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We deal with discrete weighted pseudo almost automorphy which extends some classical concepts and systematically explore its
properties in Banach space including a composition result. As an application, we establish some sufficient criteria for the existence
and uniqueness of the discrete weighted pseudo almost automorphic solutions to the Volterra difference equations of convolution
type and also to nonautonomous semilinear difference equations. Some examples are presented to illustrate the main findings.

1. Introduction

The notation of (continuous) almost automorphy, intro-
duced by Bochner [1], is related to and more general than
(continuous) almost periodicity. Since then, this concept
has been attracting the attention of many researchers and
the interest in this topic still increases. There is a lager
literature on this topic. We refer to the recent books [2, 3],
where the authors gave an important overview about the
theory of (continuous) almost automorphic functions and
their applications to differential equations. Recently, a new
more general type of almost automorphy called (continuous)
weighted pseudo almost automorphy is proposed by Blot et
al. [4], which generalizes various extensions of (continuous)
almost automorphy; one can refer to [5] for more details.

Discrete almost automorphic functions, a class of func-
tions which are more general than discrete almost periodic
ones, were considered in [6] in connection with the study of
(continuous) almost automorphic bounded mild solutions of
differential equations; see also [7–9]. Similar to (continuous)
almost automorphic functions, discrete almost automorphic
functions have made important applications to differential
equations in Banach space. The range of applications of
discrete almost automorphic functions include first order
nonlinear difference equations [10], Volterra difference equa-
tions [11–13], nonautonomous difference equations [14, 15],

and nonlinear stochastic difference equations [16]. On the
other hand, recently, the concept of discrete weighted pseudo
almost automorphic functions, which generalizes the notion
of discrete almost automorphic functions, is introduced by
Abbas in [17] and some basic properties of these functions
are explored.

In this paper, we conduct further studies on discrete
weighted pseudo almost automorphic functions; the main
idea consists of enlarging the weighted ergodic space, with
the help of two weighted functions, extending some results of
[17]. We systematically explore its properties in Banach space
including completeness, translation invariance, and compo-
sition results. As an application, the existence and unique-
ness of the discrete weighted pseudo almost automorphic
solutions to the Volterra difference equations of convolution
type and nonautonomous semilinear difference equations are
investigated. To the best of our knowledge, discrete weighted
pseudo almost automorphy of Volterra difference equations
and nonautonomous semilinear difference equations are an
untreated topic and this is the main motivation of this paper.

The paper is organized as follows. In Section 2, some
notations and preliminary results are presented. In Section 3,
we propose a new class of functions called discrete weighted
pseudo almost automorphic functions with the help of two
weighted functions, explore its properties, and establish
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the composition theorem. Section 4 is divided into the
existence and uniqueness of discrete weighted pseudo almost
automorphic solutions to the Volterra difference equations of
convolution type and nonautonomous semilinear difference
equations, respectively. In Section 5, we provide some exam-
ples to illustrate our main results.

2. Preliminaries and Basic Results

Let (𝑋, ‖ ⋅ ‖ ), (𝑌, ‖ ⋅ ‖) be two Banach spaces and N, Z,
Z+R, R+, and C stand for the set of natural numbers,
integers, nonnegative integers, real numbers, nonnegative
real numbers, and complex numbers, respectively. Let 𝐴 be
bounded linear operator; 𝜎

𝑝
(𝐴) denotes the point spectrum

of 𝐴. 𝐵(𝑥, 𝛿) stands for open balls with center 𝑥 and radius
less than 𝛿. Let V : Z+ → C; if ∑∞

𝑘=0
|V(𝑘)| < ∞, we call that

V is a summable function.
In order to facilitate the discussion below, we further

introduce the following notations.

(i) 𝑆
1 = {𝜆 ∈ C, |𝜆| = 1}.

(ii) 𝑙∞(Z, 𝑋) = {𝑥 : Z → 𝑋 : ‖𝑥‖
𝑑

= sup
𝑛∈Z‖𝑥(𝑛)‖ <

∞}.
(iii) 𝐿(𝑋, 𝑌): the Banach space of bounded linear opera-

tors from𝑋 to𝑌 endowedwith the operator topology.
In particular, we write 𝐿(𝑋) when 𝑋 = 𝑌.

(iv) UC(Z×𝑋,𝑋): the set of all functions𝑓 : Z×𝑋 → 𝑋

satisfying that ∀𝜀 > 0, ∃𝛿 > 0 such that
󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥) − 𝑓 (𝑘, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝜀 (1)

for all 𝑘 ∈ Z and 𝑥, 𝑦 ∈ 𝑋 with ‖𝑥 − 𝑦‖ ≤ 𝛿.

