 Appears Explicitly

Example 5 (Bessel’s IVP). We consider the Bessel differential
equation that was also solved by Vigo-Aguiar and Ramos [11]:

𝑥
2
𝑦
󸀠󸀠
+ 𝑥𝑦
󸀠
+ (𝑥
2
− 0.25) 𝑦 = 0,

𝑦 (1) = √
2

𝜋
sin 1 ≈ 0.671397071418031,

𝑦
󸀠

(1) =
(2 cos 1 − sin 1)
2𝜋

≈ 0.0954005144474746,

𝑥 ∈ [1, 8] ,

(43)

where the exact (analytical) solution is given by

Exact: 𝑦 (𝑥) = 𝐽
1/2
(𝑥) = √

2

𝜋𝑥
sin (𝑥) . (44)

This problem was chosen to demonstrate the perfor-
mance of our method on the general second-order IVP
with variable coefficients. We compare our results with
the variable-step Falkner method of order eight that was
implemented in predictor-corrector mode by Vigo-Aguiar
and Ramos [32]. The results displayed in Table 5 show that
the BHT method performs better.

Example 6. We consider the harmonic oscillator with fre-
quencyΩ and small perturbation 𝛿 that was solved in Franco
[15] and Guo and Yan [36]:

𝑦
󸀠󸀠
+ 𝛿𝑦
󸀠
+ Ω
2
𝑦 = 0,

𝑦 (0) = 0,

𝑦
󸀠

(0) = −
𝛿

2
,

𝑥 ∈ [0, 1000] ,

(45)

where the analytical solution is given by

Exact: 𝑦 (𝑥) = 𝑒(𝛿/2)𝑥 cos(Ω2 − 𝛿
2

4
) , (46)

where Ω = 1, 𝛿 = 10−6, and 𝛿 = 10−10. The problem was
solved in Guo and Yan [36] using ARKNmethod. In Table 6,
the errors are compared at 𝑥 = 1000. We observed that the
BHT is competitive with the order 5 Runge-Kutta-Nyström
method.

4.2. Hyperbolic PDEs

Example 7. We consider the given Telegraph equation (see
Ding et al. [33]):

𝜕
2
𝑢

𝜕𝑡2
+ 2𝜋
𝜕𝑢

𝜕𝑡
+ 𝜋
2
𝑢

=
𝜕
2
𝑢

𝜕𝑥2
+ 𝜋
2 sin (𝜋𝑥) (sin (𝜋𝑡) + cos (𝜋𝑡))

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1.

(47)

The exact solution is given by 𝑢(𝑥, 𝑦) = sin(𝜋𝑥)sin(𝜋𝑡).

In order to solve this PDE using the BHT, we carry out the
semidiscretization of the spatial variable 𝑥 using the second-
order finite differencemethod to obtain the following second-
order system in the second variable 𝑡:

𝜕
2
𝑢
𝑚

𝜕𝑡2
+ 2𝜋
𝜕𝑢
𝑚

𝜕𝑡
+ 𝜋
2
𝑢
𝑚
−
(𝑢
𝑚+1
− 2𝑢
𝑚
+ 𝑢
𝑚−1
)

(Δ𝑥)
2

= 𝑔
𝑚
, 0 < 𝑡 < 1, 𝑚 = 1, . . . ,𝑀 − 1,

𝑢 (𝑥
𝑚
, 0) = 𝑢

𝑚
,

𝑢
𝑡
(𝑥
𝑚
, 0) = 𝑢

󸀠

𝑚
,

(48)

where Δ𝑥 = (𝑏 − 𝑎)/𝑀, 𝑥
𝑚
= 𝑎 + 𝑚Δ𝑥,𝑚 = 0, 1, . . . ,𝑀, u =

[𝑢
1
(𝑡), . . . , 𝑢

𝑀
(𝑡)]
𝑇, g = [𝑔

1
(𝑡), . . . , 𝑔

𝑚
(𝑡)]
𝑇, 𝑢
𝑚
(𝑡) ≈ 𝑢(𝑥

𝑚
, 𝑡),

and 𝑔
𝑚
(𝑡) ≈ 𝑔(𝑥

𝑚
, 𝑡) = 𝜋

2sin(𝜋𝑥
𝑚
)(sin(𝜋𝑡)+cos(𝜋𝑡)), which

can be written in the form

u󸀠󸀠 = f (𝑡, u, u󸀠) , (49)

