
Research Article
Extracting Backbones from Weighted Complex Networks with
Incomplete Information

Liqiang Qian,1 Zhan Bu,2 Mei Lu,1 Jie Cao,2 and Zhiang Wu2

1 School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2 Jiangsu Provincial Key Lab. of E-Business, Nanjing University of Finance and Economics, Nanjing 210046, China

Correspondence should be addressed to Zhan Bu; buzhan@nuaa.edu.cn

Received 16 July 2014; Revised 21 September 2014; Accepted 21 September 2014

Academic Editor: Zidong Wang

Copyright © 2015 Liqiang Qian et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The backbone is the natural abstraction of a complex network, which can help people understand a networked system in a more
simplified form. Traditional backbone extraction methods tend to include many outliers into the backbone. What is more, they
often suffer from the computational inefficiency—the exhaustive search of all nodes or edges is often prohibitively expensive. In
this paper, we propose a backbone extraction heuristic with incomplete information (BEHwII) to find the backbone in a complex
weighted network. First, a strict filtering rule is carefully designed to determine edges to be preserved or discarded. Second, we
present a local search model to examine part of edges in an iterative way, which only relies on the local/incomplete knowledge
rather than the global view of the network. Experimental results on four real-life networks demonstrate the advantage of BEHwII
over the classic disparity filter method by either effectiveness or efficiency validity.

1. Introduction

Complex networks have become an important approach
for understanding systems involving interacting objects [1].
Thus, networked systems have permeated a wide spectrum
of domains, ranging from the biology and the automatic
control to the computer science [2, 3]. With networked
systems being increasingly large, to understand and reveal
the underlying phenomena taking place in such systems are
facing considerable challenges.The presence of the backbone
is a signature or an abstraction of the nature of complex
systems and can provide huge help for understanding them
in more simplified forms [4]. For example, detecting the
backbones in criminal networks can better target suspects [5].
Also, urban planners attempt to examine the topologies of
public transport systems by analyzing their backbones [6].

Recent years have witnessed an increasing interest in
extracting backbones in large-scale weighted networks of
various kinds [4, 7–9]. As many networks are evolving into
large scale and the weight distributions are spanning several
orders of magnitude, extracting backbones from them has
become a critical task for research and applications of various

purposes. In general, the backbone should be thought of as
a set of nodes and edges that interconnect various pieces of
network, providing a path for the exchange of information
between different subnetworks [10]. Thus, a promising way
for backbone extraction is to map the original network into a
smaller network, in which the numbers of nodes and edges
should be small enough to be amenable to analysis and
visualization.

In the literature, the existing methods can be roughly
divided into two categories, one based on the coarse graining
and the other is filter-based.Themethods based on the coarse
graining [4, 7, 11–14] clump nodes sharing common attributes
together in the same group/community and then consider the
whole group as one single unit in the newnetworks. However,
there is often no clear statement on whether properties of the
initial network should be preserved in the network of clusters
[15].

The filter-based methods [8, 9, 16–18] typically employ
a bottom-up strategy to extract the backbone. They often
start by defining a statistical property of a node or an edge,
and then this property is used as a criterion to determine
nodes/edges to be preserved or discarded. In this case,
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the observation scale is fixed and the representation that the
network symbolizes is not changed. Instead, those elements,
nodes, and edges, which carry relevant information about
the network structure, are kept while the rest are discarded.
However, the filter-based methods may include a multitude
of outliers, which should not be included into the backbone
naturally. What is more, they often suffer from the computa-
tional inefficiency: the exhaustive search of all nodes or edges
is often prohibitively expensive.

In this work, we attempt to design a novel filter-based
method for extracting backbones from large-scale weighted
networks. Unlike the exhaustive search adopted by the exist-
ing methods, the proposed approach only needs incomplete
information and then invokes the iteratively local search
scheme for improving the efficiency. So, this novel method is
called backbone extraction heuristic with incomplete infor-
mation (BEHwII). In particular, although 𝛼

𝑖𝑗
proposed in [8]

is employed as the filtering criterion, BEHwII imposes max
instead of min to enhance the filtering rule, so that the case
of extracting too many outliers into the backbone can be
avoided. Our method is naturally a heuristic, since it does
not examine all edges in the network. Alternatively, BEHwII
greedily selects an optimal edge in one iteration and adds this
edge into the backbone if the predefined max filtering rule
is satisfied. Extensive experiments on various real-world net-
works demonstrate the superiority of BEHwII over the global
filtering method in terms of effectiveness and efficiency.