Next, we recall the so-called Matkowski’s fixed point
theorem [18] and exponential dichotomy onZ [19, 20] which
will be used in the sequel.

Theorem 1 (Matkowski’s fixed point theorem [18]). Let (𝑋, 𝑑)

be a complete metric space and letF : 𝑋 → 𝑋 be a map such
that

𝑑 (F𝑥,F𝑦) ≤ Φ (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋, (2)

where Φ : [0, +∞) → [0, +∞) is a nondecreasing function
such that lim

𝑛→+∞
Φ𝑛(𝑡) = 0 for all 𝑡 > 0. Then F has a

unique fixed point 𝑧 ∈ 𝑋.

Given a sequence {𝐴(𝑛)}
𝑛∈Z ⊂ 𝐿(𝑋) of invertible

operators, define

A (𝑚, 𝑛) =

{{

{{

{

𝐴 (𝑚 − 1) ⋅ ⋅ ⋅ 𝐴 (𝑛) , if 𝑚 > 𝑛,

Id, if 𝑚 = 𝑛,

𝐴−1

(𝑚) ⋅ ⋅ ⋅ 𝐴−1

(𝑛 − 1) , if 𝑚 < 𝑛,

(3)

where Id is the identity operator in 𝑋.
For the first order difference equation

𝑥 (𝑛 + 1) = 𝐴 (𝑛) 𝑥 (𝑛) , 𝑛 ∈ Z. (4)

Definition 2 (see [19]). Equation (4) is said to have an
exponential dichotomy if there exist projections 𝑃(𝑛) ∈ 𝐿(𝑋)

for all 𝑛 ∈ Z and positive constants 𝜂, ], 𝛼, 𝛽 such that

(i) 𝑃(𝑚)A(𝑚, 𝑛) = A(𝑚, 𝑛)𝑃(𝑛), 𝑚, 𝑛 ∈ N,

(ii) ‖A(𝑚, 𝑛)𝑃(𝑛)‖ ≤ 𝜂𝑒
−𝛼(𝑚−𝑛), 𝑚 ≥ 𝑛,

(iii) ‖A(𝑚, 𝑛)𝑄(𝑛)‖ ≤ ]𝑒−𝛽(𝑛−𝑚), 𝑛 ≥ 𝑚,

where 𝑄(𝑛) = Id − 𝑃(𝑛) is the complementary projection of
𝑃(𝑛).

Finally, we recall the concept of discrete almost automor-
phic function.

Definition 3 (see [6]). A function 𝑓 ∈ 𝑙
∞(Z, 𝑋) is said to

be discrete almost automorphic if for every integer sequence
(𝑘󸀠

𝑛
), there exists a subsequence (𝑘

𝑛
) such that lim

𝑛→∞
𝑓(𝑘 +

𝑘
𝑛
) := 𝑔(𝑘) is well defined for each 𝑘 ∈ Z, and lim

𝑛→∞
𝑔(𝑘 −

𝑘
𝑛
) = 𝑓(𝑘) for each 𝑘 ∈ Z.

Remark 4. (i) If 𝑓 is (continuous) almost automorphic
function inR, then 𝑓|Z is discrete almost automorphic.(ii) If
the convergence in Definition 3 is uniform on Z, then we get
discrete almost periodicity, so discrete almost automorphy is
more general than discrete almost periodicity.(iii) Example of
discrete almost automorphic functions which are not discrete
almost periodicity was first constructed by Veech [21]. Note
that the function

𝑓 (𝑘) =
1

2 + cos 𝑘 + cos√2𝑘
, 𝑘 ∈ Z (5)

is discrete almost automorphic function but not discrete
almost periodic (see [10] for more details).

Throughout the paper, we denote 𝐴𝐴
𝑑
(Z, 𝑋) the set of

discrete almost automorphic functions. Note that if 𝑓 ∈

𝐴𝐴
𝑑
(Z, 𝑋), then 𝐾 := {𝑓(𝑘) : 𝑘 ∈ Z} is relative compact

in 𝑋 and 𝑓 is a bounded function.

Definition 5 (see [6]). A function 𝑓 : Z × 𝑋 → 𝑋 is said
to be discrete almost automorphic in 𝑘 ∈ Z for each 𝑥 ∈ 𝑋,
if for every integer sequence (𝑘

󸀠

𝑛
), there exists a subsequence

(𝑘
𝑛
) such that lim

𝑛→∞
𝑓(𝑘 + 𝑘

𝑛
, 𝑥) := 𝑔(𝑘, 𝑥) is well defined

for each 𝑘 ∈ Z, 𝑥 ∈ 𝑋 and lim
𝑛→∞

𝑔(𝑘 − 𝑘
𝑛
, 𝑥) = 𝑓(𝑘, 𝑥) for

each 𝑘 ∈ Z, 𝑥 ∈ 𝑋. We denoted by𝐴𝐴
𝑑
(Z×𝑋,𝑋) the spaces

of all discrete almost automorphic in 𝑘 ∈ Z for each 𝑥 ∈ 𝑋.

Lemma 6 (see [11]). Let𝑓 ∈ 𝐴𝐴
𝑑
(Z×𝑋,𝑋)∩UC(Z×𝑋,𝑋);

then 𝑓(⋅, ℎ(⋅)) ∈ 𝐴𝐴
𝑑
(Z, 𝑋) if ℎ ∈ 𝐴𝐴

𝑑
(Z, 𝑋).

3. Discrete Weighted Pseudo
Almost Automorphy

Let 𝑈 denote the collection of functions (weights) 𝜌 : Z →

(0, +∞). For 𝜌 ∈ 𝑈 and 𝑇 ∈ Z+ = {𝑛 ∈ Z, 𝑛 ≥ 0}, set

𝜇 (𝑇, 𝜌) :=

𝑇

∑
𝑘=−𝑇

𝜌 (𝑘) . (6)
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Denote

𝑈
∞

:= {𝜌 ∈ 𝑈 : lim
𝑇→+∞

𝜇 (𝑇, 𝜌) = +∞} ,

𝑈
𝐵

:= {𝜌 ∈ 𝑈
∞

: 0 < inf
𝑘∈Z

𝜌 (𝑘) ≤ sup
𝑘∈Z

𝜌 (𝑘) < +∞} .

(7)

Definition 7. Let 𝜌
1
, 𝜌

2
∈ 𝑈

∞
. 𝜌

1
is said to be equivalent to 𝜌

2

(i.e., 𝜌
1
∼ 𝜌

2
) if 𝜌

1
/𝜌

2
∈ 𝑈

𝐵
.

It is trivial to show that “∼” is a binary equivalence relation
on𝑈

∞
.The equivalence class of a given weight 𝜌 ∈ 𝑈

∞
which

is denoted by cl(𝜌) = {󰜚 ∈ 𝑈
∞

: 𝜌 ∼ 󰜚}. It is clear that 𝑈
∞

=

⋃
𝜌∈𝑈
∞

cl(𝜌).
For 𝜌

1
∈ 𝑈

∞
, define the weighted ergodic space [17]

𝑊𝑃𝐴𝐴
0
(Z, 𝑋)

:= {𝑓 : Z → 𝑋 is bounded,

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

1
(𝑘) = 0} .

(8)

Particularly, for 𝜌
1
, 𝜌

2
∈ 𝑈

∞
, define

𝑊𝑃𝐴𝐴
0
(Z, 𝑋)

:= {𝑓 : Z → 𝑋 is bounded,

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘) = 0} .

(9)

Clearly, when 𝜌
1

∼ 𝜌
2
, 𝑊𝑃𝐴𝐴

0
(Z, 𝑋) coincide with

𝑊𝑃𝐴𝐴
0
(Z, 𝑋); that is, 𝑊𝑃𝐴𝐴

0
(Z, 𝑋) = 𝑊𝑃𝐴𝐴

0
(Z, 𝑋), this

fact suggests that 𝑊𝑃𝐴𝐴
0
(Z, 𝑋) are more interesting when

𝜌
1
and 𝜌

2
are not necessarily equivalent. So𝑊𝑃𝐴𝐴

0
(Z, 𝑋) are

general and richer than 𝑊𝑃𝐴𝐴
0
(Z, 𝑋).

Definition 8. Let 𝜌
1
, 𝜌

2
∈ 𝑈

∞
. A function 𝑓 : Z → 𝑋

is called discrete weighted pseudo almost automorphic if it
can be expressed as 𝑓 = 𝑔 + 𝜑, where 𝑔 ∈ 𝐴𝐴

𝑑
(Z, 𝑋) and

𝜑 ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋). The set of such functions is denoted by

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋).

Remark 9. If 𝜌
1

∼ 𝜌
2
, 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋) coincide with the

discrete weighted pseudo almost automorphic functions
defined in [17].

Throughout the rest of the paper, we denote by𝑉
∞
the set

of all the functions 𝜌
1
, 𝜌

2
∈ 𝑈

∞
satisfying that there exists an

unbounded set Ω ⊂ Z such that for all 𝑚 ∈ Z,

lim sup
|𝑘|→+∞,𝑘∈Ω

𝜌
2
(𝑘 + 𝑚)

𝜌
1
(𝑘)

:= inf
𝑁∈N

[ sup
|𝑘|≥𝑁,𝑘∈Ω

𝜌
2
(𝑘 + 𝑚)

𝜌
1
(𝑘)

] < +∞,

lim
𝑇→+∞

∑
𝑘∈([−𝑇,𝑇]\Ω)+𝑚

𝜌
2
(𝑘)

𝜇 (𝑇, 𝜌
1
)

= 0.

(10)

Next, we show some properties of the space 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋).

Similar to the proof of [22], one has the following.

Lemma 10. Let 𝜌
1
, 𝜌

2
∈ 𝑉

∞
, then

(i) for each 𝑚 ∈ Z, one has

lim sup
𝑇→+∞

𝜇 (𝑇 + 𝑚, 𝜌
2
)

𝜇 (𝑇, 𝜌
1
)

< +∞. (11)

(ii) 𝑊𝑃𝐴𝐴
0
(Z, 𝑋) is translation invariant; that is, 𝑓(⋅ +

𝑚) ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋) for each 𝑚 ∈ Z if 𝑓 ∈

𝑊𝑃𝐴𝐴
0
(Z, 𝑋).

(iii) 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) is translation invariant.

(iv) If 𝑓 = 𝑔 + 𝜑 ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋), where 𝑔 ∈ 𝐴𝐴

𝑑
(Z, 𝑋),

𝜑 ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋), then

{𝑔 (𝑛) : 𝑛 ∈ Z} ⊂ {𝑓 (𝑛) : 𝑛 ∈ Z}. (12)

(v) 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) is a Banach space under the supremum

norm; that is,
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑑 := sup
𝑘∈Z

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 . (13)

Lemma 11. If 𝐴 ∈ 𝐿(𝑋) and 𝑢 ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋), then 𝐴𝑢 ∈

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋).

The proof is straightforward and is therefore omitted.
Similarly, define

𝑊𝑃𝐴𝐴
0
(Z × 𝑋,𝑋)

:= {𝑓 : Z 󳨀→ 𝑋 is bounded,

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

×

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘) = 0 uniform in 𝑥 ∈ 𝑋} .

(14)

Definition 12. Let 𝜌
1
, 𝜌

2
∈ 𝑈

∞
. A function 𝑓 : Z × 𝑋 → 𝑋

is said to be discrete weighted pseudo almost automorphic in
𝑘 ∈ Z for each 𝑥 ∈ 𝑋, if it can be decomposed as 𝑓 = 𝑔 + 𝜑,
where𝑔 ∈ 𝐴𝐴

𝑑
(Z×𝑋,𝑋) and𝜑 ∈ 𝑊𝑃𝐴𝐴

0
(Z×𝑋,𝑋). Denote

by 𝑊𝑃𝐴𝐴
𝑑
(Z × 𝑋,𝑋) the set of such functions.

We will establish composition theorem for discrete
weighted pseudo almost automorphic functions.

Lemma 13. Let 𝑓 : Z → 𝑋 be bounded and 𝜌
1
, 𝜌

2
∈ 𝑉

∞
,

then 𝑓 ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋) if and only if for any 𝜀 > 0,

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈𝐸
𝑓
(𝑇,𝜀)

𝜌
2
(𝑘) = 0, (15)

where 𝐸
𝑓
(𝑇, 𝜀) = {𝑘 ∈ [−𝑇, 𝑇] ∩ Z : ‖𝑓(𝑘)‖ ≥ 𝜀}.
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Proof. Sufficiency. It is clear that 𝑀 = sup
𝑘∈Z‖𝑓(𝑘)‖ < +∞

and 𝜇(𝑇, 𝜌
2
)/𝜇(𝑇, 𝜌

1
) < +∞ by Lemma 10. It follows from

(15) that ∀𝜀 > 0; there exists 𝑁 ∈ N such that

1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈𝐸
𝑓
(𝑇,𝜀)

𝜌
2
(𝑘) <

𝜀

2𝑀
, 𝑇 > 𝑁; (16)

then

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

=
1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈𝐸
𝑓
(𝑇,𝜀)

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

+
1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈([−𝑇,𝑇]∩Z)\𝐸

𝑓
(𝑇,𝜀)

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

≤ 𝑀 ⋅
1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈𝐸
𝑓
(𝑇,𝜀)

𝜌
2
(𝑘)

+ 𝜀 ⋅
1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈([−𝑇,𝑇]∩Z)\𝐸

𝑓
(𝑇,𝜀)

𝜌
2
(𝑘)

≤
𝜀

2
+ 𝜀 ⋅

𝜇 (𝑇, 𝜌
2
)

𝜇 (𝑇, 𝜌
1
)
,

(17)

so

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘) = 0. (18)

That is, 𝑓 ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋).

Necessity. Suppose the contrary, that there exists 𝜀
0

> 0,
such that (1/𝜇(𝑇, 𝜌

1
)) ∑

𝑘∈𝐸
𝑓
(𝑇,𝜀)

𝜌
2
(𝑘) does not converge to 0

as 𝑇 → +∞. That is, there exists 𝛿 > 0, such that for each
𝑚 ∈ Z,

1

𝜇 (𝑇
𝑚
, 𝜌

1
)

∑
𝑘∈𝐸
𝑓
(𝑇
𝑚
,𝜀
0
)

𝜌
2
(𝑘) ≥ 𝛿, for some 𝑇

𝑚
> 𝑚. (19)

Then

1

𝜇 (𝑇
𝑚
, 𝜌

1
)

𝑇
𝑚

∑
𝑘=−𝑇

𝑚

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

=
1

𝜇 (𝑇
𝑚
, 𝜌

1
)

∑

𝑘∈𝐸
𝑓(𝑇𝑚 ,𝜀0)

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

+
1

𝜇 (𝑇
𝑚
, 𝜌

1
)

∑

𝑘∈([−𝑇𝑚 ,𝑇𝑚]∩Z)\𝐸𝑓(𝑇𝑚,𝜀0)

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

≥
1

𝜇 (𝑇
𝑚
, 𝜌

1
)

∑

𝑘∈𝐸
𝑓(𝑇𝑚 ,𝜀0)

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

≥ 𝜀
0
⋅

1

𝜇 (𝑇
𝑚
, 𝜌

1
)

∑

𝑘∈𝐸
𝑓(𝑇𝑚 ,𝜀0)

𝜌
2
(𝑘)

≥ 𝛿𝜀
0
,

(20)

which contradicts the fact that

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘) = 0. (21)

Thus (15) holds.

Remark 14. If 𝜌
1
= 𝜌

2
= 1 and𝑋 = R, the result of Lemma 13

is obtained by [23, Lemma 2.9].

Lemma 15. Let 𝑓 ∈ 𝑊𝑃𝐴𝐴
0
(Z × 𝑋,𝑋) and 𝐾 ⊆ 𝑋 be

compact; if 𝑓 ∈ UC(Z × 𝐾,𝑋), then 𝑓(⋅) ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋),

where

𝑓 (𝑘) = sup
𝑥∈𝐾

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥)
󵄩󵄩󵄩󵄩 , 𝑘 ∈ Z. (22)

Proof. Since 𝑓 ∈ UC(Z × 𝐾,𝑋), ∀𝜀 > 0, there exists 𝛿 > 0

such that
󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑢) − 𝑓 (𝑘, V)󵄩󵄩󵄩󵄩 < 𝜀 (23)

for all 𝑘 ∈ Z and 𝑢, V ∈ 𝐾 with ‖𝑢 − V‖ < 𝛿. Note that 𝐾 is
compact; for the above 𝛿 > 0, there exists 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑚
∈ 𝐾

such that

𝐾 ⊂

𝑚

⋃
𝑖=1

𝐵 (𝑥
𝑖
, 𝛿) . (24)

Since 𝑓 ∈ 𝑊𝑃𝐴𝐴
0
(Z×𝑋,𝑋), for the above 𝜀 > 0, there exists

𝑇
0
∈ N such that for all 𝑇 > 𝑇

0
,

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥
𝑖
)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘) <

𝜀

𝑚
, 𝑖 = 1, 2 . . . , 𝑚. (25)

For each 𝑥 ∈ 𝐾, there exists 𝑖 ∈ {1, 2, . . . , 𝑚} such that
‖ 𝑥 − 𝑥

𝑖
‖< 𝛿; hence

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥) − 𝑓 (𝑘, 𝑥
𝑖
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥
𝑖
)
󵄩󵄩󵄩󵄩

≤ 𝜀 +
󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥

𝑖
)
󵄩󵄩󵄩󵄩 , 𝑘 ∈ Z,

(26)

which implies that

𝑓 (𝑘) = sup
𝑥∈𝐾

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥)
󵄩󵄩󵄩󵄩 ≤

𝑚

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥
𝑖
)
󵄩󵄩󵄩󵄩 + 𝜀, 𝑘 ∈ Z. (27)

Thus 𝑓 is bounded and

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑘)

󵄩󵄩󵄩󵄩󵄩
𝜌
2
(𝑘)

≤

𝑚

∑
𝑖=1

(
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑥
𝑖
)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘))

+ 𝜀 ≤ 2𝜀, 𝑇 > 𝑇
0
,

(28)

which means that 𝑓(⋅) ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋).
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Theorem 16. Assume that 𝜌
1
, 𝜌

2
∈ 𝑉

∞
, 𝑓 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z ×

𝑋,𝑋) ∩ UC(Z × 𝑋,𝑋); then 𝑓(⋅, ℎ(⋅)) ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) if

ℎ ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋).

Proof. Let

𝑓 = 𝑔 + 𝜑, ℎ = 𝑥 + 𝑦, (29)

where 𝑔 ∈ 𝐴𝐴
𝑑
(Z × 𝑋,𝑋), 𝜑 ∈ 𝑊𝑃𝐴𝐴

0
(Z × 𝑋,𝑋), 𝑥 ∈

𝐴𝐴
𝑑
(Z, 𝑋) and 𝑦 ∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋). The function 𝑓 can be

decomposed as

𝑓 (𝑛, ℎ (𝑛)) = 𝑔 (𝑛, 𝑥 (𝑛)) + 𝑓 (𝑛, ℎ (𝑛)) − 𝑔 (𝑛, 𝑥 (𝑛))

= 𝑔 (𝑛, 𝑥 (𝑛)) + 𝑓 (𝑛, ℎ (𝑛)) − 𝑓 (𝑛, 𝑥 (𝑛))

+ 𝜑 (𝑛, 𝑥 (𝑛)) .

(30)

Set

𝐹 (𝑛) = 𝑔 (𝑛, 𝑥 (𝑛)) ,

𝐺 (𝑛) = 𝑓 (𝑛, ℎ (𝑛)) − 𝑓 (𝑛, 𝑥 (𝑛)) ,

𝐻 (𝑛) = 𝜑 (𝑛, 𝑥 (𝑛)) , 𝑛 ∈ Z.

(31)

By Lemma 10, {𝑔(𝑛) : 𝑛 ∈ Z} ⊂ {𝑓(𝑛) : 𝑛 ∈ Z}, it is
not difficult to see that 𝑔 ∈ UC(Z × 𝑋,𝑋); hence 𝐹(⋅) ∈

𝐴𝐴
𝑑
(Z, 𝑋) by Lemma 6.
We claim that 𝐺(⋅) ∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋). In fact, since 𝑓 ∈

UC(Z × 𝑋,𝑋), ∀𝜀 > 0, ∃𝛿 > 0 such that

‖𝐺 (𝑛)‖ =
󵄩󵄩󵄩󵄩𝑓 (𝑛, ℎ (𝑛)) − 𝑓 (𝑛, 𝑥 (𝑛))

󵄩󵄩󵄩󵄩 < 𝜀 (32)

for all 𝑛 ∈ Z and ‖𝑦(𝑛)‖ = ‖ℎ(𝑛) − 𝑥(𝑛)‖ < 𝛿; hence

𝐸
𝐺

(𝑛, 𝜀) ⊂ 𝐸
𝑦
(𝑛, 𝛿) . (33)

Since 𝑦 ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋), by Lemma 13, one has

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈𝐸
𝑦
(𝑇,𝛿)

𝜌
2
(𝑘) = 0, (34)

which implies that

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

∑
𝑘∈𝐸
𝐺
(𝑇,𝜀)

𝜌
2
(𝑘) = 0. (35)

By Lemma 13, 𝐺(⋅) ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋).

Since 𝑓 ∈ UC(Z × 𝑋,𝑋), then 𝜑 ∈ UC(Z × 𝑋,𝑋). Let
𝐾 = {𝑥(𝑛) : 𝑛 ∈ Z}; by Lemma 15, one has

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

sup
𝑧∈𝐾

󵄩󵄩󵄩󵄩𝜑 (𝑘, 𝑧)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘) = 0, (36)

so

lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝜑 (𝑘, 𝑥 (𝑘))
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

≤ lim
𝑇→+∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

sup
𝑧∈𝐾

󵄩󵄩󵄩󵄩𝜑 (𝑘, 𝑧)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘) = 0.

(37)

That is 𝐻(⋅) ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋). Then 𝐹(⋅) ∈ 𝐴𝐴

𝑑
(Z, 𝑋),

𝐺(⋅) + 𝐻(⋅) ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋). Hence 𝑓(⋅, ℎ(⋅)) ∈

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋).

Corollary 17. Let 𝜌
1
, 𝜌

2
∈ 𝑉

∞
, 𝑓 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z × 𝑋,𝑋) and

satisfies the Lipschitz condition

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑢) − 𝑓 (𝑘, V)󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑓
‖𝑢 − V‖ , ∀𝑘 ∈ Z, 𝑢, V ∈ 𝑋,

(38)

then 𝑓(⋅, ℎ(⋅)) ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) if ℎ ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋).

The following Lemma is the essential property to study
the existence of 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋) solutions of Volterra differ-

ence equations of convolution type.

Lemma 18. Let V : Z+ → C be a summable function; if
𝑢 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋), 𝜌

1
, 𝜌

2
∈ 𝑉

∞
, then Λ(⋅) ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋),

where

Λ (𝑘) =

𝑘

∑
𝑙=−∞

|V (𝑘 − 𝑙)| 𝑢 (𝑙) , 𝑘 ∈ Z. (39)

Proof. Note that

‖Λ (𝑘)‖ ≤

∞

∑
𝑙=0

|V (𝑙)| ‖𝑢 (𝑘 − 𝑙)‖ ≤ ‖𝑢‖
𝑑
⋅

∞

∑
𝑙=0

|V (𝑙)| < ∞; (40)

hence Λ is bounded.
Let 𝑢 = 𝑢

1
+ 𝑢

2
, where 𝑢

1
∈ 𝐴𝐴

𝑑
(Z, 𝑋), 𝑢

2
∈

𝑊𝑃𝐴𝐴
0
(Z, 𝑋); then

Λ = Λ
1
+ Λ

2
, (41)

where

Λ
1
(𝑘) =

𝑘

∑
𝑙=−∞

|V (𝑘 − 𝑙)| 𝑢
1
(𝑙) ,

Λ
2
(𝑘) =

𝑘

∑
𝑙=−∞

|V (𝑘 − 𝑙)| 𝑢
2
(𝑙) , 𝑘 ∈ Z.

(42)

The almost automorphy of Λ
1
follows from [10].

Next, we show that Λ
2
∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋). In fact,

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩Λ 2
(𝑘)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘)

≤
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

𝑘

∑
𝑙=−∞

|V (𝑘 − 𝑙)|
󵄩󵄩󵄩󵄩𝑢2

(𝑙)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

=
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

∞

∑
𝑙=0

|V (𝑙)|
󵄩󵄩󵄩󵄩𝑢2

(𝑘 − 𝑙)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

=

∞

∑
𝑙=0

|V (𝑙)| (
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑢2
(𝑘 − 𝑙)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘)) .

(43)
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Since 𝑢
2
∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋), 𝑢

2
(⋅ − 𝑙) ∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋) for each

𝑙 ∈ Z by Lemma 10, then

lim
𝑇→∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑢2
(𝑘 − 𝑙)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘) = 0; (44)

by Lebesgue dominated convergence theorem, one has

lim
𝑇→∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩Λ 2
(𝑘)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘)

≤ lim
𝑇→∞

∞

∑
𝑙=0

|V (𝑙)| (
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩𝑢2
(𝑘 − 𝑙)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘)) = 0,

(45)

which implies that Λ
2

∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋). The proof is

completed.

Remark 19. If 𝜌
1

∼ 𝜌
2
, the results of Corollary 17 and

Lemma 18 are obtained by [17,Theorem2.8] and [17,Theorem
2.9], respectively.

4. Applications in Difference Equations

As an application, the main goal of this section is to establish
some sufficient criteria for the existence and uniqueness of
𝑊𝑃𝐴𝐴

𝑑
solution to the Volterra difference equations and

nonautonomous semilinear difference equations.

4.1. Volterra Difference Equation. This subsection is devoted
to establish some sufficient criteria for the existence and
uniqueness of 𝑊𝑃𝐴𝐴

𝑑
solutions of (46).

Consider theVolterra difference equations of convolution
type

𝑢 (𝑛 + 1) = 𝜆

𝑛

∑
𝑗=−∞

𝑎 (𝑛 − 𝑗) 𝑢 (𝑗) + 𝑓 (𝑛, 𝐴𝑢 (𝑛)) , 𝑛 ∈ Z,

(46)

where 𝜆 ∈ C, 𝑎(⋅) is a summable function; 𝐴 ∈ 𝐿(𝑋) and
𝑓 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z × 𝑋,𝑋). Its associated homogeneous linear

equation is given by

𝑢 (𝑛 + 1) = 𝜆

𝑛

∑
𝑗=−∞

𝑎 (𝑛 − 𝑗) 𝑢 (𝑗) + 𝑓 (𝑛) , 𝑛 ∈ Z, (47)

where 𝜆 ∈ C, 𝑎(⋅) is a summable function.
For a given 𝜆 ∈ C, let 𝑠(𝜆, 𝑘) ∈ C be the solution of the

difference equation

𝑠 (𝜆, 𝑘 + 1) = 𝜆

𝑘

∑
𝑗=0

𝑎 (𝑘 − 𝑗) 𝑠 (𝜆, 𝑗) , 𝑘 = 0, 1, 2, . . .

𝑠 (𝜆, 0) = 1.

(48)

In this case, 𝑠(𝜆, 𝑘) is called the fundamental solution to (47)
generated by 𝑎(⋅). We define the set

Ω
𝑠
= {𝜆 ∈ C, ‖𝑠 (𝜆, ⋅)‖

1
:=

∞

∑
𝑘=0

|𝑠 (𝜆, 𝑘)| < ∞} . (49)

By [13], if 𝜆 ∈ Ω
𝑠
, the solution of (47) is given by

𝑢 (𝑛 + 1) =

𝑛

∑
𝑘=−∞

𝑠 (𝜆, 𝑛 − 𝑘) 𝑓 (𝑘) . (50)

To establish our results, we introduce the following
condition.

(H
1
) 𝜆 ∈ Ω

𝑠
, 𝐴 ∈ 𝐿(𝑋).

(H
2
) 𝑓 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z × 𝑋,𝑋), 𝜌

1
, 𝜌

2
∈ 𝑉

∞
.

(H
31
) There exists a constant 𝐿

𝑓
> 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑢) − 𝑓 (𝑘, V)󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑓
‖𝑢 − V‖ , ∀𝑘 ∈ Z, 𝑢, V ∈ 𝑋.

(51)

(H
32
) There exists a linear nondecreasing function Φ :

[0,∞) → [0,∞) and 𝑓 satisfies
󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑢) − 𝑓 (𝑘, V)󵄩󵄩󵄩󵄩 ≤ Φ (‖𝑢 − V‖) , ∀𝑘 ∈ Z, 𝑢, V ∈ 𝑋.

(52)

Theorem 20. Assume that (𝐻
1
), (𝐻

2
), and (𝐻

31
) hold and

𝐿
𝑓
‖𝐴‖|𝑠(𝜆, ⋅)|

1
< 1; then (46) has a unique solution 𝑢(𝑛) ∈

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) which is given by

𝑢 (𝑛 + 1) =

𝑛

∑
𝑘=−∞

𝑠 (𝜆, 𝑛 − 𝑘) 𝑓 (𝑘, 𝐴𝑢 (𝑘)) . (53)

Proof. Similar to the proof of [13], it can be shown that a
solution of (53) is the solution of (46).

Define the operator F : 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) →

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) by

(F𝑢) (𝑛) =

𝑛−1

∑
𝑘=−∞

𝑠 (𝜆, 𝑛 − 1 − 𝑘) 𝑓 (𝑘, 𝐴𝑢 (𝑘)) . (54)

Since 𝑢 ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) and (𝐻

31
) holds, 𝑓(⋅, 𝐴𝑢(⋅)) ∈

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) by Lemma 11, Corollary 17. By Lemma 18,

F𝑢 ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋). HenceF is well-defined.

For 𝑢, V ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋),

‖F𝑢 − FV‖
𝑑

≤ sup
𝑛∈Z

𝑛−1

∑
𝑘=−∞

|𝑠 (𝜆, 𝑛 − 1 − 𝑘)|
󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝐴𝑢 (𝑘)) − 𝑓 (𝑘, 𝐴V (𝑘))

󵄩󵄩󵄩󵄩

≤ 𝐿
𝑓
‖𝐴‖ sup

𝑛∈Z

𝑛−1

∑
𝑘=−∞

|𝑠 (𝜆, 𝑛 − 1 − 𝑘)| ‖𝑢 (𝑘) − V (𝑘)‖

≤ 𝐿
𝑓
‖𝐴‖ ‖𝑢 − V‖

𝑑
sup
𝑛∈Z

𝑛−1

∑
𝑘=−∞

|𝑠 (𝜆, 𝑛 − 1 − 𝑘)|

≤ 𝐿
𝑓
‖𝐴‖ |𝑠 (𝜆, ⋅)|

1
‖𝑢 − V‖

𝑑
.

(55)

By theBanach contractionmapping principle,Fhas a unique
fixed point 𝑢 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋), which is the unique 𝑊𝑃𝐴𝐴

𝑑

solution to (46).
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Theorem 21. