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This paper presents a method that provides necessary and sufficient conditions for the existence of solutions of nth order linear
boundary value problems.The method is based on the recursive application of a linear integral operator to some functions and the
comparison of the result with these same functions.The recursive comparison yields sequences of bounds of extremes that converge
to the exact values of the extremes of the BVP for which a solution exists.

1. Introduction

Let 𝐼 be a compact interval in R and let us consider the
differential operator 𝐿 : 𝐶

𝑛

(𝐼) → 𝐶(𝐼) defined by

𝐿𝑦 = 𝑎
𝑛
(𝑥) 𝑦
(𝑛)

(𝑥) + 𝑎
𝑛−1

(𝑥) 𝑦
(𝑛−1)

(𝑥) + ⋅ ⋅ ⋅

+ 𝑎
0
(𝑥) 𝑦 (𝑥) , 𝑥 ∈ 𝐼,

(1)

where 𝑎
𝑖
(𝑥) ∈ 𝐶(𝐼), 0 ≤ 𝑖 ≤ 𝑛. Let 𝑘 ∈ N be such that 1 ≤ 𝑘 ≤

𝑛 and let us define the sets Ω
𝑘

∈ N𝑘 and Ω
𝑛−𝑘

∈ N𝑛−𝑘 as

Ω
𝑘

= {(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
) , 0 ≤ 𝛼

𝑖
≤ 𝑛 − 1} ,

Ω
𝑛−𝑘

= {(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛−𝑘
) , 0 ≤ 𝛼

𝑖
≤ 𝑛 − 1} .

(2)

The purpose of this paper is to investigate the existence of
solutions of the 𝑛th order boundary value problem

𝐿𝑦 =

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ ]𝑎, 𝑏[ , (3)

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0, (4)

where [𝑎, 𝑏] ⊂ 𝐼, 𝜇 < 𝑛, and 𝑐
𝑖
(𝑥) ∈ 𝐶[𝑎, 𝑏] for 0 ≤ 𝑖 ≤ 𝜇

are functions with properties to be determined and 𝛼 ∈ Ω
𝑘,

𝛽 ∈ Ω
𝑛−𝑘, and 𝑇(𝛼, 𝛽, 𝑎, 𝑏)𝑦 = 0 are boundary conditions

defined by

𝑦
(𝛼𝑖)

(𝑎) = 0, (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
) ∈ Ω
𝑘

,

𝑦
(𝛽𝑖)

(𝑏) = 0, (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛−𝑘
) ∈ Ω
𝑛−𝑘

.

(5)

In particular, we will provide necessary and sufficient condi-
tions for the existence of solutions of (3) and (4), conditions
that will be expressed as integral inequalities depending on
the extremes 𝑎 and 𝑏 (i.e., Lyapunov-like inequalities, for the
case of necessary conditions). Note that (4) covers conjugate
boundary conditions (taking 𝛼 = (0, 1, . . . , 𝑘) and 𝛽 =

(0, 1, . . . , 𝑛 − 𝑘)), focal boundary conditions (taking 𝛼 =

(0, 1, . . . , 𝑘 − 1) and 𝛽 = (𝑘, 𝑘 + 1, . . . , 𝑛 − 1) for right focality
and 𝛼 = (𝑛−𝑘, 𝑛−𝑘+1, . . . , 𝑛−1) and 𝛽 = (0, 1, . . . , 𝑛−𝑘−1)

for left focality, according to Muldowney’s definition), and a
range of many other boundary conditions in between.

The procedure used for that will be an extension of
the approach presented in [1] for the second-order linear
differential equation. To this end, wewill apply recursively the
operator 𝑀 : 𝐶

𝜇

[𝑎, 𝑏] → 𝐶
𝑛

[𝑎, 𝑏] defined by

𝑀𝑓 = ∫

𝑏

𝑎

𝐺 (𝑥, 𝑡)

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) 𝑓
(𝑖)

(𝑡) 𝑑𝑡, (6)
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where 𝐺(𝑥, 𝑡) is the Green function of the problem

𝐿𝑦 = 𝑔 (𝑥) ,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(7)

provided that the corresponding homogeneous equation

𝐿𝑦 = 0,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0

(8)

has only the trivial solution, assumption that we will keep in
the rest of the paper.

We will show that the comparison of this operator with
the functions to which it is applied provides lower and upper
bounds for the extremes 𝑎 and 𝑏 which allow (3) and (4) to
have a nontrivial solution and which converge to the values
of these extremes, 𝑎 and 𝑏, as the recursivity index grows. It is
important to remark that the method is not restricted to self-
adjoint problems but it can be applied to any kind of problem
of the form (3) and (4), as long as the boundary conditions
𝑇(𝛼, 𝛽, 𝑎, 𝑏)𝑦 and the functions 𝑐

𝑖
(𝑥) satisfy certain general

hypotheses. Examples of this kind of problems appear in
the study of the deflections of beams, both straight ones
with nonhomogeneous cross-sections in free vibration, for
which the fourth-order linear Euler-Bernoulli equation is
applicable, and curved ones with different shapes. Some of
these and other applications can be found in [2, Chapter IV].

The study of the existence of solutions of (3) and (4) has
been historically linked to the analysis of the distribution of
zeroes of equations of 𝑛th order, which dates from the work
of Frobenius on Wronskians of systems of solutions in the
19th century [3]. In 1922, Pólya [4] introduced the concept
of disconjugacy in an interval, defined as the absence of a
solution of an 𝑛th order differential equation with at least
𝑛 zeroes, counting multiplicities, in that interval. He also
obtained alternative representations of 𝑛th order disconjugate
equations. Later, Sherman [5] extended the concept of dis-
focality to the 𝑛th order equation, showing the relationship
between focal and conjugate points, and Muldowney [6]
characterized disfocal equations in a similar manner as Pólya
had done for disconjugate equations. Levin [7, 8] and Nehari
[9] provided the first Sturmian comparison and separation
theorems for this type of equations and presented the main
properties of the conjugate and focal points. Further research
on this area was continued by Ahmad and Lazer [10, 11], Elias
[12–14], and other authors. Some of these results can be found
in the excellent monography of Coppel [15] on the topic.

One of the most successful techniques introduced in
this analysis has been the combination of the modern cone
theory with the positivity and monotonicity characteristics
displayed by many of the Green functions resulting from (7).
In the books of Krasnosel’skii [16] and Deimling [17], one
can find the grounds for this approach, which originated in
Krasnosel’skii and Krein and Rutman’s works (see [16, 18])
and was later pursued by Gentry and Travis [19], Schmitt
and Smith [20], Keener and Travis [21], Tomastik [22, 23],
Kreith [24], Hankerson and Peterson [25], Hankerson and
Henderson [26], Eloe [27–32], and Diaz [33] and more

recently by Graef [34, 35], Zhang et al. [36], Zhang [37], Sun
et al. [38], or Hao et al. [39], among many others. Most of
these papers are focused on obtaining comparison theorems
for different problems and different boundary conditions,
whereas some of them deal with the existence of solutions
for specific boundary value problems. This is the case, for
instance, of [21, 31, 35, 37, 38] or [39]. This paper shares that
objective combining some ideas of Keener and Travis with
the approach of [1] in order to yield an iterative sequence of
necessary and sufficient conditions in integral form, each one
more precise than the previous one, and setting a framework
that allows covering a range of problems much wider than
the ones originally assessed in [1, 21]. Let us also remark that
although the iteration of operators has been used in several
papers to establish the existence of solutions, it does not seem
to have been applied as in this paper to determine which
extremes 𝑎 and 𝑏 of a boundary value problem allow exactly
the existence of solutions in the corresponding interval.

In terms of nomenclature, we will use the notation 𝑀 to
name the operator defined in (6), 𝑀𝑓 or 𝑀{𝑓} to name the
function with domain [𝑎, 𝑏] resulting from the application of
𝑀 to𝑓(𝑥) ∈ 𝐶

𝜇

[𝑎, 𝑏],𝑀𝑓(𝑥) or𝑀{𝑓}(𝑥) to name the value of
the function𝑀𝑓 at the point 𝑥, and𝑀

𝑎𝑏
to name the operator

𝑀 considered as a function of the extremes 𝑎, 𝑏.
The organization of the paper is as follows. Section 2

will use the cone theory to assess the main properties of the
operator𝑀 anddevelop a genericmethod to obtain necessary
and sufficient conditions for problem (3) and (4) to have a
nontrivial solution. Section 3will apply themethod presented
in Section 2 to a broad problem of the type (3) and (4) studied
by Eloe and Henderson in [30], yielding concrete necessary
and sufficient conditions in integral forms. Section 4 will
apply the results of Section 3 to several examples. Finally
Section 5 will discuss the significance of the results of
previous sections as well as their limitations.

2. The Application of the Cone Theory to
the Operator 𝑀

The purpose of this section will be to set up the theoretical
framework for the determination of the existence of solutions
of general boundary value problem (3) and (4) based on the
application of the cone theory to the operator 𝑀 defined in
(6). As a first step, we will make the obvious observation that
(3) and (4) can have a solution if and only if there is 𝑦(𝑥) ∈

𝐶
𝑛

[𝑎, 𝑏] such that

𝑀𝑦(𝑥) = 𝑦 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (9)

which is equivalent to the problem of finding an eigenfunc-
tion of the problem

𝑀𝑢 (𝑥) = 𝜆𝑢 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (10)

such that 𝜆 = 1. We will denote the spectral radius of
𝑀 by 𝑟(𝑀) (in other words, 𝑟(𝑀) is the supremum of the
spectrum of 𝑀). As a lot of literature shows, eigenvalue
problem (10) admits an attack based on Krasnosel’skii cone
theory if we manage to find a Banach space of functions
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defined on [𝑎, 𝑏] and a cone inside for which the operator
𝑀 satisfies certain positivity properties. In order to make this
paper self-contained, let us recall that, given aBanach space𝐵,
a cone𝑃 ⊂ 𝐵 is a nonempty closed set defined by the following
conditions:

(1) If 𝑢, V ∈ 𝑃, then 𝑐𝑢 + 𝑑V ∈ 𝑃 for any real numbers
𝑐, 𝑑 ≥ 0.

(2) If 𝑢 ∈ 𝑃 and −𝑢 ∈ 𝑃, then 𝑢 = 0.

Wewill denote the interior of the cone𝑃 by𝑃
0, andwewill say

that the cone𝑃 is reproducing if any𝑦 ∈ 𝐵 can be expressed as
𝑦 = 𝑢−Vwith𝑢, V ∈ 𝑃. Note that the function𝑓(𝑥) ≡ 0, where
𝑥 ∈ [𝑎, 𝑏] belongs to both the Banach space 𝐵 (whatever this
is) and the cone 𝑃.

One of the advantages of the existence of a cone is that it
allows defining a partial ordering relationship in the Banach
space 𝐵 by setting 𝑢 ≤ V if and only if V − 𝑢 ∈ 𝑃 (it is
straightforward to prove that this relationship satisfies the
criteria for a partial ordering). Accordingly, we will say that
the operator 𝑀 is 𝑢

0
-positive if there exists 𝑢

0
∈ 𝑃 such that

for any V ∈ 𝑃 \ {0} one can find constants 𝛿
1
and 𝛿
2
such that

𝛿
1
𝑢
0

≤ V ≤ 𝛿
2
𝑢
0
(note that the constants 𝛿

1
and 𝛿

2
do not

need to be the same for all V). We will also write 𝑢 > V when
𝑢 − V ∈ 𝑃

0. With this in mind, we can start presenting the
main results of this section.

Lemma 1. 𝑟(𝑀
𝑎𝑏

) is continuous with 𝑎 and 𝑏.

Proof. Let us consider a fixed interval [𝐴, 𝐵] ⊂ 𝐼 such that
[𝑎, 𝑏] ⊂ [𝐴, 𝐵] and the associated Banach space 𝐶

𝜇

[𝐴, 𝐵],
together with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

= max{sup{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, 𝑥 ∈ [𝐴, 𝐵]} , 0 ≤ 𝑙 ≤ 𝜇} .

(11)

We will extend the definition of𝑀
𝑎𝑏
given in (6) onto the

full interval [𝐴, 𝐵] as follows:

𝑀
∗

𝑎𝑏
𝑓 =

{{{{{{{{

{{{{{{{{

{

𝜇

∑

𝑖=0

𝜕
𝑖

𝑀
𝑎𝑏

𝑓 (𝑎)

𝜕𝑥𝑖

(𝑥 − 𝑎)
𝑖

𝑖!
, 𝑥 ∈ [𝐴, 𝑎] ;

𝑀
𝑎𝑏

𝑓 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] ;

𝜇

∑

𝑖=0

𝜕
𝑖

𝑀
𝑎𝑏

𝑓 (𝑏)

𝜕𝑥𝑖

(𝑥 − 𝑏)
𝑖

𝑖!
, 𝑥 ∈ [𝑏, 𝐵] .

(12)

From (12) it is immediate to show that 𝑀∗
𝑎𝑏

𝑓 ∈ 𝐶
𝜇

[𝐴, 𝐵].
Next, following [40, Theorem 2.5], the mapping (𝑎, 𝑏) →

𝑟(𝑀
∗

𝑎𝑏
) will turn out to be continuous if we manage to show

that 𝑀
∗

𝑎𝑏
is compact, bounded, and linear and the mappings

𝑎 → 𝑀
∗

𝑎𝑏
and 𝑏 → 𝑀

∗

𝑎𝑏
are continuous on the uniform

operator topology.
The compactness of 𝑀

∗

𝑎𝑏
can be proven using a typical

Arzela-Ascoli argument and the linearity is evident by simple
inspection of (6) and (12).The boundedness can also be easily
proven from (11) and (12), taking in consideration that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

⋅ max{sup{∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑗

𝐺
𝑎,𝑏

(𝑥, 𝑡)

𝜕𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏]} ,

0 ≤ 𝑗 ≤ 𝜇}max{1,

𝜇

∑

𝑖=𝑙

(𝑎 − 𝐴)
𝑖−𝑙

(𝑖 − 𝑙)!
,

𝜇

∑

𝑖=𝑙

(𝐵 − 𝑏)
𝑖−𝑙

(𝑖 − 𝑙)!
} ,

(13)

for 𝑥 ∈ [𝐴, 𝐵] and 0 ≤ 𝑙 ≤ 𝜇 < 𝑛.
As for the continuity of 𝑀

∗

𝑎𝑏
with the extremes, let us

focus first on investigating the continuity of 𝐺
𝑎𝑏

(𝑥, 𝑡) with 𝑎.
Accordingly, let us recall that, following [15, Chapter 3], if we
denote by𝑦

𝑗
(𝑥) the solution of𝐿𝑦 = 0 in [𝐴, 𝐵]which satisfies

the initial conditions

𝑦
(𝑖−1)

𝑗
(𝑎) = 𝛿

𝑖𝑗
(14)

for 1 ≤ 𝑗 ≤ 𝑛, then the Green function of problem (7) is
defined by

𝐺 (𝑥, 𝑡) =

{

{

{

𝛾
1
(𝑡) 𝑦
1
(𝑥) + 𝛾

2
(𝑡) 𝑦
2
(𝑥) + ⋅ ⋅ ⋅ + 𝛾

𝑛
(𝑡) 𝑦
𝑛
(𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏;

𝜂
1
(𝑡) 𝑦
1
(𝑥) + 𝜂

2
(𝑡) 𝑦
2
(𝑥) + ⋅ ⋅ ⋅ + 𝜂

𝑛
(𝑡) 𝑦
𝑛
(𝑥) , 𝑎 ≤ 𝑡 < 𝑥 ≤ 𝑏,

(15)

with 𝛾
𝑗
(𝑡), 𝜂
𝑗
(𝑡) being continuous on [𝑎, 𝑏] such that 𝐺(𝑥, 𝑡)

satisfies (on 𝑥) the boundary conditions 𝑇(𝛼, 𝛽, 𝑎, 𝑏)𝐺 = 0

and the continuity conditions (on 𝑡)

𝑛

∑

𝑗=1

𝛾
𝑗
(𝑡) 𝑦
(𝑙)

𝑗
(𝑡) =

𝑛

∑

𝑗=1

𝜂
𝑗
(𝑡) 𝑦
(𝑙)

𝑗
(𝑡) ,

0 ≤ 𝑙 ≤ 𝑛 − 2, 𝑡 ∈ [𝑎, 𝑏] ,

𝑛

∑

𝑗=1

(𝜂
𝑗
(𝑡) 𝑦
(𝑛−1)

𝑗
(𝑡) − 𝛾

𝑗
(𝑡) 𝑦
(𝑛−1)

𝑗
(𝑡)) = 1,

𝑡 ∈ [𝑎, 𝑏] .

(16)

The fact that 𝑦(𝑖−1)
𝑗

(𝑥) is continuous with 𝑎 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is
a consequence of [41, Theorem V.2.1]. Accordingly, setting

𝜒
𝑗
(𝑡) = 𝜂

𝑗
(𝑡) − 𝛾

𝑗
(𝑡) , 1 ≤ 𝑗 ≤ 𝑛, (17)
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from (16) one has that 𝜒(𝑡) = {𝜒
𝑗
(𝑡), 1 ≤ 𝑗 ≤ 𝑛} ∈ R𝑛×1 is the

solution of a system of equations of the form 𝑌(𝑡)𝜒(𝑡) = 𝐵,
where

𝐵 = (0, 0, . . . , 0, 1)
𝑡

∈ R
𝑛×1 (18)

and 𝑌(𝑡) ∈ R𝑛×𝑛 is defined by

(𝑌 (𝑡))
𝑖𝑗

= (𝑦
(𝑖−1)

𝑗
(𝑡)) . (19)

The solution of such a system is 𝜒(𝑡) = 𝑌
−1

(𝑡)𝐵 which,
given that the components of Y(𝑡) are continuous with 𝑎

and det𝑌(𝑡) = 1 (it is the Wronskian of the solutions
of 𝐿𝑦 = 0 satisfying (14)), by Cramer’s rule implies the
continuity of all 𝜒

𝑗
(𝑡) with 𝑎. Replacing the obtained 𝜒

𝑗
(𝑡)

in (17) and applying the resulting identities to (15), together
with the boundary conditions 𝑇(𝛼, 𝛽, 𝑎, 𝑏)𝐺 = 0, one gets
a system of equations for the unknown 𝛾

𝑗
(𝑡) which has all

known terms continuous on 𝑎 and whose associated matrix
has a nonzero determinant (if the determinant was zero,
setting 𝜂

𝑗
(𝑡) = 𝛾

𝑗
(𝑡) for 1 ≤ 𝑗 ≤ 𝑛 in (15) and applying

the boundary conditions (4), one would obtain a nontrivial
𝐺(𝑥, 𝑡) ∈ 𝐶

𝑛

[𝑎, 𝑏] which would be a solution of (8) on the
variable𝑥, contradicting the hypothesis). As a result, applying
again Cramer’s rule, one has that 𝛾

𝑗
(𝑡) and 𝜂

𝑗
(𝑡) are also

continuous on 𝑎 and therefore, from (15),𝐺(𝑥, 𝑡)must be also
continuous with 𝑎. This assertion is also valid for the partial
derivatives 𝜕𝐺

𝑙

𝑎𝑏
(𝑥, 𝑡)/𝜕𝑥

𝑙 up to 𝑙 = 𝑛 − 1, since the functions
𝑦
𝑗
(𝑡) and their derivatives up to (𝑛 − 1)th order were shown

to be continuous on 𝑎 before. Repeating the argument with 𝑏,
one gets a similar result.

Once continuity of 𝐺
𝑎𝑏

(𝑥, 𝑡) with 𝑎 and 𝑏 has been
confirmed, we will study the continuity of𝑀∗ with 𝑎. To this
end, let us pick 𝜖 > 0 and let us divide the interval [𝐴, 𝐵] in
the subintervals [𝐴, 𝑎], [𝑎, 𝑎+𝛿

1
], [𝑎+𝛿

1
, 𝑏], and [𝑏, 𝐵], where

𝛿
1

> 0 is a value to be determined later. Let us focus first on
the interval [𝑎 + 𝛿

1
, 𝑏]. From (6), (11), and (12) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜕
𝑙

𝑀
∗

𝑎+𝛿1 ,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

⋅ {∫

𝑎+𝛿1

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝐺
𝑎,𝑏

(𝑥, 𝑡)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

+ ∫

𝑥

𝑎+𝛿1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝐺
𝑎,𝑏

(𝑥, 𝑡)

𝜕𝑥𝑙
−

𝜕
𝑙

𝐺
𝑎+𝛿1 ,𝑏

(𝑥, 𝑡)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

+ ∫

𝑏

𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝐺
𝑎,𝑏

(𝑥, 𝑡)

𝜕𝑥𝑙
−

𝜕
𝑙

𝐺
𝑎+𝛿1 ,𝑏

(𝑥, 𝑡)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡} ,

𝑥 ∈ [𝑎 + 𝛿
1
, 𝑏] ,

(20)

for 0 ≤ 𝑙 ≤ 𝜇. As a result, by Heine’s theorem, we can find a
𝛿
2
> 0 such that if 𝛿

1
< 𝛿
2
then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜕
𝑙

𝑀
∗

𝑎+𝛿1 ,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 ,

𝑥 ∈ [𝑎 + 𝛿
1
, 𝑏] , 0 ≤ 𝑙 ≤ 𝜇.

(21)

Next, applying (12) to the first subinterval, it is clear that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜕
𝑙

𝑀
∗

𝑎+𝛿1 ,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝜇

∑

𝑖=𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑖

𝑀
𝑎,𝑏

𝑓 (𝑎)

𝜕𝑥𝑖

(𝑥 − 𝑎)
𝑖−𝑙

(𝑖 − 𝑙)!

−

𝜕
𝑖

𝑀
𝑎+𝛿1 ,𝑏

𝑓 (𝑎 + 𝛿
1
)

𝜕𝑥𝑖

(𝑥 − 𝑎 − 𝛿
1
)
𝑖−𝑙

(𝑖 − 𝑙)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝜇

∑

𝑖=𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑖

𝑀
𝑎,𝑏

𝑓 (𝑎)

𝜕𝑥𝑖
−

𝜕
𝑖

𝑀
𝑎,𝑏

𝑓 (𝑎 + 𝛿
1
)

𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎 − 𝐴)
𝑖−𝑙

(𝑖 − 𝑙)!

+

𝜇

∑

𝑖=𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑖

𝑀
𝑎,𝑏

𝑓 (𝑎 + 𝛿
1
)

𝜕𝑥𝑖
−

𝜕
𝑖

𝑀
𝑎+𝛿1 ,𝑏

𝑓 (𝑎 + 𝛿
1
)

𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅
(𝑎 − 𝐴)

𝑖−𝑙

(𝑖 − 𝑙)!
+

𝜇

∑

𝑖=𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑖

𝑀
𝑎+𝛿1 ,𝑏

𝑓 (𝑎 + 𝛿
1
)

𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑥 − 𝑎)
𝑖−𝑙

(𝑖 − 𝑙)!

−
(𝑥 − 𝑎 − 𝛿

1
)
𝑖−𝑙

(𝑖 − 𝑙)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(22)

for 𝑥 ∈ [𝐴, 𝑎], 0 ≤ 𝑙 ≤ 𝜇.
From the continuity of 𝜕

𝑙

𝑀
𝑎,𝑏

𝑓(𝑥)/𝜕𝑥
𝑙 on 𝑎, (13), (21),

and (22), there must exist 𝛿
3
> 0 such that if 𝛿

1
< 𝛿
3
then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜕
𝑙

𝑀
∗

𝑎+𝛿1 ,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 ,

𝑥 ∈ [𝐴, 𝑎] , 0 ≤ 𝑙 ≤ 𝜇.

(23)

A similar (and simpler) analysis in the fourth interval
shows us that there must exist 𝛿

4
> 0 such that if 𝛿

1
< 𝛿
4

then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜕
𝑙

𝑀
∗

𝑎+𝛿1 ,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 ,

𝑥 ∈ [𝑏, 𝐵] , 0 ≤ 𝑙 ≤ 𝜇.

(24)
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Last but not least, for the second subinterval [𝑎, 𝑎 + 𝛿
1
],

we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜕
𝑙

𝑀
∗

𝑎+𝛿1 ,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

−

𝜇

∑

𝑖=𝑙

𝜕
𝑖

𝑀
𝑎+𝛿1 ,𝑏

𝑓 (𝑎 + 𝛿
1
)

𝜕𝑥𝑖

(𝑥 − 𝑎 − 𝛿
1
)
𝑖−𝑙

(𝑖 − 𝑙)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜇

∑

𝑖=𝑙

𝜕
𝑖

𝑀
𝑎,𝑏

𝑓 (𝑎)

𝜕𝑥𝑖

(𝑥 − 𝑎)
𝑖−𝑙

(𝑖 − 𝑙)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=𝑙

𝜕
𝑖

𝑀
𝑎,𝑏

𝑓 (𝑎)

𝜕𝑥𝑖

(𝑥 − 𝑎)
𝑖−𝑙

(𝑖 − 𝑙)!

−

𝜇

∑

𝑖=𝑙

𝜕
𝑖

𝑀
𝑎+𝛿1 ,𝑏

𝑓 (𝑎 + 𝛿
1
)

𝜕𝑥𝑖

(𝑥 − 𝑎 − 𝛿
1
)
𝑖−𝑙

(𝑖 − 𝑙)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(25)

for 𝑥 ∈ [𝑎, 𝑎 + 𝛿
1
] and 0 ≤ 𝑙 ≤ 𝜇. Taylor’s theorem allows

us to bound the first term of the right hand side of (25)
as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜇

∑

𝑖=𝑙

𝜕
𝑖

𝑀
𝑎,𝑏

𝑓 (𝑎)

𝜕𝑥𝑖

(𝑥 − 𝑎)
𝑖−𝑙

(𝑖 − 𝑙)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜇+1

𝑀
𝑎,𝑏

𝑓 (𝑑 (𝑥))

𝜕𝑥𝜇+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛿
𝜇−𝑙+1

1

(𝜇 − 𝑙 + 1)!

≤

{{{{{{

{{{{{{

{

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝛿
𝜇−𝑙+1

1

(𝜇 − 𝑙 + 1)!
∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜇+1

𝐺
𝑎𝑏

(𝑑 (𝑥) , 𝑡)

𝜕𝑥𝜇+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡, 𝜇 + 1 < 𝑛,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝛿
𝜇−𝑙+1

1

(𝜇 − 𝑙 + 1)!
[

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑑 (𝑥))
󵄨󵄨󵄨󵄨 + ∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜇+1

𝐺
𝑎𝑏

(𝑑 (𝑥) , 𝑡)

𝜕𝑥𝜇+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡] , 𝜇 + 1 = 𝑛,

(26)

with 𝑑(𝑥) ∈ ]𝑎, 𝑎 + 𝛿
1
[. From (25) and (26) and following the

same reasoning used in (22) and (23), it is possible to show
that there exists 𝛿

5
> 0 such that, for 𝛿

1
< 𝛿
5
, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑙

𝑀
∗

𝑎,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙
−

𝜕
𝑙

𝑀
∗

𝑎+𝛿1 ,𝑏
𝑓 (𝑥)

𝜕𝑥𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑥 ∈ [𝑎, 𝑎 + 𝛿
1
] , 0 ≤ 𝑙 ≤ 𝜇.

(27)

After covering all subinterval cases, if we set 𝛿
1

<

min{𝛿
2
, 𝛿
3
, 𝛿
4
, 𝛿
5
}, from (21), (23), (24), and (27), we get to
󵄩󵄩󵄩󵄩󵄩
𝑀
∗

𝑎,𝑏
𝑓 − 𝑀

∗

𝑎+𝛿1 ,𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

< 𝜖
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 , (28)

which implies that 𝑀∗
𝑎𝑏
is continuous with 𝑎 on the uniform

operator topology. This completes the proof that 𝑟(𝑀
∗

𝑎𝑏
) is

continuous with 𝑎. The proof for continuity with 𝑏 follows
exactly the same steps and will not be repeated.

Finally, the eigenfunction 𝑢 of 𝑀
𝑎𝑏

associated with the
eigenvalue 𝑟(𝑀

𝑎𝑏
) and defined on [𝑎, 𝑏] can be extended onto

the interval [𝐴, 𝐵] as we did with 𝑀
∗; that is,

𝑢
∗

=

{{{{{{{{

{{{{{{{{

{

𝜇

∑

𝑖=0

𝑢
(𝑖)

(𝑎)
(𝑥 − 𝑎)

𝑖

𝑖!
, 𝑥 ∈ [𝐴, 𝑎] ,

𝑢 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝜇

∑

𝑖=0

𝑢
(𝑖)

(𝑏)
(𝑥 − 𝑏)

𝑖

𝑖!
, 𝑥 ∈ [𝑏, 𝐵] .

(29)

As a result, one has 𝑀
∗

𝑎𝑏
𝑢
∗

= 𝑟(𝑀
𝑎𝑏

)𝑢
∗, which implies

𝑟(𝑀
𝑎𝑏

) ≤ 𝑟(𝑀
∗

𝑎𝑏
). Given that 𝑟(𝑀

∗

𝑎𝑏
) ≤ 𝑟(𝑀

𝑎𝑏
) as both

operators coincide in the interval [𝑎, 𝑏], one finally gets to
𝑟(𝑀
𝑎𝑏

) = 𝑟(𝑀
∗

𝑎𝑏
), which guarantees the continuity of 𝑟(𝑀

𝑎𝑏
)

with 𝑎 and 𝑏.

Theorem 2. Let us suppose that there is a Banach space 𝐵 and
a reproducing cone 𝑃 therein for which 𝑀(𝑃) ⊂ 𝑃 and 𝑀 is
𝑢
0
-positive. Then eigenvalue problem (10) has a solution 𝑢 ∈ 𝑃

and its associated eigenvalue 𝜆 is positive, simple, and bigger in
absolute value than any other eigenvalue of (10).

In addition, if 𝑟(𝑀) is strictly increasing with the length
of the interval [𝑎, 𝑏] (i.e., if fixed 𝑎, 𝑟(𝑀

𝑎𝑏
) is increasing with 𝑏

andfixed 𝑏, 𝑟(𝑀
𝑎𝑏

) is decreasingwith 𝑎) and lim
𝑏→𝑎

+𝑟(𝑀
𝑎𝑏

) =

lim
𝑎→𝑏

−𝑟(𝑀
𝑎𝑏

) = 0, one has the following:
(i) If there is no nontrivial solution of (3) that satisfies (4)

either at 𝑎, 𝑏 or at any 𝑎
󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then

lim
𝑘→∞

𝑀
𝑘V = 0; (30)

for any V ∈ 𝑃 and for any V, 𝑤 ∈ 𝑃 \ {0}, there exists
𝑘
0
≥ 1 such that

𝑀
𝑘V ≤ 𝑀𝑤, 𝑘 ≥ 𝑘

0
, (31)

and there cannot be any V ∈ 𝑃 \ {0} and any 𝑘
1

≥ 1

such that

𝑀
𝑘1V ≥ V. (32)

(ii) If there is a nontrivial solution of (3) that satisfies (4) at
some 𝑎

󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then, for any V, 𝑤 ∈ 𝑃\{0},
there exists 𝑘

2
≥ 1 such that

𝑀
𝑘V ≥ 𝑀𝑤, 𝑘 ≥ 𝑘

2
, (33)

and there cannot be any V ∈ 𝑃 \ {0} and any 𝑘
3

≥ 1

such that

𝑀
𝑘3V ≤ V. (34)
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Proof. Since𝑃 is a reproducing cone and𝑀 is linear, compact,
and 𝑢

0
-positive, the existence of a solution 𝑢 ∈ 𝑃 of

eigenvalue problem (10) whose eigenvalue 𝜆 is positive,
simple, and bigger in absolute value than any other eigenvalue
of (10) is a consequence ofTheorems 2.5, 2.10, 2.11, and 2.13 of
Krasnosel’skii [16], summarized in [25, Theorem 2].

Moreover, if𝑀 is 𝑢
0
-positive, it will also be 𝑢-positive. To

see this, let us recall that there must be 𝛿
3
, 𝛿
4

> 0 such that
𝛿
3
𝑢
0
≤ 𝑀𝑢 ≤ 𝛿

4
𝑢
0
. Since 𝑀𝑢 = 𝜆𝑢, once has (𝜆/𝛿

4
)𝑢 ≤ 𝑢

0
≤

(𝜆/𝛿
3
)𝑢 and therefore (𝛿

1
𝜆/𝛿
4
)𝑢 ≤ 𝑀V ≤ (𝛿

2
𝜆/𝛿
3
)𝑢 for any

other nonzero V ∈ 𝑃. As a result, for any nonzero V ∈ 𝑃, one
has

0 ≤ 𝑀
𝑘V = 𝑀

𝑘−1

𝑀V ≤ 𝑀
𝑘−1

{
𝛿
2
𝜆

𝛿
3

𝑢} =
𝛿
2
𝜆
𝑘

𝛿
3

𝑢, (35)

𝑀
𝑘V = 𝑀

𝑘−1

𝑀V ≥ 𝑀
𝑘−1

{
𝛿
1
𝜆

𝛿
4

𝑢} =
𝛿
1
𝜆
𝑘

𝛿
4

𝑢 ≥ 0. (36)

Now, let us suppose that there is no nontrivial solution of
(3) that satisfies (4) either at 𝑎, 𝑏 or at any 𝑎

󸀠, 𝑏󸀠 interior to
[𝑎, 𝑏]. Then the eigenvalue 𝜆 = 𝑟(𝑀

𝑎𝑏
) < 1. To see this, let

us first fix the lower extreme 𝑎 andmake 𝑏 variable, and let us
recall that, from Lemma 1, 𝑟(𝑀

𝑎𝑏
) is continuous with 𝑏. Given

that 𝑟(𝑀
𝑎𝑏

) is increasing with 𝑏 and lim
𝑏→𝑎

+𝑟(𝑀
𝑎𝑏

) = 0, if
𝜆 ≥ 1 it would be possible to find a 𝑏

󸀠 with 𝑎 < 𝑏
󸀠

≤ 𝑏 such
that 𝜆

𝑎𝑏
󸀠 = 𝑟(𝑀

𝑎𝑏
󸀠) = 1 and therefore problem (9) (ergo (3)

and (4)) would have a solution with the extremes 𝑎 and 𝑏
󸀠,

contrary to the assumption. A similar result can be obtained
fixing the upper extreme 𝑏 and making 𝑎 variable. As 𝑀 is
compact, 𝑃 is closed, and 𝜆 < 1, then

lim
𝑘→∞

𝑀
𝑘V = lim
𝑘→∞

𝛿
2
𝜆
𝑘

𝛿
3

𝑢 = 0, (37)

which is (30). Given that 𝑀 is 𝑢-positive, for any 𝑤 ∈ 𝑃 \ {0},
we have

𝑀𝑤 ≥ 𝛿
5
𝑢. (38)

Combining (35) and (38), one has

𝑀
𝑘V ≤

𝛿
2
𝜆
𝑘

𝛿
3
𝛿
5

𝑀𝑤, (39)

which gives (31). On the other hand, let us suppose that there
exists 𝑤 ∈ 𝑃 \ {0} such that

𝑀
𝑘1𝑤 ≥ 𝑤. (40)

From [21, Theorem 2.2], the fact that 𝑀𝑘1𝑢 = 𝜆
𝑘1𝑢, and (40),

one has that 𝜆 ≥ 1, which contradicts the hypothesis. This
proves (32).

Let us now suppose that there is a nontrivial solution of
(3) that satisfies (4) at some 𝑎

󸀠, 𝑏󸀠 interior to [𝑎, 𝑏]. Then the
eigenvalue 𝜆 = 𝑟(𝑀

𝑎𝑏
) > 1. Otherwise, fixing 𝑎 andmaking 𝑏

variable, since 𝑟(𝑀
𝑎𝑏

) is increasing with 𝑏, there could not be
a solution of (10) with 𝜆

𝑎𝑏
󸀠 = 𝑟(𝑀

𝑎𝑏
󸀠) = 1 and 𝑎 < 𝑏

󸀠

< 𝑏 (a
similar argument can be used fixing 𝑏 andmaking 𝑎 variable).
Given that 𝑀 is 𝑢-positive, for any 𝑤 ∈ 𝑃, one has

𝑀𝑤 ≤ 𝛿
6
𝑢. (41)

Combining (36) and (41), one has

𝑀
𝑘V ≥

𝛿
1
𝜆
𝑘

𝛿
4
𝛿
6

𝑀𝑤, (42)

from which (33) is immediate. To complete the proof, let us
suppose that there exists 𝑤 ∈ 𝑃 such that

𝑀
𝑘3𝑤 ≤ 𝑤. (43)

From [21, Theorem 2.2], the fact that 𝑀
𝑘3𝑢 = 𝜆

𝑘3𝑢 and
(43), one has that 𝜆 ≤ 1, which contradicts the hypothesis.
This proves (34).

Corollary 3. The conclusions of Theorem 2 are also valid if 𝑀
maps 𝑃 into 𝑃

0 and 𝑟(𝑀) is strictly increasing with the length
of the interval [𝑎, 𝑏].

Proof. It is a straightforward consequence of the facts that if
𝑃
0 exists, then𝑃 is reproducing cone ([17, Proposition 19.1.a]),

and that if 𝑀(𝑃) ∈ 𝑃
0, then 𝑀 is 𝑢

0
-positive ([33, Lemma

1.5]).

Corollary 4. Under the hypotheses of Theorem 2, a sufficient
condition for problem (3) not to have a nontrivial solution that
satisfies (4) either at 𝑎, 𝑏 or at any 𝑎

󸀠, 𝑏󸀠 interior to [𝑎, 𝑏] is the
existence of V ∈ 𝑃 and 𝑘, 𝑗 ≥ 0 with 𝑘 > 𝑗 such that

𝑀
𝑘V ≤ 𝑀

𝑗V. (44)

Likewise, a sufficient condition for the problem (3) and (4) to
have a solution in the extremes 𝑎, 𝑏 or extremes inner to 𝑎 and
𝑏 is the existence of V ∈ 𝑃 and 𝑘, 𝑗 ≥ 0 with 𝑘 > 𝑗 such that

𝑀
𝑘V ≥ 𝑀

𝑗V. (45)

Proof. Equations (44) and (45) follow from the application of
(34) and (32), respectively, to 𝑀

𝑗V.

Remark 5. Theorem 2 and Corollaries 3 and 4 provide
methods to determine if there exists a solution of (3) and (4)
in extremes 𝑎

󸀠, 𝑏󸀠 interior or exterior to given extremes 𝑎, 𝑏.
In particular,

(i) if there is no nontrivial solution of (3) that satisfies
(4) either at 𝑎, 𝑏 or at any 𝑎

󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then
from (30) there may exist 𝑘

0
≥ 1 and V ∈ 𝑃 such that

𝑀
𝑘V ≤ V for 𝑘 ≥ 𝑘

0
, violating (34), and from (31)

for any 𝑧 ∈ 𝑃 \ {0} there will exist 𝑘
1
, 𝑘
2
, and 𝑗 such

that 𝑀
𝑘

𝑧 ≤ 𝑀𝑧, 𝑘 ≥ 𝑘
1
, and 𝑀

𝑘

𝑧 ≤ 𝑀
𝑗

𝑧, 𝑘 ≥ 𝑘
2
,

violating also (34) and verifying sufficient condition
(44), respectively;

(ii) if there is a nontrivial solution of (3) that satisfies (4)
at some 𝑎

󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then from (33) there
may exist 𝑘

0
≥ 1 and V ∈ 𝑃 such that 𝑀

𝑘V ≥ V, 𝑘 ≥

𝑘
0
, violating (32), and for any 𝑧 ∈ 𝑃 \ {0} there will

exist 𝑘
1
, 𝑘
2
, and 𝑗 such that 𝑀

𝑘

𝑧 ≥ 𝑀𝑧, 𝑘 ≥ 𝑘
1
, and

𝑀
𝑘

𝑧 ≥ 𝑀
𝑗

𝑧, 𝑘 ≥ 𝑘
2
, violating also (32) and verifying

sufficient condition (45), respectively.
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The key of the method will be to find out functions V, 𝑧 ∈ 𝑃

for which the aforementioned inequalities appear with low
indexes 𝑘, 𝑗.

Remark 6. In the case where it is not possible to prove the two
monotonicity conditions of 𝑟(𝑀

𝑎𝑏
)with 𝑎 and 𝑏 but only one,

it is straightforward to establish variants of Theorem 2 and
Corollaries 3 and 4 which consider the extreme for which the
monotonicity of 𝑟(𝑀

𝑎𝑏
) cannot be proven as fixed in terms

of application of the corresponding boundary condition,
making the existence or nonexistence of the solutions of (3)
and (4) occurs in the interval between that fixed extreme and
other points lower than, equal to, or higher than the other
extreme.

Remark 7. The arguments of Theorem 2 and Corollary 4 can
also be used to provide upper and lower bounds for the largest
eigenvalue of problem (10). In particular, any 𝜇 > 0 for which
we can find V ∈ 𝑃 and 𝑘 > 𝑗 ≥ 0 such that 𝑀

𝑘V ≤ 𝜇
𝑘−𝑗

𝑀
𝑗V

will be an upper bound for the eigenvalue 𝜆. Likewise, any
𝜇 > 0 for which we can find V ∈ 𝑃 and 𝑘 > 𝑗 ≥ 0 such that
𝑀
𝑘V ≥ 𝜇

𝑘−𝑗

𝑀
𝑗V will be a lower bound for the eigenvalue 𝜆.

3. Application to a Broad
Boundary Value Problem

This section will be devoted to applying the results of
Section 2 to a problem of the type (3) and (4) characterized
by

𝐿𝑦 =

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ ]𝑎, 𝑏[ ;

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(46)

with 𝐿 being defined as in (1) with

𝑎
𝑛
(𝑥) = 1, 𝑥 ∈ [𝑎, 𝑏] , (47)

𝐿 being right-disfocal on [𝑎, 𝑏] , (48)

𝛼 = (0, 1, 2, . . . , 𝑘 − 1) , (49)

𝛽 = (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛−𝑘
) , 0 ≤ 𝛽

1
< ⋅ ⋅ ⋅ < 𝛽

𝑛−𝑘
< 𝑛 − 1, (50)

𝜇 ≤ 𝛽
1
, (51)

(−1)
𝑛−𝑘

𝑐
𝑖
(𝑥) ≥ 0, 𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑖 ≤ 𝜇, (52)

(−1)
𝑛−𝑘

𝑐
𝑗
(𝑥) > 0 a.e. on [𝑎, 𝑏] (53)

for at least one 𝑗 such that 0 ≤ 𝑗 ≤ 𝜇.
Problem (46)–(53) was studied by Eloe et al. in two

papers [30, 42]. In particular, in [42], Eloe and Ridenhour
analysed the positivity and monotonicity properties of the
Green function of problem (7), subject to the constraints
(47)–(50), whereas, in [30], Eloe and Henderson applied
these properties to address the eigenvalue problem 𝑀𝑢 =

𝜆𝑢 with 𝑀 being defined as in (6) and 𝐺(𝑥, 𝑡) being the
aforementioned Green function. In order to analyse problem

(46)–(53), we will use a Banach space 𝐵 and a cone 𝑃 slightly
different from those used by Eloe andHenderson, concretely:

𝐵 = {𝑦 ∈ 𝐶
𝛽1−1

[𝑎, 𝑏] , 𝑦
(𝛽1)

(𝑥)

piecewise continuous on [𝑎, 𝑏] , 𝑦
(𝑖)

(𝑎) = 0, 0

≤ 𝑖 ≤ 𝛽
1
− 1}

(54)

(the Banach space considered by Eloe and Henderson satis-
fied also 𝑦 ∈ 𝐶

𝛽1[𝑎, 𝑏] and 𝑦
(𝛽1)(𝑎) = 0) and

𝑃 = {𝑦 ∈ 𝐵 : (−1)
𝑛−𝑘

𝑦
(𝛽1)

(𝑥) ≥ 0; 𝑥 ∈ [𝑎, 𝑏]} . (55)

From the definition of 𝑃, it is clear that (−1)
𝑛−𝑘

𝑦
(𝑖)

(𝑥) ≥ 0,
𝑥 ∈ [𝑎, 𝑏], 0 ≤ 𝑖 ≤ 𝛽

1
. With the help of the cone 𝑃, it is

possible to prove the following theorem.

Theorem 8. The conclusions ofTheorem 2 and Corollary 4 are
applicable for problem (46)–(53) and the cone𝑃 defined in (55).

Proof. We just need to prove that the conditions ofTheorem 2
are applicable to this problem and cone. Thus, if we use the
notation

{𝑢 (𝑥)}
+

= (−1)
𝑛−𝑘max {(−1)

𝑛−𝑘

𝑢 (𝑥) , 0} ,

{𝑢 (𝑥)}
−

= (−1)
𝑛−𝑘max {− (−1)

𝑛−𝑘

𝑢 (𝑥) , 0} ,

(56)

for 𝑥 ∈ [𝑎, 𝑏], that 𝑃 is a reproducing cone follows from

𝑦
(𝛽1)

(𝑥) = {𝑦
(𝛽1)

(𝑥)}
+

− {𝑦
(𝛽1)

(𝑥)}
−

, 𝑥 ∈ [𝑎, 𝑏] , (57)

so that

𝑦 (𝑥) = ∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛽1−1

(𝛽
1
− 1)!

{𝑦
(𝛽1)

(𝑡)}
+

𝑑𝑡

− ∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛽1−1

(𝛽
1
− 1)!

{𝑦
(𝛽1)

(𝑡)}
−

𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏] ,

(58)

for any 𝑦 ∈ 𝐵. Obviously the two terms of the right hand side
of (58) are functions which belong to 𝑃.

To prove the 𝑢
0
-positivity of 𝑀, let us consider the

auxiliary Banach spaceB, defined by

B = {𝑦 ∈ 𝐶
𝑛−1

[𝑎, 𝑏] : 𝑦
(𝑖)

(𝑎) = 0, 0 ≤ 𝑖 ≤ 𝑘

− 1; 𝑦
(𝛽𝑖)

(𝑏) = 0, 1 ≤ 𝑖 ≤ 𝑛 − 𝑘} ,

(59)

and the auxiliary coneP, defined by

P = {𝑦 ∈ B : (−1)
𝑛−𝑘

𝑦
(𝛽1)

(𝑥) ≥ 0, 𝑥 ∈ [𝑎, 𝑏]} . (60)

If we denote by 𝑚 the lowest integer that satisfies 𝑚 > 𝛽
1
and

𝑚 ̸= 𝛽
2
, . . . , 𝛽

𝑛−𝑘
, then, following an argument of Diaz (see

[33, Lemma 2.8]), it is possible to prove that the interior ofP
is

P
0

= {𝑦 ∈ B : (−1)
𝑛−𝑘

𝑦
(𝛽1)

(𝑥) > 0, 𝑥

∈ ]𝑎, 𝑏[ ; (−1)
𝑛−𝑘

𝑦
(𝑘)

(𝑎)

> 0; (−1)
𝑛−𝑘−𝑚+𝛽1 𝑦

(𝑚)

(𝑏) > 0} .

(61)
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𝑀 maps 𝑃 \ {0} into P0. To see this, let us take V ∈ 𝑃 \ {0}.
Obviously 𝑀V ∈ B by the construction of 𝑀. Since V(𝑗)(𝑎) =

0 for 0 ≤ 𝑗 ≤ 𝛽
1

− 1, and (−1)
𝑛−𝑘V(𝛽1)(𝑥) is piecewise

continuous, nonnegative, and nonidentically zero on [𝑎, 𝑏]

(otherwise V ≡ 0), (−1)
𝑛−𝑘V(𝑗)(𝑥) must also be piecewise

continuous, nonnegative, and nonidentically zero on [𝑎, 𝑏]

for 0 ≤ 𝑗 ≤ 𝜇. From here, the hypotheses (52) and (53), and
the fact that

(−1)
𝑛−𝑘

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1
> 0 (62)

on (𝑥, 𝑡) ∈ ]𝑎, 𝑏[ × ]𝑎, 𝑏[ from [42, Theorem 2.7], one has

(−1)
𝑛−𝑘

(𝑀V)(𝛽1) (𝑥)

= (−1)
𝑛−𝑘

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) V(𝑖) (𝑡) 𝑑𝑡 > 0,

𝑥 ∈ ]𝑎, 𝑏[ .

(63)

In the same manner, also from [42, Theorem 2.7], one has

(−1)
𝑛−𝑘

𝜕
𝑘

𝐺 (𝑎, 𝑡)

𝜕𝑥𝑘
> 0, 𝑡 ∈ ]𝑎, 𝑏[ , (64)

which, together with hypotheses (52) and (53), yield

(−1)
𝑛−𝑘

(𝑀V)(𝑘) (𝑎)

= (−1)
𝑛−𝑘

∫

𝑏

𝑎

𝜕
𝑘

𝐺 (𝑎, 𝑡)

𝜕𝑥𝑘

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) V(𝑖) (𝑡) 𝑑𝑡 > 0.

(65)

Finally from [42, Lemma 2.4] one has

(−1)
𝑛−𝑘−𝑚+𝛽1

𝜕
𝑚

𝐺 (𝑏, 𝑡)

𝜕𝑥𝑚
> 0, 𝑡 ∈ ]𝑎, 𝑏[ , (66)

which combined with (52) and (53) give

(−1)
𝑛−𝑘−𝑚+𝛽1

(𝑀V)(𝑚) (𝑏)

= (−1)
𝑛−𝑘−𝑚+𝛽1 ∫

𝑏

𝑎

𝜕
𝑚

𝐺 (𝑏, 𝑡)

𝜕𝑥𝑚

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) V(𝑖) (𝑡) 𝑑𝑡 > 0.

(67)

Therefore, 𝑀V ∈ P0 for any V ∈ 𝑃 \ {0}, and if we pick
any 𝑢
0
∈ P0, there must be 𝜖

1
> 0 such that

𝑀V − 𝜖
1
𝑢
0
∈ P, (68)

which implies

𝑀V ≥ 𝜖
1
𝑢
0

(w.r.t. P) . (69)

Likewise, there must be 𝜖
2
> 0 such that

𝑢
0
− 𝜖
2
𝑀V ∈ P, (70)

which implies

𝑢
0
≥ 𝜖
2
𝑀V (w.r.t. P) . (71)

Combining (69) and (71), one gets to

𝜖
1
𝑢
0
≤ 𝑀V ≤

𝑢
0

𝜖
2

(w.r.t. P) . (72)

As 𝑢
0

∈ P0 and P ⊂ 𝑃 (this follows from the fact thatB ⊂

𝐵), (72) proves that 𝑀 is 𝑢
0
-positive in 𝑃.

Next, fixed 𝑎, the increasing monotonicity of 𝑟(𝑀
𝑏
) as

a function of 𝑏, follows from [30, Theorem 8] (in the proof
of such Eloe’s theorem, the difference between our cone 𝑃

and that used by Eloe does not have any effect). Eloe and
Henderson did not get to prove an equivalent result for the
monotonicity of 𝑟(𝑀

𝑎
) with 𝑎, but we can replicate the steps

used for 𝑏 to obtain a similar result. To do so, let us define the
Banach space

B
𝑎

= {𝑦 ∈ 𝐶
𝑚

[𝑎, 𝑏] : 𝑦
(𝛽𝑖)

(𝑏) = 0, 1 ≤ 𝑖 ≤ 𝑛 − 𝑘, 𝛽
𝑖

< 𝑚}

(73)

and the cone

P
𝑎

= {𝑦 ∈ B
𝑎

: (−1)
𝑛−𝑘

𝑦
(𝑗)

(𝑥) ≥ 0, 𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑗

≤ 𝛽
1
} ,

(74)

whose interior is given by

P
0

𝑎
= {𝑦 ∈ B

𝑎
: (−1)

𝑛−𝑘

𝑦
(𝑗)

(𝑥) > 0, 𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑗

≤ 𝛽
1
− 1; (−1)

𝑛−𝑘

𝑦
(𝛽1)

(𝑥) > 0, 𝑥

∈ [𝑎, 𝑏[ ; (−1)
𝑛−𝑘−𝑚+𝛽1 𝑦

(𝑚)

(𝑏) > 0} .

(75)

Like we did before, one can show that the cone P
𝑎
of (60)

satisfies P
𝑎

⊂ P
𝑎
, 𝑀(P

𝑎
) = P0

𝑎
and that 𝑀 is 𝑢

0
-positive in

P
𝑎
. Now, let us take 𝑎

󸀠

< 𝑎, and let us notice that, from [25,
Theorem 2] and the previous arguments, there is 𝑢

𝑎
∈ P0
𝑎

⊂

P
𝑎
such that 𝑀

𝑎𝑏
𝑢
𝑎

= 𝜆
𝑎
𝑢
𝑎
. We can extend the definition of

𝑀
𝑎𝑏
to make it map 𝐶

𝜇

[𝑎, 𝑏] into 𝐶
𝑘−1

[𝑎
󸀠

, 𝑏] by setting

𝑀
∗

𝑎
󸀠
𝑏
𝑓 (𝑥) =

{

{

{

0, 𝑥 ∈ [𝑎
󸀠

, 𝑎] ,

𝑀
𝑎𝑏

𝑓 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] .

(76)

If we extend 𝑢
𝑎
similarly to [𝑎

󸀠

, 𝑏] by setting

𝑢
𝑎
󸀠 (𝑥) =

{

{

{

0, 𝑥 ∈ [𝑎
󸀠

, 𝑎] ,

𝑢
𝑎
(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

(77)

then it is clear that 𝑀∗
𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 = 𝜆
𝑎
𝑢
𝑎
󸀠 and

𝑀
𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 (𝑥) − 𝑀

∗

𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 (𝑥)

=

{{{{

{{{{

{

∫

𝑏

𝑎
󸀠

𝐺
𝑎
󸀠
𝑏
(𝑥, 𝑡)

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) 𝑢
(𝑖)

𝑎
󸀠 (𝑡) 𝑑𝑡, 𝑥 ∈ [𝑎

󸀠

, 𝑎] ,

∫

𝑏

𝑎

(𝐺
𝑎
󸀠
𝑏
(𝑥, 𝑡) − 𝐺

𝑎𝑏
(𝑥, 𝑡))

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) 𝑢
(𝑖)

𝑎
󸀠 (𝑡) 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏] .

(78)
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We will prove now that the restriction of𝑀
𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 −𝑀
∗

𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 to

[𝑎, 𝑏] belongs to P0
𝑎
. To do so, we need to obtain first some of

the properties of 𝜕𝐺
𝑎𝑏

(𝑥, 𝑡)/𝜕𝑎. Following similar reasoning
to that of [42, Lemma 2.5] for 𝜕𝐺

𝑎𝑏
(𝑥, 𝑡)/𝜕𝑏, it is possible to

prove that 𝜕𝐺
𝑎𝑏

(𝑥, 𝑡)/𝜕𝑎 is a solution of the BVP

𝐿𝑦 = 0; 𝑥 ∈ [𝑎, 𝑏] ;

𝑦
(𝑖)

(𝑎) = 0, 0 ≤ 𝑖 ≤ 𝑘 − 2;

𝑦
𝑘−1

(𝑎) = −
𝜕
𝑘

𝐺
𝑎𝑏

(𝑎, 𝑡)

𝜕𝑥𝑘
;

𝑦
(𝛽𝑖)

(𝑏) = 0, 1 ≤ 𝑖 ≤ 𝑛 − 𝑘.

(79)

From [42, Lemma 2.3], one has that 𝑦
(𝑖)

(𝑥) does not change
sign on ]𝑎, 𝑏[ for 𝑖 = 0, 1, . . . , 𝛽

1
and that we can extend the

sign of 𝑦
(𝑖)

(𝑥) to ]𝑎, 𝑏] for 𝑖 = 0, 1, . . . , 𝛽
1

− 1, given that
𝑦
(𝑖)

(𝑏) ̸= 0 for these indices. In addition, from [42, Theorem
2.7], we know that

(−1)
𝑛−𝑘

𝜕
𝑘

𝐺
𝑎𝑏

(𝑎, 𝑡)

𝜕𝑥𝑘
> 0, 𝑡 ∈ ]𝑎, 𝑏[ . (80)

Accordingly, applying Taylor’s theorem and the boundary
conditions on 𝑎 of (79), one has that (−1)

𝑛−𝑘

𝑦
(𝑖)

(𝑥) < 0, for
𝑥 ∈ ]𝑎, 𝑏] and 𝑖 = 0, 1, . . . , 𝛽

1
−1, and that (−1)

𝑛−𝑘

𝑦
(𝛽1)(𝑥) < 0,

for 𝑥 ∈ ]𝑎, 𝑏[, which implies

(−1)
𝑛−𝑘

𝜕
𝑖

𝐺
𝑎
󸀠
𝑏
(𝑥, 𝑡)

𝜕𝑥𝑖
> (−1)

𝑛−𝑘
𝜕
𝑖

𝐺
𝑎𝑏

(𝑥, 𝑡)

𝜕𝑥𝑖
, (81)

for (𝑥, 𝑡) ∈ ]𝑎, 𝑏] × ]𝑎, 𝑏[ and 𝑖 = 0, 1, . . . , 𝛽
1
− 1, and

(−1)
𝑛−𝑘

𝜕
𝛽1𝐺
𝑎
󸀠
𝑏
(𝑥, 𝑡)

𝜕𝑥𝛽1
> (−1)

𝑛−𝑘
𝜕
𝛽1𝐺
𝑎𝑏

(𝑥, 𝑡)

𝜕𝑥𝛽1
, (82)

for (𝑥, 𝑡) ∈ ]𝑎, 𝑏[ × ]𝑎, 𝑏[. Likewise, from property (48)
and (79) it cannot happen that 𝑦

(𝑚)

(𝑏) = 0. If
(−1)
𝑛−𝑘−𝑚+𝛽1𝑦

(𝑚)

(𝑏) > 0, from the boundary conditions
on 𝑏 of (79) and Taylor’s theorem, one would have
(−1)
𝑛−𝑘

𝑦
(𝛽1)(𝑥) > 0 for 𝑥 ∈ ]𝑎, 𝑏[, contradicting (82).

Therefore, (−1)
𝑛−𝑘−𝑚+𝛽1𝑦

(𝑚)

(𝑏) < 0, which in turn implies

(−1)
𝑛−𝑘−𝑚+𝛽1

𝜕
𝑚

𝐺
𝑎
󸀠
𝑏
(𝑏, 𝑡)

𝜕𝑥𝑚

> (−1)
𝑛−𝑘−𝑚+𝛽1

𝜕
𝑚

𝐺
𝑎𝑏

(𝑏, 𝑡)

𝜕𝑥𝑚
,

(83)

for 𝑡 ∈ ]𝑎, 𝑏[. It remains to prove what happens at 𝑥 = 𝑎.
Applying [41,TheoremV.3.1] recursively to BVP (79), one has
that 𝜕𝑙𝐺

𝑎𝑏
(𝑥, 𝑡)/𝜕𝑎

𝑙 is a solution of the initial value problem:

𝐿𝑦 = 0; 𝑥 ∈ [𝑎, 𝑏] ;

𝑦
(𝑖)

(𝑎) = 0, 0 ≤ 𝑖 ≤ 𝑘 − 𝑙 − 1;

𝑦
𝑘−𝑙

(𝑎) = (−1)
𝑙
𝜕
𝑘

𝐺
𝑎𝑏

(𝑎, 𝑡)

𝜕𝑥𝑘
.

(84)

Therefore, we can fix 𝑡, 𝑏, and 𝑥 = 𝑎 and apply Taylor’s
theorem with regard to the variable 𝑎 to obtain

𝜕
𝑖

𝐺
𝑎
󸀠
𝑏
(𝑎, 𝑡)

𝜕𝑥𝑖
−

𝜕
𝑖

𝐺
𝑎𝑏

(𝑎, 𝑡)

𝜕𝑥𝑖

=

𝑘−𝑖−1

∑

𝑗=1

(−1)
𝑗
(𝑎 − 𝑎

󸀠

)
𝑗

𝑗!

𝜕
𝑖

𝜕𝑥𝑖

𝜕
𝑗

𝐺
𝑎𝑏

(𝑎, 𝑡)

𝜕𝑎𝑗

+ (−1)
𝑘−𝑖

(𝑎 − 𝑎
󸀠

)
𝑘−𝑖

(𝑘 − 𝑖)!

𝜕
𝑖

𝜕𝑥𝑖

𝜕
𝑘−𝑖

𝐺
𝑐𝑏

(𝑎, 𝑡)

𝜕𝑎𝑘−𝑖

= (−1)
𝑘−𝑖

(𝑎 − 𝑎
󸀠

)
𝑘−𝑖

(𝑘 − 𝑖)!

𝜕
𝑖

𝜕𝑥𝑖

𝜕
𝑘−𝑖

𝐺
𝑐𝑏

(𝑎, 𝑡)

𝜕𝑎𝑘−𝑖
,

(85)

for 𝑡 ∈ ]𝑎, 𝑏[, 0 ≤ 𝑖 ≤ 𝑘 − 1, with 𝑐 ∈ ]𝑎
󸀠

, 𝑎[. By con-
tinuity, we can find 𝜖 > 0 such that, for 𝑎

󸀠

>

𝑎 − 𝜖, the sign of (𝜕
𝑖

/𝜕𝑥
𝑖

)(𝜕
𝑘−𝑖

𝐺
𝑐𝑏
(𝑎, 𝑡)/𝜕𝑎

𝑘−𝑖

) and (𝜕
𝑖

/

𝜕𝑥
𝑖

)(𝜕
𝑘−𝑖

𝐺
𝑎𝑏

(𝑎, 𝑡)/𝜕𝑎
𝑘−𝑖

) coincide, sign which is the same as
that of (−1)

𝑘−𝑖

(𝜕
𝑘

𝐺
𝑎𝑏

(𝑎, 𝑡)/𝜕𝑥
𝑘

) according to (84). From here,
the fact that 𝛽

1
≤ 𝑘 − 1, (80), and (85), we have that

(−1)
𝑛−𝑘

(
𝜕
𝑖

𝐺
𝑎
󸀠
𝑏
(𝑎, 𝑡)

𝜕𝑥𝑖
−

𝜕
𝑖

𝐺
𝑎𝑏

(𝑎, 𝑡)

𝜕𝑥𝑖
) > 0,

𝑡 ∈ ]𝑎, 𝑏[ , 0 ≤ 𝑖 ≤ 𝛽
1
.

(86)

From (52), (53), (75), (78), (81), (82), (83), and (86), it
follows that the restriction of 𝑀

𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 − 𝑀

∗

𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 to [𝑎, 𝑏]

belongs to P0
𝑎
, as indicated before. Accordingly there exists

𝛿 > 0 such that

𝑀
𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 − 𝑀

∗

𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 ≥ 𝛿𝑢

𝑎
󸀠 (w.r.t. P

𝑎
) ; (87)

that is

𝑀
𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 ≥ (𝜆

𝑎
+ 𝛿) 𝑢

𝑎
󸀠 (w.r.t. P

𝑎
) . (88)

From [42, Theorem 2.7] we know that

(−1)
𝑛−𝑘

𝜕
𝑖

𝐺
𝑎
󸀠
𝑏
(𝑥, 𝑡)

𝜕𝑥𝑖
> 0, 0 ≤ 𝑖 ≤ 𝛽

1
, (89)

for (𝑥, 𝑡) ∈ ]𝑎
󸀠

, 𝑏[ × ]𝑎
󸀠

, 𝑏[, which together with (52), (53),
and (78) gives

(−1)
𝑛−𝑘

(
𝜕
𝑖

𝑀
𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 (𝑥)

𝜕𝑥𝑖
−

𝜕
𝑖

𝑀
∗

𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 (𝑥)

𝜕𝑥𝑖
) ≥ 0,

𝑥 ∈ [𝑎
󸀠

, 𝑎] , 0 ≤ 𝑖 ≤ 𝛽
1
.

(90)

The combination of (77), (88), and (90) yields

𝑀
𝑎
󸀠
𝑏
𝑢
𝑎
󸀠 ≥ (𝜆

𝑎
+ 𝛿) 𝑢

𝑎
󸀠 (w.r.t. P

𝑎
󸀠) . (91)

Fromhere, the 𝑢
0
-positivity of𝑀 in P

𝑎
󸀠 , and [21,Theorem

2.2], we can conclude that 𝜆
𝑎
󸀠 = 𝑟(𝑀

𝑎
󸀠
𝑏
) > 𝜆
𝑎
and therefore

that 𝑟(𝑀
𝑎𝑏

) is decreasing as a function of 𝑎.
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Finally, if we take the norm ‖𝑓‖ = max{sup{|𝑓(𝑗)(𝑥)|, 𝑥 ∈

[𝑎, 𝑏]}; 0 ≤ 𝑗 ≤ 𝜇}, then from (6) one has

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑀
𝑎𝑏

𝑓)
(𝑗)

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑗

𝐺
𝑎𝑏

(𝑥, 𝑡)

𝜕𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑖)

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 ∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑗

𝐺
𝑎𝑏

(𝑥, 𝑡)

𝜕𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡, 0 ≤ 𝑗 ≤ 𝜇.

(92)

Therefore

󵄩󵄩󵄩󵄩𝑀𝑎𝑏𝑓
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

⋅ max{sup{∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑗

𝐺
𝑎𝑏

(𝑥, 𝑡)

𝜕𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏]} ,

0 ≤ 𝑗 ≤ 𝜇} .

(93)

Taking [𝐴, 𝐵] ⊂ 𝐼 such that 𝐺
𝐴𝐵

(𝑥, 𝑡) exists and [𝑎, 𝑏] ⊆

[𝐴, 𝐵], from the previous results on the monotonicity of
𝐺
𝑎𝑏

(𝑥, 𝑡) with 𝑎, 𝑏, one has

󵄩󵄩󵄩󵄩𝑀𝑎𝑏
󵄩󵄩󵄩󵄩

≤ max{sup{∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑗

𝐺
𝐴𝐵

(𝑥, 𝑡)

𝜕𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏]} ,

0 ≤ 𝑗 ≤ 𝜇} .

(94)

Now, from [43, Theorems 3.6.1 and 3.7.8], one has 𝑟(𝑀
𝑎𝑏

) ≤

‖𝑀
𝑎𝑏

‖. From here, (94), and the continuity of 𝑐
𝑖
(𝑥) on [𝑎, 𝑏],

one gets

lim
𝑏→𝑎

+

𝑟 (𝑀
𝑎𝑏

) = lim
𝑎→𝑏

−

𝑟 (𝑀
𝑎𝑏

) = 0. (95)

This completes the proof.

In order to applyTheorem2,we can consider, for instance,
the function

V (𝑥) = (−1)
𝑛−𝑘 (𝑥 − 𝑎)

𝛽1

𝛽
1
!

, 𝑥 ∈ [𝑎, 𝑏] , (96)

which satisfies

V(𝛽1) (𝑥) = (−1)
𝑛−𝑘

, 𝑥 ∈ [𝑎, 𝑏] ;

V (𝑎) = V󸀠 (𝑎) = ⋅ ⋅ ⋅ = V(𝛽1−1) (𝑎) = 0.

(97)

From the definition of V(𝑥), Theorem 2, and Corollary 4, we
can obtain the following theorem.

Theorem 9. A sufficient condition for problem (46)–(53) not
to have a nontrivial solution in extremes interior to 𝑎, 𝑏 is the
existence of 𝑘, 𝑗 ≥ 0 with 𝑘 > 𝑗 such that

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑘

{
(𝑥 − 𝑎)

𝛽1

𝛽
1
!

(𝑡)})

(𝑖)

𝑑𝑡

≤ ∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑗

{
(𝑥 − 𝑎)

𝛽1

𝛽
1
!

(𝑡)})

(𝑖)

𝑑𝑡,

(98)

for all 𝑥 ∈ [𝑎, 𝑏], or, in particular, the existence of 𝑘 ≥ 0 such
that

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑘

{
(𝑥 − 𝑎)

𝛽1

𝛽
1
!

} (𝑡))

(𝑖)

𝑑𝑡

≤ 1,

(99)

for all 𝑥 ∈ [𝑎, 𝑏].
A sufficient condition for problem (46)–(53) to have a

nontrivial solution in the extremes 𝑎, 𝑏 or extremes inner to
𝑎 and 𝑏 is the existence of 𝑘, 𝑗 ≥ 0 with 𝑘 > 𝑗 such that

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑘

{
(𝑥 − 𝑎)

𝛽1

𝛽
1
!

(𝑡)})

(𝑖)

𝑑𝑡

≥ ∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡)

⋅ (𝑀
𝑗

{
(𝑥 − 𝑎)

𝛽1

𝛽
1
!

(𝑡)})

(𝑖)

𝑑𝑡,

(100)

for all 𝑥 ∈ [𝑎, 𝑏].

The advantage of Theorem 9 is that it provides a simpler
sufficient condition (99) for the nonexistence of a solution in
extremes inner to 𝑎, 𝑏. If we extend a technique devised by
Nehari and described by Keener and Travis in [21], we can
also obtain a simple sufficient condition for the existence of a
solution in the extremes 𝑎, 𝑏 or extremes inner to 𝑎 and 𝑏. To
this end, let us pick 𝜉

1
, 𝜉
2
such that 𝑎 < 𝜉

1
< 𝜉
2

< 𝑏, and let
us consider the function

ℎ (𝑥) =

{{{{{{{{

{{{{{{{{

{

0, 𝑎 ≤ 𝑥 ≤ 𝜉
1
,

(−1)
𝑛−𝑘

(𝛽
1
− 1)!

∫

𝑥

𝜉1

(𝑥 − 𝑡)
𝛽1−1 𝑑𝑡, 𝜉

1
≤ 𝑥 ≤ 𝜉

2
,

(−1)
𝑛−𝑘

(𝛽
1
− 1)!

∫

𝜉2

𝜉1

(𝑥 − 𝑡)
𝛽1−1 𝑑𝑡, 𝜉

2
≤ 𝑥 ≤ 𝑏,

(101)

which satisfies ℎ
(𝑖)

(𝑎) = 0 for 0 ≤ 𝑖 ≤ 𝛽
1
− 1 and

ℎ
(𝛽1)

(𝑥) =

{{{{

{{{{

{

0, 𝑎 ≤ 𝑥 < 𝜉
1
,

(−1)
𝑛−𝑘

, 𝜉
1
< 𝑥 < 𝜉

2
,

0, 𝜉
2
< 𝑥 ≤ 𝑏.

(102)

From (102), Theorem 2, and Corollary 4, one gets the
following theorem.
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Theorem 10. A sufficient condition for problem (46)–(53) not
to have a nontrivial solution in extremes interior to 𝑎, 𝑏 is the
existence of 𝑘, 𝑗 ≥ 0 with 𝑘 > 𝑗 such that

(−1)
𝑛−𝑘

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑘

{ℎ} (𝑡))
(𝑖)

𝑑𝑡

≤ (−1)
𝑛−𝑘

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑗

{ℎ} (𝑡))
(𝑖)

𝑑𝑡,

(103)

for all 𝑥 ∈ [𝑎, 𝑏].
A sufficient condition for problem (46)–(53) to have a

nontrivial solution in the extremes 𝑎, 𝑏 or extremes inner to
𝑎 and 𝑏 is the existence of 𝑘, 𝑗 ≥ 0 with 𝑘 > 𝑗 such that

(−1)
𝑛−𝑘

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑘

{ℎ} (𝑡))
(𝑖)

𝑑𝑡

≥ (−1)
𝑛−𝑘

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑗

{ℎ} (𝑡))
(𝑖)

𝑑𝑡,

(104)

for all 𝑥 ∈ [𝑎, 𝑏], or, in particular, the existence of a 𝑘 ≥ 0 such
that

(−1)
𝑛−𝑘

∫

𝑏

𝑎

𝜕
𝛽1𝐺 (𝑥, 𝑡)

𝜕𝑥𝛽1

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑡) (𝑀

𝑘

{ℎ} (𝑡))
(𝑖)

𝑑𝑡 ≥ 1, (105)

for all 𝑥 ∈ [𝜉
1
, 𝜉
2
].

In [42], Eloe andRidenhour used arguments of symmetry
with regard to problem (46)–(53) to also provide positivity
and monotonicity properties for the Green function of the
problem

𝐿𝑦 = 0, 𝑥 ∈ [𝑎, 𝑏] , (106)

𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
) , 0 ≤ 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑘
< 𝑛 − 1, (107)

𝛽 = (0, 1, 2, . . . , 𝑛 − 𝑘 − 1) , (108)

with 𝐿 defined as in (1), left-disfocal on [𝑎, 𝑏], and having
𝑎
𝑛
(𝑥) = 1. This allows us to extend the results of Theorem 2

to the problem

𝐿𝑦 =

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ ]𝑎, 𝑏[ ;

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(109)

𝑎
𝑛
(𝑥) = 1, 𝑥 ∈ [𝑎, 𝑏] , (110)

𝐿 being left-disfocal on [𝑎, 𝑏] , (111)

𝜇 ≤ 𝛼
1
, (112)

(−1)
𝑛−𝑘−𝑖

𝑐
𝑖
(𝑥) ≥ 0, 𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑖 ≤ 𝜇, (113)

(−1)
𝑛−𝑘−𝑖

𝑐
𝑗
(𝑥) > 0 a.e. on [𝑎, 𝑏] (114)

for at least one 𝑗 such that 0 ≤ 𝑗 ≤ 𝜇, using the Banach space

𝐵 = {𝑦 ∈ 𝐶
𝛼1−1

[𝑎, 𝑏] , 𝑦
(𝛼1)

(𝑥)

piecewise continuous on [𝑎, 𝑏] , 𝑦
(𝑖)

(𝑏) = 0, 0

≤ 𝑖 ≤ 𝛼
1
− 1}

(115)

and the cone

𝑃 = {𝑦 ∈ 𝐵 : (−1)
𝑛−𝑘−𝛼1 𝑦

(𝛼1)

(𝑥) ≥ 0; 𝑥 ∈ [𝑎, 𝑏]} . (116)

From the definition of 𝑃, it is clear that (−1)
𝑛−𝑘−𝑖

𝑦
(𝑖)

(𝑥) ≥ 0,
𝑥 ∈ [𝑎, 𝑏], 0 ≤ 𝑖 ≤ 𝛼

1
. Note that Eloe and Henderson did not

get to apply these properties of𝐺(𝑥, 𝑡) to problem (109)–(114)
in any paper, as far as the authors are aware.

Theorem 11. The conclusions ofTheorem 2 andCorollary 4 are
applicable for problem (109)–(114) and the cone 𝑃 defined in
(116).

Proof. The proof is very similar to that of Theorem 8, just
using an argument similar to (58) to show that 𝑃 is a repro-
ducing cone and [42,Theorem3.1] and the equivalent result of
[42, Lemma 2.4] to prove that the operator𝑀 associated with
(109)–(114) is 𝑢

0
-positive and applying [42, Theorem 3.2] to

the arguments of [30,Theorem8] to determine the decreasing
monotonicity of 𝑟(𝑀

𝑎
) as a function of 𝑎 and [42, Theorem

3.4] and the arguments of Theorem 8 to show the increasing
monotonicity of 𝑟(𝑀

𝑏
) as a function of 𝑏.

A consequence of Theorem 11 is that the sufficient con-
ditions of Theorems 9 and 10 are also applicable to problem
(109)–(114), changing the function V(𝑥) defined in (96) by

V (𝑥) = (−1)
𝑛−𝑘 (𝑏 − 𝑥)

𝛼1

𝛼
1
!

, 𝑥 ∈ [𝑎, 𝑏] (117)

and the function ℎ(𝑥) defined in (101) by

ℎ (𝑥) =

{{{{{{{

{{{{{{{

{

(−1)
𝑛−𝑘

(𝛼
1
− 1)!

∫

𝜉2

𝜉1

(𝑡 − 𝑥)
𝛼1−1 𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝜉

1
,

(−1)
𝑛−𝑘

(𝛼
1
− 1)!

∫

𝜉2

𝑥

(𝑡 − 𝑥)
𝛼1−1 𝑑𝑡, 𝜉

1
≤ 𝑥 ≤ 𝜉

2
,

0, 𝜉
2
≤ 𝑥 ≤ 𝑏.

(118)

At this point the reader will have noticed that (46) and
(47) are just a way of representing a subrange of problems of
the type

𝑦
(𝑛)

(𝑥) + 𝑝
𝑛−1

(𝑥) 𝑦
(𝑛−1)

(𝑥) + ⋅ ⋅ ⋅ + 𝑝
0
(𝑥) 𝑦 (𝑥) = 0,

𝑥 ∈ [𝑎, 𝑏] ;

(119)

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0, (120)

in a way that allows the existence and calculation of theGreen
function of the problem 𝐿𝑦 = 0, 𝑇(𝛼, 𝛽, 𝑎, 𝑏)𝑦 = 0, while
guaranteeing the right disfocality of𝐿𝑦 = 0 on [𝑎, 𝑏] and at the
same time yielding functions 𝑐

𝑖
(𝑥), 0 ≤ 𝑖 ≤ 𝜇, which satisfy
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the conditions for the application of the method. However,
there still exists some freedom in the choice of 𝑎

𝑖
(𝑥) and 𝑐

𝑖
(𝑥)

as long as 𝑝
𝑖
(𝑥) = 𝑎

𝑖
(𝑥)−𝑐

𝑖
(𝑥), 0 ≤ 𝑖 ≤ 𝜇, and one can wonder

if there are choices of such functions that give better results
than others. The next theorem aims to solve that question.

Theorem 12. Let one consider the differential operators

𝐿𝑦 ≡ 𝑦
(𝑛)

(𝑥) + 𝑎
𝑛−1

(𝑥) 𝑦
(𝑛−1)

(𝑥) + ⋅ ⋅ ⋅

+ 𝑎
0
(𝑥) 𝑦 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝐿
󸀠

𝑦 ≡ 𝑦
(𝑛)

(𝑥) + 𝑑
𝑛−1

(𝑥) 𝑦
(𝑛−1)

(𝑥) + ⋅ ⋅ ⋅

+ 𝑑
0
(𝑥) 𝑦 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

(121)

with 𝐿 and 𝐿
󸀠 being right-disfocal on [𝑎, 𝑏], and the problems

𝐿𝑦 =

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(122)

𝐿
󸀠

𝑦 =

𝜇

∑

𝑖=0

𝑒
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(123)

with (𝛼, 𝛽) defined as in (49) and (50) and 𝑎
𝑖
(𝑥), 𝑐
𝑖
(𝑥), 𝑑
𝑖
(𝑥),

𝑒
𝑖
(𝑥) being continuous functions on [𝑎, 𝑏] for 0 ≤ 𝑖 ≤ 𝑛−1 such

that

𝑎
𝑖
(𝑥) − 𝑐

𝑖
(𝑥) = 𝑑

𝑖
(𝑥) − 𝑒

𝑖
(𝑥) ,

𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑖 ≤ 𝜇,

(124)

𝑎
𝑖
(𝑥) = 𝑑

𝑖
(𝑥) , 𝑥 ∈ [𝑎, 𝑏] , 𝜇 < 𝑖 ≤ 𝑛 − 1, (125)

(−1)
𝑛−𝑘

𝑐
𝑖
(𝑥) ≥ (−1)

𝑛−𝑘

𝑒
𝑖
(𝑥) ≥ 0,

𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑖 ≤ 𝜇,

(126)

(−1)
𝑛−𝑘

𝑐
𝑗
(𝑥) > (−1)

𝑛−𝑘

𝑒
𝑗
(𝑥) > 0, a.e. on [𝑎, 𝑏] , (127)

for at least one 𝑗 such that 0 ≤ 𝑗 ≤ 𝜇. Let 𝑞
𝑖
(𝑥) ∈ 𝐶[𝑎, 𝑏] be

functions that satisfy

(−1)
𝑛−𝑘

𝑞
𝑖
(𝑥)

≤ min {(−1)
𝑛−𝑘

(𝑒
𝑖
(𝑥) − 𝑑

𝑖
(𝑥)) , 𝑥 ∈ [𝑎, 𝑏]} ,

0 ≤ 𝑖 ≤ 𝜇,

(128)

for 𝑥 ∈ [𝑎, 𝑏], if there is no solution of (119) satisfying (120) at
𝑎, 𝑏 or extremes 𝑎

󸀠

, 𝑏
󸀠 interior to [𝑎, 𝑏], and

(−1)
𝑛−𝑘

𝑞
𝑖
(𝑥)

≤ min{(−1)
𝑛−𝑘

(
𝑐
𝑖
(𝑥)

𝜆
− 𝑎
𝑖
(𝑥)) , 𝑥 ∈ [𝑎, 𝑏]} ,

0 ≤ 𝑖 ≤ 𝜇,

(129)

for 𝑥 ∈ [𝑎, 𝑏], if there is a solution of (119) satisfying (120) at
extremes 𝑎

󸀠

, 𝑏
󸀠 interior to [𝑎, 𝑏], 𝜆 being the eigenvalue of the

problem

𝐿𝑦 =
1

𝜆

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0.

(130)

Assume also that the equation

𝑦
(𝑛)

(𝑥) +

𝑛−1

∑

𝑖=𝜇+1

𝑎
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) −

𝜇

∑

𝑖=0

𝑞
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) = 0,

𝑥 ∈ [𝑎, 𝑏]

(131)

is right-disfocal on [𝑎, 𝑏], and that, combined with the bound-
ary conditions

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0, (132)

it gives a problem whose Green function exists. Let us denote
by 𝑀 and 𝑁 the operators of the type (6) associated with (122)
and (123), respectively, and let 𝑃 be the cone defined in (55).
One has the following:

(i) If there is no solution of (119) satisfying (120) at 𝑎, 𝑏 or
extremes 𝑎󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then for any V ∈ 𝑃\{0}

and 𝜖 > 0 there exists 𝑘
0
≥ 1 such that

𝑁
𝑘V ≤ 𝜖𝑀

𝑘V, 𝑘 ≥ 𝑘
0
. (133)

(ii) If there is a solution of (119) satisfying (120) at extremes
𝑎
󸀠

, 𝑏
󸀠 interior to [𝑎, 𝑏], then for any V ∈ 𝑃 \ {0} and

𝜖 > 0 there exists 𝑘
1
≥ 1 such that

𝑀
𝑘V ≤ 𝜖𝑁

𝑘V, 𝑘 ≥ 𝑘
1
. (134)

Proof. As proven inTheorem 8, both𝑀 and 𝑁 map the cone
𝑃 defined in (55) into the interior of the cone P of (60) and
(61), and the respective eigenvalue problems 𝑀𝑢 = 𝜆𝑢 and
𝑁𝑧 = ]𝑧 have eigenfunctions 𝑢, 𝑧 ∈ P0 ⊂ 𝑃. From [33,
Lemma 1.5], it follows that both operators are 𝑢-positive and
𝑧-positive in 𝑃; that is, for any V ∈ 𝑃 \ {0}, one has

𝑀V ≥ 𝛿
1
𝑢,

𝑀
𝑘V ≥ 𝛿

1
𝑀
𝑘−1

𝑢 = 𝛿
1
𝜆
𝑘−2

𝑀𝑢 ≥ 𝛿
1
𝛿
2
𝜆
𝑘−2

𝑧,

(135)

𝑁V ≤ 𝛿
3
𝑧,

𝑁
𝑘V ≤ 𝛿

3
𝑁
𝑘−1

𝑧 = 𝛿
3
]𝑘−1𝑧.

(136)

Combining (135) and (136), one gets

𝑁
𝑘V ≤

𝛿
3
𝜆

𝛿
1
𝛿
2

(
]
𝜆
)

𝑘−1

𝑀
𝑘V = 𝐾

1
(
]
𝜆
)

𝑘−1

𝑀
𝑘V, (137)

with 𝐾
1
> 0. In a similar manner it is possible to obtain

𝑀
𝑘V ≤ 𝐾

2
(

𝜆

]
)

𝑘−1

𝑁
𝑘V, (138)

with 𝐾
2
> 0.
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Next, if there is no solution of (119) satisfying (120) at 𝑎,
𝑏 or extremes 𝑎

󸀠

, 𝑏
󸀠 interior to [𝑎, 𝑏], then one must have ] <

𝜆 < 1. To see this, given thatwe already know fromTheorem2
that ], 𝜆 < 1, let us suppose that 1 > ] ≥ 𝜆. From (124), it
follows that

𝑐
𝑖
(𝑥)

𝜆
− 𝑎
𝑖
(𝑥) =

𝑎
𝑖
(𝑥) − 𝑑

𝑖
(𝑥) + 𝑒

𝑖
(𝑥)

𝜆
− 𝑎
𝑖
(𝑥)

=
𝑎
𝑖
(𝑥) − 𝑑

𝑖
(𝑥) + 𝑒

𝑖
(𝑥)

𝜆
− 𝑎
𝑖
(𝑥)

+ 𝑑
𝑖
(𝑥) − 𝑑

𝑖
(𝑥)

=
𝑒
𝑖
(𝑥)

𝜆
+ (

1

𝜆
− 1) (𝑎

𝑖
(𝑥) − 𝑑

𝑖
(𝑥))

− 𝑑
𝑖
(𝑥) ,

(139)

which, together with (124), (126), (127), and our assumption,
1 > ] ≥ 𝜆 yield

(−1)
𝑛−𝑘

(
𝑐
𝑖
(𝑥)

𝜆
− 𝑎
𝑖
(𝑥))

≥ (−1)
𝑛−𝑘

(
𝑒
𝑖
(𝑥)

]
− 𝑑
𝑖
(𝑥)) ,

(140)

for 0 ≤ 𝑖 ≤ 𝜇, with the inequality being strict for at least one
𝑖, and 𝑎

𝑖
(𝑥) ≡ 𝑑

𝑖
(𝑥) for 𝜇 < 𝑖 ≤ 𝑛 − 1. Now, let 𝑞

𝑖
(𝑥) be the

functions defined in (128), let 𝐻(𝑥, 𝑡) be the Green function
of problem (131) and (132), and let us define the operators

𝑁
1
𝑓

= ∫

𝑏

𝑎

𝐻(𝑥, 𝑡)

𝜇

∑

𝑖=0

(
𝑐
𝑖
(𝑡)

𝜆
− 𝑎
𝑖
(𝑡) − 𝑞

𝑖
(𝑡)) 𝑦

(𝑖)

(𝑡) 𝑑𝑡,

𝑥 ∈ [𝑎, 𝑏] ,

𝑁
2
𝑓

= ∫

𝑏

𝑎

𝐻(𝑥, 𝑡)

𝜇

∑

𝑖=0

(
𝑒
𝑖
(𝑡)

]
− 𝑑
𝑖
(𝑡) − 𝑞

𝑖
(𝑡)) 𝑦

(𝑖)

(𝑡) 𝑑𝑡,

𝑥 ∈ [𝑎, 𝑏] .

(141)

From the definition of the eigenfunctions 𝑢 and 𝑧, we have
𝑁
1
𝑢 = 𝑢 and 𝑁

2
𝑧 = 𝑧. Since, from (127), (128), (140), the

fact that ] < 1, and the arguments of Theorem 8, we know
that 𝑁

1
is 𝑧-positive in 𝑃 (𝑁

1
is in fact 𝑢

0
-positive with any

𝑢
0
∈ P0 according to [33, Lemma 1.5]) and that 𝑁

1
𝑓 > 𝑁

2
𝑓,

for 𝑓 ∈ 𝑃 \ {0}, we can define

𝜎
0
= sup {𝜎 | 𝑁

1
(𝑢 − 𝜎𝑧) ∈ 𝑃} , (142)

with 𝜎
0

> 0, and we have 𝛿
1
𝑧 ≤ 𝑁

1
(𝑢 − 𝜎

0
𝑧) ≤ 𝑢 − 𝜎

0
𝑧,

which implies 𝑢 − (𝜎
0
+ 𝛿
1
)𝑧 ∈ 𝑃, contradicting the maximal

property of 𝜎
0
. Therefore, ] < 𝜆 < 1. From here and (137), it

is straightforward to obtain (133). A similar argument allows
showing, in the case that there is a solution of (119) satisfying
(120) at extremes 𝑎

󸀠

, 𝑏
󸀠 interior to [𝑎, 𝑏], that ] > 𝜆 > 1

(note in this case that the eigenvalue 𝜆 of (129) and (130) is
exactly the eigenvalue associated with 𝑢 such that 𝑀𝑢 = 𝜆𝑢,
as a direct inspection of the formulae show). This and (138)
give (134).

Remark 13. The consequence ofTheorem 12 is that the use of
functions 𝑐

𝑖
(𝑥) closer to zero improves the speed of growth

or decrease of 𝑀𝑘 on 𝑘 so that lower values of 𝑘 are required
to find better bounds of the extremes for which a solution of
(46)–(53) exists.

With this in mind, our recommendation will be to look
for decompositions of (119) that yield a differential equation
𝐿𝑦 = 0 easy to solve, like those with constant coefficients
(this guarantees an easy calculation of the Green function
of 𝐿𝑦 = 0, 𝑇(𝛼, 𝛽, 𝑎, 𝑏)𝑦 = 0) and a set of functions 𝑐

𝑖
(𝑥),

0 ≤ 𝑖 ≤ 𝜇, as close to zero on [𝑎, 𝑏] as possible, while
satisfying conditions (48), (52), and (53). For instance, a good
choice starting from a problem like (119) and (120) is to pick
𝑎
𝑖
(𝑥) = (−1)

𝑛−𝑘max{(−1)
𝑛−𝑘

𝑝
𝑖
(𝑥), 𝑥 ∈ [𝑎, 𝑏]} and 𝑐

𝑖
(𝑥) =

𝑎
𝑖
(𝑥) − 𝑝

𝑖
(𝑥), 0 ≤ 𝑖 ≤ 𝜇, unless all 𝑝

𝑖
(𝑥) for 𝑖 = 0, . . . , 𝜇 are

constant on [𝑎, 𝑏] or the resulting equations 𝐿𝑦 = 0 are not
right-disfocal on [𝑎, 𝑏].

Before closing this section we will provide the following
Sturm comparison theorem, applicable to problem (46)–(53).

Theorem 14. Let one consider the problems

𝐿𝑦 =

𝜇

∑

𝑖=0

𝑐
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(143)

𝐿𝑦 =

𝜇

∑

𝑖=0

𝑒
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(144)

where (143) and (144) are problems of the type (46)–(53) such
that

(−1)
𝑛−𝑘

𝑐
𝑖
(𝑥) ≥ (−1)

𝑛−𝑘

𝑒
𝑖
(𝑥) ,

𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑖 ≤ 𝜇.

(145)

Then,

(i) if there is no solution of (143) at 𝑎, 𝑏 or extremes 𝑎
󸀠

, 𝑏
󸀠

interior to [𝑎, 𝑏], there will be no solution of (144) at 𝑎,
𝑏 or extremes 𝑎

󸀠

, 𝑏
󸀠 interior to [𝑎, 𝑏];

(ii) if there is a solution of (144) at extremes 𝑎󸀠, 𝑏󸀠 interior to
[𝑎, 𝑏], there will also be a solution of (143) at extremes
𝑎
󸀠󸀠, 𝑏󸀠󸀠 interior to [𝑎, 𝑏].

Proof. Let 𝑁
1
, 𝑁
2
be the operators of the form (6) associated

with the problems (143) and (144), respectively, and 𝑢
1
, 𝑢
2
the

eigenvalues in the cone 𝑃 of (55) such that 𝑁
1
𝑢
1

= 𝜆
1
𝑢
1
and

𝑁
2
𝑢
2
= 𝜆
2
𝑢
2
. From (145), one has

𝜆
2
𝑢
2
= 𝑁
2
𝑢
2
≤ 𝑁
1
𝑢
2
. (146)
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Applying [21, Theorem 2.2], one gets 𝜆
2
≤ 𝜆
1
. From here and

the arguments of Theorem 2 on the values of 𝜆
1
, 𝜆
2
being

lower or higher than 1 depending on the existence of solutions
in extremes interior to [𝑎, 𝑏], one gets the conclusions of the
theorem.

Remark 15. The conclusions of Theorems 12 and 14 and
Remark 13 are also valid for problems of the type (109)–(114)
just replacing condition (48) by condition (111), conditions
(126) and (145) by

(−1)
𝑛−𝑘−𝑖

𝑐
𝑖
(𝑥) ≥ (−1)

𝑛−𝑘−𝑖

𝑒
𝑖
(𝑥) ≥ 0,

𝑥 ∈ [𝑎, 𝑏] , 0 ≤ 𝑖 ≤ 𝜇,

(147)

and condition (127) by

(−1)
𝑛−𝑘−𝑗

𝑐
𝑗
(𝑥) > (−1)

𝑛−𝑘−𝑗

𝑒
𝑗
(𝑥) > 0,

a.e. on [𝑎, 𝑏] ,

(148)

for at least one 𝑗 such that 0 ≤ 𝑗 ≤ 𝜇, and making 𝑞
𝑖
(𝑥) in

(128) satisfy

(−1)
𝑛−𝑘−𝑖

𝑞
𝑖
(𝑥)

≤ min {(−1)
𝑛−𝑘−𝑖

(𝑒
𝑖
(𝑥) − 𝑑

𝑖
(𝑥)) , 𝑥 ∈ [𝑎, 𝑏]} ,

0 ≤ 𝑖 ≤ 𝜇

(149)

and 𝑞
𝑖
(𝑥) in (129) satisfy

(−1)
𝑛−𝑘−𝑖

𝑞
𝑖
(𝑥)

≤ min{(−1)
𝑛−𝑘−𝑖

(
𝑐
𝑖
(𝑥)

𝜆
− 𝑎
𝑖
(𝑥)) , 𝑥 ∈ [𝑎, 𝑏]} ,

0 ≤ 𝑖 ≤ 𝜇.

(150)

Remark 16. Although this section has focused on the problem
assessed by Eloe et al., the results of Section 2 can be applied
to many other problems. The choice of Eloe’s problem in this
paper is due to the broad range of differential equations and
boundary conditions that it covers.

4. Some Examples

Throughout this section we will introduce examples where
the results of Section 3 will be used to provide progressively
better upper and lower bounds of the extremes that make (3)
and (4) have a nontrivial solution. The examples will cover
problems of the type (46)–(53) in the cases 𝑛 = 2, 3, and 4
with different boundary conditions.Thefirst two ones, related
to 𝑛 = 2, will show the advantages of the method of this
paper versus the one of [1], similar in essence but focused only
on the second-order linear BVP, namely, the ability to cover
some cases not addressable in [1] as well as the possibility
of selecting the functions 𝑎

0
(𝑥) and 𝑐

0
(𝑥) in a manner that

makes the method converge faster.

In all cases, the integral calculations have been done
numerically. This also includes the calculation of the deriva-
tives (𝑀

𝑘V)(𝑖)(𝑥), 0 ≤ 𝑖 ≤ 𝜇, as these can be written as

(𝑀
𝑘V)
(𝑖)

(𝑥)

= ∫

𝑏

𝑎

𝜕
𝑖

𝐺 (𝑎, 𝑏, 𝑥, 𝑡)

𝜕𝑥𝑖

𝜇

∑

𝑗=0

𝑐
𝑗
(𝑡) (𝑀

𝑘−1V (𝑡))
(𝑗)

𝑑𝑡.

(151)

The maximum number of iterations has been set to 8 in all
examples and up to 3 decimal figures have been calculated
for each bound.

Example 1. Let us consider the conjugate boundary value
problem

𝑦
󸀠󸀠

+ 𝐴𝑒
𝑥

= 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0, 𝐴 > 0, (152)

for different values of the constant𝐴.Themain interest of this
example is to compare the values provided by the method of
Section 3 with the values obtained for the same problem in
[1], using the operator 𝑃 defined by

𝑃𝑓 (𝑥) = ∫

𝑏

𝑎

𝐻(𝑥, 𝑡) 𝐴𝑒
𝑡

𝑓 (𝑡) 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏] , (153)

where 𝐻(𝑥, 𝑡) is the Green function of the problem

𝑦
󸀠󸀠

= 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0, (154)

and integral inequalities somewhat different to those pre-
sented in this paper. To do the comparison, let us first rewrite
(152) into

𝑦
󸀠󸀠

+ 𝐴𝑦 = −𝐴 (𝑒
𝑥

− 1) 𝑦,

𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0, 𝐴 > 0.

(155)

Following Coppel [15], we can obtain the following Green
function for the problem

𝑦
󸀠󸀠

+ 𝐴𝑦 = 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0, 𝐴 > 0, (156)

namely,

𝐺 (𝑥, 𝑡)

=

{{{{{{{

{{{{{{{

{

sin (√𝐴𝑥) sin (√𝐴 (𝑏 − 𝑡))

√𝐴 sin (√𝐴𝑏)

, 0 ≤ 𝑥 < 𝑡 ≤ 𝑏,

sin (√𝐴𝑡) sin (√𝐴 (𝑏 − 𝑥))

√𝐴 sin (√𝐴𝑏)

, 0 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏.

(157)

As a remarkable exception to the conditions of Theo-
rem 8, when dealing with Green functions of second-order
linear BVPs of the form

𝑦
󸀠󸀠

+ 𝑞 (𝑥) 𝑦 = 0, 𝑥 ∈ [𝑎, 𝑏] , 𝑦 (𝑎) = 0, 𝑦 (𝑏) = 0, (158)

one can prove that, as long as the previous equation is
disconjugate in the interval of interest, the resulting Green
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Table 1: Comparison of bounds for 𝑏 in Example 1.

Value of 𝐴 Used formula Bound

𝐴 = 3

[1], ∫𝑏
𝑎

𝑞(𝑡)𝐺(𝑡, 𝑡)𝑃
11

{1}(𝑡)𝑑𝑡 > 1 𝑏 > 1.266

[1], ‖𝑃5{V}‖2
2
< ‖V‖2

2
𝑏 < 1.287

Theorem 9 (98), 𝑘 = 2, 𝑗 = 1 𝑏 > 1.285

Theorem 9 (98), 𝑘 = 5, 𝑗 = 4 𝑏 > 1.286

Theorem 9 (99), 𝑘 = 7 𝑏 > 1.278

Theorem 9 (100), 𝑘 = 7, 𝑗 = 0 𝑏 < 1.293

Theorem 9 (100), 𝑘 = 3, 𝑗 = 2 𝑏 < 1.287

Theorem 10 (105), 𝑘 = 7 𝑏 < 1.31

𝐴 = 5

[1], ∫𝑏
𝑎

𝑞(𝑡)𝐺(𝑡, 𝑡)𝑃
11

{1}(𝑡)𝑑𝑡 > 1 𝑏 > 1.044

[1], ‖𝑃5{V}‖2
2
< ‖V‖2

2
𝑏 < 1.062

Theorem 9 (98), 𝑘 = 3, 𝑗 = 2 𝑏 > 1.061

Theorem 9 (99), 𝑘 = 2 𝑏 > 1.046

Theorem 9 (100), 𝑘 = 3, 𝑗 = 2 𝑏 < 1.062

Theorem 10 (105), 𝑘 = 7 𝑏 < 1.078

function and its derivatives with regard to 𝑎 and 𝑏 satisfy
the properties used in the proof of Theorem 8 to show
the applicability of Theorem 2, regardless of the disfocal or
nondisfocal character of the equation in such an interval.
Therefore we can applyTheorems 9 and 10 (in this case using
𝜉
1

= 𝑏/3 and 𝜉
2

= 2𝑏/3) to (155) and generate Table 1, where
the values obtained in [1] are also included.

As can be shown in Table 1,Theorem 9 provides far better
lower bounds than [1] with lesser iterations, which matches
with the results of Theorem 12 as to the effect of the choice
of 𝑐(𝑥). As for the upper bounds, in [1] there was an integral
inequality (see second row of Table 1) which yields sharp
upper bounds. However, as the table shows, (100) with 𝑗 =

𝑘−1 gives similar upper bounds with a slightly lesser number
of iterations than the aforementioned integral inequality of
[1].

Example 2. Let us consider the following conjugate boundary
value problem:

𝑦
󸀠󸀠

+ 3 (𝑥 − 1) 𝑦 = 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0. (159)

As in the previous example, we can rewrite (159) into

𝑦
󸀠󸀠

− 3𝑦 = −3𝑥𝑦, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0. (160)

The calculation of the Green function of

𝑦
󸀠󸀠

− 3𝑦 = 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0 (161)

yields

𝐺 (𝑥, 𝑡)

=

{{{{{{{

{{{{{{{

{

sinh (√3𝑥) sinh (√3 (𝑏 − 𝑡))

√3 sinh (√3𝑏)

, 0 ≤ 𝑥 < 𝑡 ≤ 𝑏,

sinh (√3𝑡) sinh (√3 (𝑏 − 𝑥))

√3 sinh (√3𝑏)

, 0 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏.

(162)

Table 2: Comparison of bounds for 𝑏 in Example 2.

Used formula Recursivity indices Bound
Theorem 9 (98) 𝑘 = 7, 𝑗 = 0 𝑏 > 2.626

Theorem 9 (98) 𝑘 = 5, 𝑗 = 4 𝑏 > 2.64

Theorem 9 (99) 𝑘 = 7 𝑏 > 2.597

Theorem 9 (100) 𝑘 = 7, 𝑗 = 0 𝑏 < 2.733

Theorem 9 (100) 𝑘 = 6, 𝑗 = 5 𝑏 < 2.641

Theorem 10 (103) 𝑘 = 7, 𝑗 = 0 𝑏 > 2.468

Theorem 10 (103) 𝑘 = 7, 𝑗 = 6 𝑏 > 2.636

Theorem 10 (104) 𝑘 = 7, 𝑗 = 0 𝑏 < 2.754

Theorem 10 (104) 𝑘 = 7, 𝑗 = 6 𝑏 < 2.647

Theorem 10 (105) 𝑘 = 7 𝑏 < 2.913

The application ofTheorems 9 and 10 (using 𝜉
1
= 𝑏/3 and

𝜉
2

= 2𝑏/3) gives Table 2. Note that in this case the results
obtained in [1] are not applicable since 3(𝑥−1) is negative for
𝑥 < 1.

According to Table 2, in general, Theorem 9 gives better
results (i.e., smaller upper bounds and bigger lower bounds)
than Theorem 10 with less iterations, at least comparing the
results given by (98) and (100) with those coming from
(103) and (104). Another pattern worth remarking is that
all inequalities, (98), (100), (103), and (104), yield sharper
bounds with less iterations when taking 𝑗 = 𝑘 − 1 instead
of 𝑗 = 1. Although one could think that a big difference
between 𝑗 and 𝑘 implies a big difference in size between
(𝑀
𝑘

𝑓)
(𝛽1)(𝑥) and (𝑀

𝑗

𝑓)
(𝛽1)(𝑥), what is true is that once 𝑏

approaches the value for which problem (159) has exactly
a solution in the extremes 0 and 𝑏, that difference may
not be very big. Thus, what could be happening is that the
iteration on 𝑘 had the effect of making 𝑀

𝑘

𝑓 converge to a
function, as happened in [1], so that the differences in “shape”
between (𝑀

𝑘

𝑓)
(𝛽1)(𝑥) and (𝑀

𝑗

𝑓)
(𝛽1)(𝑥) were minimal. In

the case of [1], the convergence was into 𝜆
𝑘

𝑢, where 𝑢 is
the eigenfunction of 𝑀𝑢 = 𝜆𝑢 and 𝜆 the corresponding
eigenvalue; one can hypothesize a similar behaviour here,
but it obviously requires additional proof. This seems to be
reinforced by the fact that (99) and (105), which in fact are
variants of (98) and (104), respectively, not applying 𝑀 to
the functions V(𝑥) and ℎ(𝑥) in the right hand side of the
equations, provide worse bounds, using higher 𝑗, than (98)
and (104) do.

Example 3. Let us consider the following boundary value
problem:

𝑦
󸀠󸀠󸀠

+ (4 + 𝑥) 𝑦
󸀠

+ 𝑥𝑦 = 0,

𝑥 ∈ [0, 𝑏] ; 𝑦 (0) = 𝑦
󸀠

(0) = 𝑦
󸀠

(𝑏) = 0.

(163)

In order to apply Theorems 9 and 10, we need to decompose
(163) in a manner that provides an equation 𝐿𝑦 = 0 right-
disfocal in the interval of interest. One possible option is

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠

= (−1)
𝑛−𝑘

(3 + 𝑥) 𝑦
󸀠

+ (−1)
𝑛−𝑘

𝑥𝑦,

𝑥 ∈ [0, 𝑏] ; 𝑦 (0) = 𝑦
󸀠

(0) = 𝑦
󸀠

(𝑏) = 0,

(164)
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with 𝑛 = 3, 𝑘 = 2, 𝛽
1
= 1 and 𝜇 = 1, which gives the BVP

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠

= 0,

𝑥 ∈ [0, 𝑏] ; 𝑦 (0) = 𝑦
󸀠

(0) = 𝑦
󸀠

(𝑏) = 0,

(165)

whose Green function can be calculated following Coppel
[15] as

𝐺 (𝑥, 𝑡) =

{{{

{{{

{

(
cos 𝑏
sin 𝑏

sin 𝑡 − cos 𝑡) (1 − cos𝑥) , 0 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏,

(1 − cos 𝑡) + sin 𝑡 (
cos 𝑏
sin 𝑏

(1 − cos𝑥) − sin𝑥) , 0 ≤ 𝑡 < 𝑥 ≤ 𝑏.

(166)

The application ofTheorems 9 and 10 (using 𝜉
1
= 𝑏/3 and

𝜉
2
= 2𝑏/3) gives Table 3.
Table 3 shows that, as expected, the bounds get improved

when the number of iterations grows. In addition, as hap-
pened in the previous example, (98) of Theorem 9 provides
sharper bounds than its peer (103) inTheorem 10, for the same
number of iterations. However, unlike the previous example,
(104) of Theorem 10 provides sharper bounds than its peer
(100) in Theorem 9. A pattern that is confirmed is that the
sharpest bounds (in fact very sharp, since based on them
we can state that 𝑏 lies between 1.381 and 1.382) are those
obtained using 𝑗 = 𝑘 − 1 in (98), (100), (103) and (104). As
before, this suggests that 𝑀

𝑘V is converging to a function,
potentially 𝜆

𝑘

𝑢 with 𝑢 being the eigenfunction of 𝑀𝑢 = 𝜆𝑢.

Example 4. Let us consider the following boundary value
problem:

𝑦
(iv)

+ 𝑥𝑦
󸀠󸀠

= 0,

𝑥 ∈ [0, 𝑏] ; 𝑦 (0) = 𝑦
󸀠

(0) = 𝑦
󸀠󸀠

(0) = 𝑦
󸀠󸀠

(𝑏) = 0.

(167)

We can rewrite problem (167) as

𝑦
(iv)

= −𝑥𝑦
󸀠󸀠

= (−1)
𝑛−𝑘

𝑥𝑦
󸀠󸀠

,

𝑥 ∈ [0, 𝑏] ; 𝑦 (0) = 𝑦
󸀠

(0) = 𝑦
󸀠󸀠

(0) = 𝑦
󸀠󸀠

(𝑏) = 0,

(168)

with 𝑛 = 4, 𝑘 = 3, 𝛽
1
= 2, and 𝜇 = 2, which, given that 𝑦(iv) =

0 is always right-disfocal regardless of the interval [𝑎, 𝑏],
satisfies all the conditions for the application of Theorems
9 and 10. To do that, we first need to determine the Green
function of the problem

𝑦
(iv)

= 0,

𝑥 ∈ [0, 𝑏] ; 𝑦 (0) = 𝑦
󸀠

(0) = 𝑦
󸀠󸀠

(0) = 𝑦
󸀠󸀠

(𝑏) = 0.

(169)

Following Coppel [15] as we did in Example 3, the mentioned
Green function can be calculated as

𝐺 (𝑥, 𝑡)

=

{{{{

{{{{

{

−(1 −
𝑡

6
)

𝑥
3

6
, 0 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏,

(−
𝑡
3

6
+

𝑡
2

2
𝑥 −

𝑡

2
𝑥
2

+
𝑡

𝑏

𝑥
3

6
) , 0 ≤ 𝑡 < 𝑥 ≤ 𝑏.

(170)

The application ofTheorems 9 and 10 (using 𝜉
1
= 𝑏/3 and

𝜉
2
= 2𝑏/3) gives Table 4.
In this example, almost for all recursivity indices, the

equations of Theorem 10 provide sharper bounds with less
iterations than their equivalent equations of Theorem 9,
unlike what happened in the previous examples. As before,
the sharpest bounds are obtained using 𝑗 = 𝑘 − 1 in (98),
(100), (103), and (104), with the result that 𝑏 must lie between
2.187 and 2.188.

5. Discussion

The method described in this paper provides a general
tool to tackle the question of the existence of solutions of
boundary value problems of 𝑛th order, conditioned to finding
a proper reproducing cone for which the operator 𝑀 can
be proven to be 𝑢

0
-positive (e.g., because 𝑀 maps 𝑃 into

its interior 𝑃
0) and to the spectral radius of 𝑀 satisfying

certain monotonicity properties with respect to the extremes
𝑎 and 𝑏 where 𝑀 is defined. That type of problems is quite
common in the literature. In our paper, we chose to focus
on two 𝑛th order linear boundary value problems studied by
Eloe andHenderson in [30], namely, those of the type (3) and
(4), where either (47)–(53) or (107)–(114) are satisfied. The
reason for such a choice is the broad range of applications
of these types of BVPs, but other cases like those analysed by
Tomastik [22], Keener and Travis [21], and Diaz [33] (note
that this list is not exhaustive) are also suitable candidates for
the application of the method. In the case of Eloe’s problems,
the tool provides necessary and sufficient conditions for the
existence of a solution in the form of integral inequalities.The
question of whether it also yields in the process progressively
better approximations of the solution of such a problem, as
the extremes 𝑎 and 𝑏 that define 𝑀 approach the extremes
for which a solution exists, as the method of [1] did, is
left open and could be investigated in future papers, but
the fact that the sharpest bounds (in fact extremely sharp
bounds) are obtained in (98), (100), (103), and (104) when
using 𝑗 = 𝑘 − 1 strongly suggests that. As for what starting
function works better for the method, the different examples
show no preference for a concrete function, and both V(𝑥)

in Theorem 9 and ℎ(𝑥) in Theorem 10 alternate in terms
of yielding the sharpest bound with the least number of
iterations, depending on the concrete BVP. Obviously other
function choices are possible.
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Table 3: Comparison of bounds for 𝑏 in Example 3.

Used formula Recursivity indices Bound
Theorem 9 (98) 𝑘 = 1, 𝑗 = 0 𝑏 > 1.37

Theorem 9 (98) 𝑘 = 2, 𝑗 = 1 𝑏 > 1.38

Theorem 9 (98) 𝑘 = 5, 𝑗 = 4 𝑏 > 1.381

Theorem 9 (99) 𝑘 = 0 𝑏 > 1.271

Theorem 9 (99) 𝑘 = 3 𝑏 > 1.35

Theorem 9 (99) 𝑘 = 7 𝑏 > 1.365

Theorem 9 (100) 𝑘 = 1, 𝑗 = 0 𝑏 < 1.448

Theorem 9 (100) 𝑘 = 5, 𝑗 = 0 𝑏 < 1.396

Theorem 9 (100) 𝑘 = 7, 𝑗 = 0 𝑏 < 1.392

Theorem 9 (100) 𝑘 = 2, 𝑗 = 1 𝑏 < 1.385

Theorem 9 (100) 𝑘 = 3, 𝑗 = 2 𝑏 < 1.382

Theorem 10 (103) 𝑘 = 7, 𝑗 = 0 𝑏 > 1.369

Theorem 10 (103) 𝑘 = 4, 𝑗 = 3 𝑏 > 1.38

Theorem 10 (103) 𝑘 = 6, 𝑗 = 5 𝑏 > 1.381

Theorem 10 (104) 𝑘 = 1, 𝑗 = 0 𝑏 < 1.407

Theorem 10 (104) 𝑘 = 2, 𝑗 = 0 𝑏 < 1.396

Theorem 10 (104) 𝑘 = 3, 𝑗 = 0 𝑏 < 1.39

Theorem 10 (104) 𝑘 = 6, 𝑗 = 0 𝑏 < 1.386

Theorem 10 (104) 𝑘 = 2, 𝑗 = 1 𝑏 < 1.384

Theorem 10 (104) 𝑘 = 3, 𝑗 = 2 𝑏 < 1.382

Theorem 10 (105) 𝑘 = 0 𝑏 < 1.706

Theorem 10 (105) 𝑘 = 2 𝑏 < 1.488

Theorem 10 (105) 𝑘 = 7 𝑏 < 1.421

The advantage of this more general approach versus the
one of [1], for the concrete case of the second-order linear
differential equation 𝑦

󸀠󸀠

+ 𝑞(𝑥)𝑦 = 0, is that, by simply
converting this equation into

𝑦
󸀠󸀠

+ 𝑞min𝑦 = − (𝑞 (𝑥) − 𝑞min) 𝑦, (171)

and applying the formulae of Section 3, the two drawbacks
present and pointed out in [1], that is,

(i) the impossibility to cover the case where 𝑞(𝑥) is
negative in a set of nonnegative measure,

(ii) the slow convergence of the method in some cases,

can be easily overcome, as Examples 1 and 2 show.
As discussed in Remark 13, this strategy can be extended

to the 𝑛th order linear boundary value problem:

𝑦
(𝑛)

+ 𝑝
𝑛−1

(𝑥) 𝑦
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑝
0
(𝑥) 𝑦 = 0,

𝑇 (𝛼, 𝛽, 𝑎, 𝑏) 𝑦 = 0,

(172)

by picking 𝑎
𝑖
(𝑥) ∈ 𝐶[𝑎, 𝑏] such that (−1)

𝑛−𝑘

𝑎
𝑖
(𝑥) ≥

max{(−1)
𝑛−𝑘

𝑝
𝑖
(𝑥), 𝑥 ∈ [𝑎, 𝑏]} and 𝐿𝑦 = 0 is right-/left-

disfocal on [𝑎, 𝑏] (depending on 𝛼, 𝛽) and setting 𝑐
𝑖
(𝑥) =

𝑎
𝑖
(𝑥) − 𝑝

𝑖
(𝑥), 0 ≤ 𝑖 ≤ 𝜇. Although this representation

does not cover all possible problems of the type (172), it
allows converting many of them to problems addressable
by this method (in particular by the formulae obtained in
Section 3), yields a differential equation 𝐿𝑦 = 0 with constant

Table 4: Comparison of bounds for 𝑏 in Example 4.

Used formula Recursivity indices Bound
Theorem 9 (98) 𝑘 = 1, 𝑗 = 0 𝑏 > 2.005

Theorem 9 (98) 𝑘 = 4, 𝑗 = 0 𝑏 > 2.114

Theorem 9 (98) 𝑘 = 7, 𝑗 = 0 𝑏 > 2.145

Theorem 9 (98) 𝑘 = 4, 𝑗 = 3 𝑏 > 2.18

Theorem 9 (98) 𝑘 = 7, 𝑗 = 6 𝑏 > 2.187

Theorem 9 (99) 𝑘 = 0 𝑏 > 1.79

Theorem 9 (99) 𝑘 = 4 𝑏 > 2.059

Theorem 9 (99) 𝑘 = 7 𝑏 > 2.106

Theorem 9 (100) 𝑘 = 1, 𝑗 = 0 𝑏 < 2.972

Theorem 9 (100) 𝑘 = 4, 𝑗 = 0 𝑏 < 2.364

Theorem 9 (100) 𝑘 = 7, 𝑗 = 0 𝑏 < 2.288

Theorem 9 (100) 𝑘 = 4, 𝑗 = 3 𝑏 < 2.193

Theorem 9 (100) 𝑘 = 7, 𝑗 = 6 𝑏 < 2.189

Theorem 10 (103) 𝑘 = 1, 𝑗 = 0 𝑏 > 2.028

Theorem 10 (103) 𝑘 = 4, 𝑗 = 0 𝑏 > 2.139

Theorem 10 (103) 𝑘 = 7, 𝑗 = 0 𝑏 > 2.159

Theorem 10 (103) 𝑘 = 4, 𝑗 = 3 𝑏 > 2.185

Theorem 10 (103) 𝑘 = 7, 𝑗 = 6 𝑏 > 2.186

Theorem 10 (104) 𝑘 = 1, 𝑗 = 0 𝑏 < 2.41

Theorem 10 (104) 𝑘 = 4, 𝑗 = 0 𝑏 < 2.26

Theorem 10 (104) 𝑘 = 7, 𝑗 = 0 𝑏 < 2.229

Theorem 10 (104) 𝑘 = 4, 𝑗 = 3 𝑏 < 2.191

Theorem 10 (104) 𝑘 = 7, 𝑗 = 6 𝑏 < 2.188

Theorem 10 (105) 𝑘 = 1 𝑏 < 2.629

Theorem 10 (105) 𝑘 = 5 𝑏 < 2.339

Theorem 10 (105) 𝑘 = 7 𝑏 < 2.301

coefficients whose Green function can be easily calculated
following Coppel [15] procedure, and above all guarantees a
relatively fast convergence of the integral iterations according
to Theorem 12, that is, allowing determining the existence of
a solution on [𝑎, 𝑏] faster. For the cases not covered (basically
those where either none of the boundary conditions 𝛼, 𝛽

is of the form (0, 1, . . . , 𝑘) or one boundary condition has
that form while the other has the biggest component (𝛼

𝑘
or

𝛽
𝑛−𝑘

) equal to 𝑛 − 1, like the left and right focal conditions),
our recommendation is to investigate the existence of 𝑀 and
a cone 𝑃 for which the general results of Section 2 can be
applied. Let us remark that the fact that 𝜇 ≤ 𝛽

1
(or 𝜇 ≤ 𝛼

1
,

in the case of (107)–(114)) is not a limitation itself for the
application of the method but it just complicates the explicit
calculation of theGreen function of (7). Nonetheless, this one
can always be calculated numerically in the worst case.

Perhaps the biggest limitation, not really of this method,
but of the way we have applied it to Eloe’s problem, is the
need for the resulting equation 𝐿𝑦 = 0 to be right- or
left-disfocal, depending on the boundary conditions, which
reduces severely the possible choices of the functions 𝑎

𝑖
(𝑥).

This constraint is a general assumption made in [42] whose
removal or relaxation is not evident but it would be really
welcome. Further assessment is therefore required in this
area.
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A question not addressed in this paper is the existence of
a kind of Courant’s max-min principle that can also be used
to provide sequences of integral conditions using the norm of
𝑀
𝑘

𝑓, in the same manner as was done in [1] (see the integral
inequality with the norm of 𝑃 that was included in Table 1).
The topic was partially analysed by Keener and Travis in [21,
Theorem 3.1]. However the extension of their proof to the
present problem is not evident, presenting gaps not easy to
fill.

With all these considerations in mind, we, the authors,
believe that this method can become a very powerful tool in
the analysis of conjugacy and focality of equations of the type
(3).
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