The remainder of this paper is organized as follows. In
Section 2, we introduce preliminaries and motivation of this
work. In Section 3, we discuss the local search mechanism
and then present the algorithmic details of BEHwII. Exper-
imental results will be given in Section 4. We present the
related work in Section 5 and finally conclude this paper in
Section 6.

2. Preliminaries and Motivation

Since the proposed method for backbone extraction is a
filter-based model in essence, we begin by providing the
preliminary knowledge about the filter-based model. Thus,
we analyze some drawbacks of existing filter-based methods,
which leads to a better understanding of the motivation of
this paper.

The filter-based models typically employ a bottom-up
strategy to extract the backbone. They often start by defining
a statistical property of a node or an edge, and then this
property is used as a criterion to determine nodes/edges to
be preserved or discarded. As a result, preserved nodes and
their links, or preserved edges and their endpoints, composed
the backbone of the network.Therefore, the key step in filter-
basedmethods is how to define a reasonable filtering property
for nodes/edges. For instance, 𝑘-core is a well-known filtering
property that is used to construct a hierarchical topological
filter in [16]. However, many simple filtering properties (e.g.,
𝑘-core) are not suitable for weighted networks. Meanwhile,
the real-world weighted networks are usually with strong
disorder heavy-tailed distributions of weights [19]. That is,
the probability distribution 𝑃(𝑤) that any given link carries

a weight 𝑤 is broadly distributed, spanning several orders of
magnitude.This feature exerts nontrivial challenges to define
the filtering property for weighted networks, due in large
part to the lack of a characteristic scale. Serrano et al. [8]
addressed this challenge by introducing the disparity filter
based on the null hypothesis; that is, the normalized weights
that correspond to the connections of a certain node of degree
𝑘 are produced by a random assignment from a uniform
distribution. Given a node 𝑖 and its associated link with
weight 𝑤

𝑖𝑗
, the normalized weight 𝑝

𝑖𝑗
is defined as

𝑝
𝑖𝑗
=

𝑤
𝑖𝑗

∑
𝑙
𝑤
𝑖𝑙

. (1)

Under the null hypothesis, a null model is then presented, in
which 𝑘 − 1 points are distributed with uniform probability
in the interval [0, 1]. As a result, 𝑘 subintervals are generated,
of which lengths represent the expected values for the 𝑘
normalized weights 𝑝

𝑖𝑗
according to the null hypothesis. The

probability density function for one of these variables taking
a particular value 𝑥 is

𝜌 (𝑥) 𝑑𝑥 = (𝑘 − 1) (1 − 𝑥)
𝑘−2
𝑑𝑥. (2)

Based on (2), given an edge, the probability 𝛼
𝑖𝑗
indicating its

normalized weight 𝑝
𝑖𝑗
is compatible with the null model and

can be defined as

𝛼
𝑖𝑗
= 1 − (𝑘

𝑖
− 1)∫

𝑝𝑖𝑗

0

(1 − 𝑥)
𝑘𝑖−2
𝑑𝑥

= (1 − 𝑝
𝑖𝑗
)

𝑘𝑖−1

,

(3)

where 𝑘
𝑖
is the degree of node 𝑖. Thus, 𝛼

𝑖𝑗
is adopted as

the filtering criterion in [8] for weighted networks. Given a
significance level 𝛼, the edges that carry weights which can
be considered not compatible with a random distribution can
be filtered out with a certain statistical significance. That is,
edges with 𝛼

𝑖𝑗
< 𝛼 should be kept, since they reject the null

hypothesis.
The criterion 𝛼

𝑖𝑗
gave birth to an effective filter-based

method for backbone extraction [8]. However, two draw-
backs have attracted our attention. One of the biggest limi-
tations is that it may include a multitude of outliers, which
should not be included into the backbone naturally. In what
follows, we try to explore its cause and give a modified
scheme.

For node 𝑖 with degree 𝑘
𝑖
, the level of local heterogeneity

in the weights can be calculated as

𝛾 (𝑘
𝑖
) = 𝑘
𝑖
∑

𝑗

𝑝
2

𝑖𝑗
. (4)

Thus, under perfect homogeneity, when all the links share
the same amount of the strength of the node, 𝛾(𝑘

𝑖
) equals 1

independently of 𝑘
𝑖
, while in the case of perfect heterogeneity,

when just one of the links carries the whole strength of the
node, 𝛾(𝑘

𝑖
) is equal to 𝑘

𝑖
.With predefined nullmodel, the join

probability distribution for two intervals can be defined as

𝜌 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = (𝑘 − 1) (𝑘 − 2) (1 − 𝑥 − 𝑦)
𝑘−3
Θ

× (1 − 𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦,

(5)
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where Θ(⋅) is the Heaviside step function, which can be used
to calculate the statistics of 𝛾null(𝑘𝑖) for the null model. The
average 𝜇(𝛾null(𝑘𝑖)) and the standard deviation 𝜎2(𝛾null(𝑘𝑖))
are estimated to be

𝜇 (𝛾null (𝑘𝑖)) =
2𝑘
𝑖

𝑘
𝑖
+ 1

,

𝜎
2
(𝛾null (𝑘𝑖)) = 𝑘

2

𝑖
(

4𝑘
𝑖
+ 20

(𝑘
𝑖
+ 1) (𝑘

𝑖
+ 2) (𝑘

𝑖
+ 3)

−

4

(𝑘
𝑖
+ 1)
2
) .

(6)

In real networks, the observed level of local heterogeneity,
denoted by 𝛾ob(𝑘𝑖), can be compared against the null model
expectations. Namely, the observed values are compatible
with the null hypotheses when they lie between the perfect
homogeneity and 𝜇(𝛾null(𝑘𝑖)) + 𝑎 ⋅ 𝜎(𝛾null(𝑘𝑖)). And the local
heterogeneity will be recognized only if 𝛾ob(𝑘𝑖) obeys

𝛾ob (𝑘𝑖) > 𝜇 (𝛾null (𝑘𝑖)) + 𝑎 ⋅ 𝜎 (𝛾null (𝑘𝑖)) . (7)

The parameter 𝑎 is a constant determining the confidence
interval for the evaluation of the null hypothesis. The larger
it is, the more restrictive the null model becomes and the
more disordered weights should be for local heterogeneity
to be detected. A typical value of 𝑎 in analogy to Gaussian
statistics could be set as 2. In Figure 1, we show two regions
(local heterogeneity and local compatibility) associated with
different 𝑘

𝑖
. Obviously, small nodes in terms of degree (e.g.,

𝑘
𝑖
< 5) are more likely to fall into the local compatible region,

which implies that those nodes with small degree should not
be preserved in the backbone.

In [8], the multiscale backbone is obtained by preserving
all the links which beat the significant level 𝛼 for at least one
of the two nodes at the ends of the link while discounting the
rest. Notice that 𝛼

𝑖𝑗
is not symmetrical; that is, 𝛼

𝑖𝑗
̸= 𝛼
𝑗𝑖
, if

𝑘
𝑖
̸= 𝑘
𝑗
. In the case of a node 𝑖 with degree 𝑘

𝑖
< 5 connected

to a node 𝑗 with degree 𝑘
𝑗
≫ 5, we might have 𝛼

𝑗𝑖
< 𝛼 < 𝛼

𝑖𝑗
.

Then this link will be preserved as it holds min(𝛼
𝑖𝑗
, 𝛼
𝑗𝑖
) < 𝛼.

However, as discussed above, node 𝑖 is likely to fall into the
local compatible region, which should be kept away from
the backbone. Considering that an intermediate power law
degree distribution is usually observed in real systems, the
disparity filter in [8] may include a multitude of outliers. To
avoid including many outliers into the backbone, one can
impose max instead of min to enhance the filtering rule,
so that a connection is preserved whenever its intensity is
significant for both nodes involved.

Secondly, most of the existing filter-based methods [8, 9,
16, 17] suffer from the computational inefficiency, the exhaus-
tive search of all nodes or edges in a network. For example,
the filtering method based on 𝛼

𝑖𝑗
is heavily dependent on the

number of links. Asmany social networking sites are evolving
into superlarge scales, for example, containing millions even
billions of nodes and edges, the computation will be terrible!

According to the above analysis, this paper proposes
a local method for extracting backbones from weighted
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Figure 1: 𝛾(𝑘
𝑖
) compared against the null model expectations.

networks. In particular, we try to answer the following two
questions:

(i) Q1: how to carefully design a filtering criterion to
avoid including many outliers into the backbone?

(ii) Q2: how to reduce the computational complexity of
the backbone extraction algorithm?

3. Backbone Extraction Heuristic with
Incomplete Information (BEHwII)

Let G = (𝑉, 𝐸,𝑊) be a given weighted graph, where 𝑉 is the
set of nodes (|𝑉| = 𝑛), 𝐸 is the set of edges (|𝐸| = 𝑚) that
connect the nodes in 𝑉, and 𝑊 is the weight of every edge
in 𝐸. Backbone extraction is formulated as finding a subset
of graph G󸀠 = (𝑉󸀠, 𝐸󸀠), that is, the backbone, where |𝐸󸀠| ≪
|𝐸| and ∀𝑒

𝑖𝑗
∈ 𝐸
󸀠, 𝛼
𝑖𝑗
< 𝛼. This implies that the backbone

should also significantly reduce the number of edges, while
preserving most essential connections.

In this section, we propose a backbone extraction heuris-
tic with incomplete information (BEHwII for short). First, we
introduce the basic idea of BEHwII, covering the local search
mechanism. Second, we present algorithmic details including
the complexity analysis for BEHwII.

3.1. Local SearchModel. In this paper, we employ the filtering
criterion 𝛼

𝑖𝑗
proposed in [8]. However, one major drawback

lies in that it is probable to include too many outliers into
the backbone as stated in Section 2. To explore its cause,
we argue that this drawback originates from the looseness
of the filtering rule, that is, min(𝛼

𝑖𝑗
, 𝛼
𝑗𝑖
) < 𝛼. Therefore,

BEHwII attempts to impose max instead of min to enhance
the filtering rule, so that a connection is preserved whenever
its intensity is significant for both nodes involved. In BEHwII,
an edge 𝑒

𝑖𝑗
is preserved in the backbone, if

𝛼
∗

𝑖𝑗
= max (𝛼

𝑖𝑗
, 𝛼
𝑗𝑖
) < 𝛼, (8)
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Figure 2: Illustration for the local search.

where𝛼
𝑖𝑗
is the probability derived by comparing the normal-

ized weight 𝑝
𝑖𝑗
with the null model, as shown in (3). With

the filtering rule, BEHwII aims to extract a certain percentage
(denoted by %𝑚

𝑡
) of edges satisfying (8) as the backbone.

A straightforward way for backbone extraction is to
apply the exhaustive search, that is, to examine all of the
edges one by one, and add the edge to the backbone as
(8) satisfied. Obviously, this exhaustive search suffers from
the computational inefficiency, especially when the network
becomes much larger. Here, we introduce a local search
model to solve this problem. We divide the explored graph
into three regions: the known local areaC, the boundary area
B, and a larger unknown area U, as illustrated in Figure 2.
Initially, we randomly select a node V

𝑠
as the start node and

add V
𝑠
to C. Then, all neighbors of nodes in C (e.g., V

𝑠
) are

added toB.The local searchmodel selects an optimal edge 𝑒
𝑖𝑗

with minimum 𝛼∗
𝑖𝑗
fromC∪B and adds it into the backbone

if it holds (8). Areas C and B are expanded accordingly.
Another edge will be selected and checked, until a certain
number of edges are included into the backbone.

Remark 1. The local search model is a streaming and iterative
scheme in essence [20]. An iterative process is invoked to
examine each node along with its neighbors and performs
a computation, of which the result is associated with the
processed node. Such scheme is a very promising technique
of scaling the existing method. Moreover, the local search
model is independent of the “global knowledge”; that is, it
only needs to fetch part of the node adjacency lists intomain-
memory.Due to the small-world effect, ourmodel is validated
to be slightly dependent on the initial node selection, ofwhich
the experimental results will be given in Section 4.1.

3.2. Algorithmic Details. In this section, we introduce how to
use BEHwII to extract the backbone starting from any ran-
domly selected node. BEHwII initially places the randomly
selected source node V

𝑠
into the known local area (C← {V

𝑠
})

and adds its neighbors into B. Two data structures used in
BEHwII are described as follows:

(i) Min-heap 𝐻, which stores the edge information,
including 𝑒

𝑖𝑗
andmax(𝛼

𝑖𝑗
, 𝛼
𝑗𝑖
), inC∪B, so that every

update process will take 𝑂(log |𝐻|) time;

(1) procedure BEHwII(V
𝑠
, 𝛼,%𝑚

𝑡
)

(2) C← {V
𝑠
};

(3) B← {V
𝑖
| V
𝑖
∈ 𝑁
𝑠
};

(4) 𝐻 ← {⟨𝑒
𝑠𝑖
, 𝛼
∗

𝑠𝑖
⟩}, where 𝛼∗

𝑠𝑖
= max(𝛼

𝑠𝑖
, 𝛼
𝑖𝑠
);

(5) while |𝐿𝐸| ≤ %𝑚
𝑡
∗ 𝑚 do

(6) Get the minimal 𝛼∗
𝑖𝑗
from𝐻;

(7) if 𝛼∗
𝑖𝑗
< 𝛼 then

(8) 𝐿
𝐸
← 𝑒
𝑖𝑗
;

(9) end if
(10) 𝐻 ← 𝐻/𝑒

𝑖𝑗
;

(11) if ∃𝑖󸀠 ∈ {𝑖, 𝑗}, V
𝑖
󸀠 ∉ C then

(12) C← C⋃{V
𝑖
󸀠 };

(13) B←B⋃{V
𝑗
󸀠 | V
𝑗
󸀠 ∈ 𝑁

𝑖
󸀠 ;

(14) 𝐻 ← 𝐻⋃{⟨𝑒
𝑖
󸀠
𝑗
󸀠 , 𝛼
∗

𝑖
󸀠
𝑗
󸀠⟩};

(15) end if
(16) if |C| ≥ 𝑛 then
(17) break;
(18) end if
(19) end while
(20) return 𝐿𝐸;
(21) end procedure

Algorithm 1: BEHwII algorithm.

(ii) List 𝐿𝐸, which stores the edges of the backbone, and
every insert process will take 𝑂(1) time.

We describe the BEHwII Algorithm step by step roughly
as follows.

Step 1. Find the edge 𝑒
𝑖𝑗

with the minimal value of
max(𝛼

𝑖𝑗
, 𝛼
𝑗𝑖
) inC ∪B and add it into 𝐿𝐸 if it satisfies (8).

Step 2. If any endpoints on the considered edge 𝑒
𝑖𝑗
are not

included inC (∃𝑖󸀠 ∈ {𝑖, 𝑗}, V
𝑖
󸀠 ∉ C), remove V

𝑖
󸀠 fromB toC;

otherwise, delete edge 𝑒
𝑖𝑗
and turn to Step 1.

Step 3. Delete edge 𝑒
𝑖𝑗
and remove additional nodes (V

𝑗
󸀠 |

V
𝑗
󸀠 ∈ 𝑁
𝑖
󸀠 , V
𝑗
󸀠 ∈ U) fromU toB.

The above process continues until it has agglomerated a
certain percentage of edges, or it has discovered the entire
enclosing component, whichever happens first. Note that if
𝑒
𝑖𝑗
with the minimal value of max(𝛼

𝑖𝑗
, 𝛼
𝑗𝑖
) in Step 1 does not

satisfy (8), we still check its endpoints and add corresponding
edges into C ∪ B. Here, the nodes between 𝑒

𝑖𝑗
can be seen

as the excessive nodes to continue the search process. See
Algorithm 1 for more exact pseudocode.

Computational Complexity. The main computational cost of
the above algorithm originates from the number of examined
edges 𝑀. For each examined edge 𝑒

𝑖𝑗
, BEHwII needs to

calculate the value of max(𝛼
𝑖𝑗
, 𝛼
𝑗𝑖
) on it and update the min-

heap 𝐻. Because max(𝛼
𝑖𝑗
, 𝛼
𝑗𝑖
) depends on the degrees of

nodes V
𝑖
and V

𝑗
and on the normalized weights 𝑝

𝑖𝑗
and 𝑝

𝑗𝑖
,

thus, it takes𝑂(𝑘
𝑖
+𝑘
𝑗
) time to calculate max(𝛼

𝑖𝑗
, 𝛼
𝑗𝑖
) on each

examined edge.Theupdating (inserting or deleting) cost of𝐻
for each examined edge is𝑂(log |𝐻|). In general, the running
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Figure 3: Comparison in terms of the average weight.

Table 1: Real-world networks for experiments.

Network |𝑉| |𝐸| ⟨𝑘⟩ ⟨𝑤⟩

Lesmis 77 254 6.60 3.22
USAir97 322 2,126 12.80 0.07
OClinks 1,899 20,296 14.60 2.95
RTNN 13,308 148,035 22.25 2.29

time for the algorithm is 𝑂(𝑀(2⟨𝑘⟩ + log |𝐻|)), where ⟨𝑘⟩ is
the average degree of the graph.

4. Experimental Results

Four real-world undirected and weighted networks, Lesmis,
USAir97, OClinks, and RTNN, are used for experiments.

Some characteristics of these networks are shown in Table 1,
where |𝑉| and |𝐸| indicate the numbers of nodes and edges,
respectively, in the network, ⟨𝑘⟩ indicates the average degree,
and ⟨𝑤⟩ indicates the average weight. Lesmis [21] is the
network of coappearances of characters in Victor Hugo’s
novel, where nodes represent characters and edges connect
any pair of characters that appear in the same chapter of
the book. USAir97 [22] gathers 2126 flight information
between 332 US airports, where the weight represents the
normalized distance among two airports. OClinks [23] is a
network created from an online community, where nodes
represent students at the University of California and edges
are established between two students if one ormoremessages
have been sent from one to the other. RTNN [24] is also a
coappearance network including all words/terms in online
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Figure 4: Comparison in terms of the average betweenness.

stories about the September 11 attack, where each node
represents a word and each tie means that the two words
appear in the same story.

4.1. Comparison Results. In this subsection, we compare
BEHwII with the disparity filter (DF for short) proposed by
Serrano et al. [8] in performance and scalability. BEHwII is a
local search based algorithm, which can start from any ran-
domly selected source node. To investigate the impact of the
parameter V

𝑠
, we fix 𝛼 = 0.5 and take V

𝑠
= V
ℎ
, V
𝑙
, respectively,

where V
ℎ
is a high-connected node and V

𝑙
is a low-connected

one. Both V
ℎ
and V
𝑙
are randomly selected from the original

network. For convenience, we denote BEHwII starting from

V
ℎ
by BEHwII𝐻; then BEHwII𝐿 represents BEHwII starting

from V
𝑙
. For a given extraction goal (the percent edges kept

in the backbone), the effectiveness of BEHwII𝐻, BEHwII𝐿,
and DF can be validated by measuring the average weight
and node betweenness of the extracted backbones, while the
efficiencies can be measured by the number of examined
edges and the overall running time.

Effectiveness. Figure 3 shows the average weight of the
extracted backbones when the original graphs are extracted
by BEHwII𝐻, BEHwII𝐿, and DF, respectively. Note that as the
only parameter forDF is𝛼, for a given network, the fraction of
extracted edges %𝑚

𝑡
is a monotonically increasing function
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(a) Lesmis: BEHwII𝐻 (b) Lesmis: DF

(c) USAir97: BEHwII𝐻 (d) USAir97: DF

Figure 5: Comparison in terms of network visualizations.

of 𝛼. For convenient comparison, both DF and BEHwII use
the same parameter %𝑚

𝑡
, which is gradually increased so

that the number of extracted edges grows accordingly. Two
observations are noteworthy from Figure 3. First, compared
with DF, BEHwII𝐻 shows slight improvements in terms of
the average weight, no matter what %𝑚

𝑡
is input. BEHwII𝐿

does not perform well when %𝑚
𝑡
is set to be too small. For

instance, BEHwII𝐿 obtains the %𝑚
𝑡
= 0.1 backbone with

the average weight lower than 10 on the Lesmis network,
but, after using BEHwII𝐻 and DF to extract backbones, the
average weight increases significantly. Another important
observation is that BEHwII𝐻 and BEHwII𝐿 will trend con-
sistently as %𝑚

𝑡
grows to a certain level. As can be seen

from Figures 3(a) and 3(b), when the fraction of edges grows
to around 0.25, the backbones extracted by BEHwII𝐻 and
BEHwII𝐿 will have the same value of average weight. As
BEHwII𝐿 adds local optimum edge into the backbone, even
if it starts from a low-connected source node, it can sniff
several high-connected nodeswithin limited steps.Therefore,
BEHwII𝐿 will evolve to a BEHwII𝐻 after a certain percentage
of edges have been discovered.

We then extensively explore the average node between-
ness in the backbones extracted from Lesmis, USAir97,
OClinks, and RTNN. Node betweenness centrality is the

fraction of all shortest paths in the network that contain a
given node, which reflects the connectedness of the node.
Figure 4 shows the average betweenness of extracted nodes
for different fractions of edges %𝑚

𝑡
in the backbones. We can

clearly findout that bothBEHwII𝐻 andBEHwII𝐻 outperform
DF in all of the test graphs. This implies that the edges
extracted by BEHwII always lie between two high-connected
nodes. As for DF, the filtering rule is so loose that some
outliers (nodes with degree equal 1) will be included in the
backbones, which will drop the connectedness of extracted
backbone.

We then take a direct look at the extracted backbones.
The Lesmis and USAir97 networks are used here as two
examples. We set %𝑚

𝑡
= 0.25 and 𝛼 = 0.5 for BEHwII𝐻.

In the case of Lesmis, the extracted backbone obtained by
BEHwII𝐿 is shown in Figure 5(a). The source node is colored
with green, the nodes and edges colored with blue are those
kept in the backbones, the size of the node expresses its
strength (∑

𝑙
𝑤
𝑖𝑙
), and the thickness of the edge represents

the weight on it. Interestingly, the backbone obtained by
BEHwII𝐻 preserves almost all high-connectivity nodes and
essential connections. We then employ DF directly on this
network and obtain a backbone as shown in Figure 5(b). The
clique-like pattern on the top is missed, and, what is more,
two outliers (highlighted by dashed circles) are kept.
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Figure 6: Comparison on efficiency.

As for the USAir97 network, nodes are placed in the
plane according to their actual coordinates on the earth. The
backbone extracted by BEHwII𝐻, as shown in Figure 5(c),
almost covers all the geographic regions of USA. In addition,
the hierarchy of the transportation system is fully highlighted,
including not just the most high flux connections but also
small weight edges that are statistically significant because
they represent relevant signal at the small scales. However,
the backbone extracted by DF includes many small airports
in Alaska and the west coast of USA (highlighted in dashed
ellipses).

The Efficiency. Figure 6 compares the efficiencies of BEHwII
and DF, given the extraction goal %𝑚

𝑡
= 0.25. The numbers

of examined edges by BEHwII𝐻, BEHwII𝐿, and DF for the
four test networks are shown in Figure 6(a). Apparently,
BEHwII𝐻 and BEHwII𝐿 examine fewer edges than DF does.
The latter will examine all nodes and edges in the network.
Figure 6(b) verifies our analysis in Section 3.2; that is, the
running time of BEHwII originates from the number of
examined edges. It is interesting to find that the running time
of BEHwII𝐻 and BEHwII𝐿 remains nearly constant in relative
large dense graphs (e.g., OClinks and RTNN), that is, because
those two networks have the “small world” effect [23, 24],
in which most nodes can be reached from each other by a
small number of hops or steps. In this context, both BEHwII𝐻
and BEHwII𝐿 can rapidly sniff those high-connected nodes;
therefore their overall running times are almost consistent.

4.2. Inside BEHwII. Here, we take a further step to explore
several factors that affect the performance of BEHwII. We
select BEHwII starting from a high-connected source node,
that is, BEHwII𝐻, for experiments. Two inside factors have
been investigated: the significant level 𝛼 and the inside
filtering rule.

The Significant Level 𝛼. It is particularly interesting to analyze
the behavior of the topological properties of the backbones

extracted by BEHwII𝐻 at increasing levels of the significant
level 𝛼. Figures 7(a) and 7(b) show the evolution of the
cumulative degree distribution, 𝐶(𝑘) = ∑

𝑘
󸀠
≤𝑘
𝑃(𝑘
󸀠
), with

different values of 𝛼 for USAir97 and OClinks, respectively.
The backbones extracted by BEHwII𝐻 have the cumulative
degree distributions similar to the original networks. Smaller
values of 𝛼 have flat startups, indicating that the extracted
backbones contain fewer low-degree nodes. The evolution
of the weight distribution (𝑃(𝑤)) with different values of 𝛼
is shown in Figures 7(c) and 7(d), from which we observe
that the original USAir97 and OClinks networks are both
heavy tailed. Interestingly, almost all scales are kept during
the search process until BEHwII𝐻 becomes too restrictive,
in which case BEHwII𝐻 applies a very small value of 𝛼.
A restrictive BEHwII𝐻 cuts 𝑃(𝑤) off below 𝑤

𝑐
, which may

discard the region of small weights. Finally, we analyze
the cumulative node betweenness centrality distributions of
extracted backbones. It is worth mentioning that the node
betweenness centrality in the backbone is given as that in
the original network. Figures 7(e) and 7(f) give the evolution
of the cumulative betweenness centrality distribution with
different 𝛼. For both test graphs, 𝐶(𝐵𝐶) starts from a very
low value if BEHwII𝐻 applies a very small value of 𝛼, which
implies that those low-connected nodes will not be included
in the backbones.

Therefore, we can conclude that values of 𝛼 in the range
[0.4, 0.8] are optimal, in the sense that backbones extracted
by BEHwII𝐻 in this region have a large proportion of high-
connective nodes and essential connections, and the stable
stationary degree/weight distributions, compared with the
original network. It is important to stress that BEHwII𝐻
also includes the connections with the largest weight present
in the network. This is because the heavy tail of the 𝑃(𝑤)
distribution is mainly determined by relevant large-scale
weight. This is clearly illustrated in Figures 7(c) and 7(d).

The Inside Filtering Rule.We further explore the critical factor
that contributes to the success of BEHwII𝐻. As discussed
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(a) Lesmis (b) USAir97

Figure 8: Backbones extracted by BEHwII𝐻∗.

in Section 3.1, BEHwII𝐻 uses a strict filtering rule to absorb
edges. Here, we relax the previous inside filtering rule,
by imposing min instead of max, so that a connection is
preserved whenever its intensity is significant for one of
the nodes involved. In this loose BEHwII𝐻 (denoted by
BEHwII𝐻∗), an edge 𝑒

𝑖𝑗
is preserved in the backbone, if

min(𝛼
𝑖𝑗
, 𝛼
𝑗𝑖
) < 𝛼. We visualize the backbones of Lesmis

and USAir97 extracted by BEHwII𝐻∗ in Figure 8. For each
test network, we set 𝛼 = 0.5 and %𝑚

𝑡
= 0.25. In

the case of the Lesmis network, six outliers (highlighted
by dashed circles) are extracted by BEHwII𝐻∗, and it also
fails to discover many essential connections. Obviously, its
performance is worse than BEHwII𝐻 by comparing Figures
8(a) and 5(a). BEHwII𝐻∗ has made progress in the case
of USAir97, as most regions of USA have been covered in the
extracted backbone as shown in Figure 8(b). However, it still
includes many small airports in Alaska and the west coast of
USA (highlighted in dashed ellipses) as DF does.

5. Related Work

In the literature, the existing backbone extraction methods
can fall into two categories: the coarse graining based meth-
ods and the filter-based methods. The methods based on
the coarse graining clump nodes sharing common attributes
together in the same group/community and then consider
the whole group as one single unit in the new networks.
Some methods along this line include the box-covering
technique [4], fractal skeleton [7], and traditional community
detection techniques such as the Kernighan-Lin algorithm
[11], latent space models [12], stochastic block models [13],
and modularity optimization [14]. The differences between
thesemethods ultimately come down to the precise definition
of a community. However, there is often no clear statement on
whether properties of the initial network are preserved in the
network of groups.

The filter-based methods typically employ a bottom-up
strategy to extract the backbone. They often start by defining

a statistical property of a node or an edge, and then this prop-
erty is used as a criterion to determine nodes/edges to be pre-
served or discarded. In this case, the observation scale is fixed
and the representation that the network symbolizes is not
changed. Instead, those elements, nodes, and edges, which
carry relevant information about the network structure, are
kept while the rest are discarded. An example of a well-known
hierarchical topological filter is the 𝑘-core decomposition
[16], with a filtering rule that acts on the connectivity of the
nodes. In the case of weighted networks, two basic reduction
techniques refer to the extraction of the minimum spanning
tree [17] and the application of a global threshold [18] on the
edge-weights, so that just those that beat the threshold are
preserved, as real-world weighted networks that are usually
with strong disorder heavy-tailed distributions of weight,
which exerts nontrivial challenges to define the filtering
property. Serrano et al. [8] addressed this challenge by
introducing the disparity filter based on the null hypothesis.

In summary, although backbone extraction based on the
coarse graining and filter models are extensively studied, they
all need the knowledge of the entire network. Further study
is still needed on finding a nice balance between the good
performance and high efficiency. Our work attempts to fill
this void by conducting backbone extraction based on an
efficient BEHwII method.

6. Conclusion

In this work, we propose a backbone extraction heuristic
with incomplete information (BEHwII) to find the backbone
in a complex weighted network. First, a strict filtering rule
is carefully designed to determine edges to be preserved
or discarded. Second, we present a local search model to
examine part of edges in an iterative way, which only relies
on the local/incomplete knowledge rather than the global
view of the network. Experimental results on four real-
life networks demonstrate the advantage of BEHwII over
the classic disparity filter method by either effectiveness or
efficiency validity.
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