subject to the boundary conditions u(𝑡
0
) = u

0
, u󸀠(𝑡
0
) = u󸀠

0
,

where f(𝑡, u, 𝑢󸀠) = Au + g, and A is𝑀 − 1 × 𝑀 − 1, matrix
arising from the semidiscretized system, and g is a vector of
constants.

The boundary conditions are chosen accordingly. This
example was chosen to demonstrate that the BHT can be
used to solve the Telegraph equation. In Table 7, the results
produced by the BHT using Δ𝑡 = 1/100 and space step Δ𝑥 =
1/100 are compared to scheme (3.12) (𝜆

1
= 1/12, and 𝜆

2
=

5/6), time step Δ𝑡 = 1/200, and space step Δ𝑥 = 1/100, given
in Ding et al. [33]. It is obvious from Table 5 that the BHT is
more accurate than the method given in [33]. Moreover, the
errors produced by BHTmethod using Δ𝑡 = 1/100 and space
step Δ𝑥 = 1/100 are given in Figure 5.
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Table 6: Errors at 𝑥 = 1000, for Example 6.

BHT ARKN
ℎ Error (𝛿 = 10−6) Error (𝛿 = 10−10) ℎ Error (𝛿 = 10−6) Error (𝛿 = 10−10)
1 4.12 × 10

−8
1.11 × 10

−11 1/2 9.05 × 10
−8

9.00 × 10
−12

1/2 7.06 × 10
−10

2.19 × 10
−13 1/4 5.43 × 10

−9
7.06 × 10

−13

1/4 1.23 × 10
−11

3.12 × 10
−13 1/8 2.03 × 10

−10
2.87 × 10

−13

1/8 5.23 × 10
−12

5.44 × 10
−12 1/16 7.25 × 10

−12
3.56 × 10

−13

1/16 5.62 × 10
−12

2.94 × 10
−12 1/32 3.45 × 10

−13
5.91 × 10

−13

0.003

0.002

0.001

0.000
0.0

0.5

1.0 0.0

0.5

1.0

x

t

Error

(a) 𝑁 = 𝑀 = 10

0.00003

0.00002

0.00001

0
0.0

0.5

1.0 0.0

0.5

1.0

x

t

Error

(b) 𝑁 = 𝑀 = 100

Figure 5: Absolute errors for Example 7.

Table 7: Results, with 𝜔 = 𝜋, for Example 7.

Our method Ding et al. [33]
𝑥 Err Err
0.2 2.06 × 10

−10
9.62 × 10

−10

0.4 3.33 × 10
−10

1.56 × 10
−9

0.6 3.33 × 10
−10

1.56 × 10
−9

0.8 2.06 × 10
−10

9.62 × 10
−10

Example 8. We consider the wave equation given in Franco
[15]. A problem representing a vibrating string with speed 𝜔
is given by

𝜕
2
𝑢

𝜕𝑡2
− 𝑥 (1 − 𝑥)

𝜕
2
𝑢

𝜕𝑥2
+ (𝜔
2
− 2) 𝑢 = 0

0 < 𝑥 < 1, 0 < 𝑡 ≤ 5,

𝑢 (0, 𝑡) = 0,

𝑢 (1, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑥 (1 − 𝑥) ,

𝑢
𝑡
(𝑥, 0) = 0,

(50)

where the initial and Dirichlet boundary conditions have
been chosen such that the solution is given by 𝑢(𝑥, 𝑡) = 𝑥(1 −
𝑥)cos𝜔𝑡. In order to solve this PDE using the BHT, we carry

out the semidiscretization of the spatial variable 𝑥 using the
second-order finite differencemethod to obtain the following
second-order system in the second variable 𝑡:

𝜕
2
𝑢
𝑚

𝜕𝑡2
− 𝑥
𝑚
(1 − 𝑥

𝑚
) +
(𝑢
𝑚+1
− 2𝑢
𝑚
+ 𝑢
𝑚−1
)

(Δ𝑥)
2

+ (𝜔
2
− 2) 𝑢

𝑚
= 𝑔
𝑚
, 𝑚 = 1, . . . ,𝑀 − 1,

𝑢 (𝑥
𝑚
, 0) = 𝑥

𝑚
(1 − 𝑥

𝑚
) ,

𝑢
𝑡
(𝑥
𝑚
, 0) = 0, 0 < 𝑡 ≤ 5,

(51)

where Δ𝑥 = (𝑏 − 𝑎)/𝑀, 𝑥
𝑚
= 𝑎 + 𝑚Δ𝑥,𝑚 = 0, 1, . . . ,𝑀, u =

[𝑢
1
(𝑡), . . . , 𝑢

𝑀
(𝑡)]
𝑇, g = [𝑔

1
(𝑡), . . . , 𝑔

𝑚
(𝑡)]
𝑇, 𝑢
𝑚
(𝑡) ≈ 𝑢(𝑥

𝑚
, 𝑡),

and 𝑔
𝑚
(𝑡) ≈ 𝑔(𝑥

𝑚
, 𝑡) = 0, which can be written in the form

u󸀠󸀠 = f (𝑡, u) , (52)

subject to the boundary conditions u(𝑡
0
) = u

0
, u󸀠(𝑡
0
) = u󸀠

0
,

where f(𝑡, u) = Au + g, and A is 𝑀 − 1 × 𝑀 − 1, matrix
arising from the semidiscretized system, and g is a vector of
constants.

In Figure 6, we give the errors produced by the BHT
which show that the method performs very well on this
problem.
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Figure 6: Absolute errors for Example 8.

Table 8: Comparison of methods for Example 9.

𝑁 Method in [34] Our method 𝑁 RK4
10 1.12 × 10

−4
2.23 × 10

−4 250 Overflow
20 1.69 × 10

−6
3.36 × 10

−6 500 Overflow
40 1.22 × 10

−8
2.44 × 10

−8 1000 Overflow
80 9.79 × 10

−11
1.96 × 10

−10 2000 Overflow
160 1.06 × 10

−12
2.13 × 10

−12 4000 1.20 × 10
−13

320 1.54 × 10
−14

2.48 × 10
−14 8000 7.94 × 10

−15

Example 9. We consider the following mildly stiff IVP which
was also solved in [34]:

𝑦
󸀠󸀠
= −1001𝑦

󸀠
− 1000𝑦,

𝑦 (0) = 1,

𝑦
󸀠

(0) = −1,

𝑥 ∈ [0, 10]

Exact: 𝑦 (𝑥) = 𝑒−𝑥.

(53)

This example is given to show that the method still
performs well on problems with nontrigonometric solutions.
The problem was solved using the BHT and the results
obtained were compared with the polynomial based method
given in [34] and the standard fourth-order Runge-Kutta
method (RK4). The results given in Table 8 show that the
BHT is competitive with themethod in [34] and is superior to
RK4which are designed for problems with nontrigonometric
solutions.

5. Conclusion

We have presented a BHT method whose coefficients are
functions of the frequency and the step-size for directly
solving general second-order initial value problems (IVPs),

including systems arising from the semidiscretization of
hyperbolic PDEs, such as the Telegraph equation. The BHT
is implemented in a block-by-block fashion; in this way,
the method does not suffer from the disadvantages of
requiring starting values and predictors which are inherent
in predictor-corrector methods. We have also shown that
the BHT method has a reasonably wide stability region and
enjoys accuracy and efficiency advantages when compared to
existing methods in the literature. Our future research will
be to incorporate a technique for accurately estimating the
frequency as suggested in [37, 38] as well as implementing
the method in a variable-step mode.
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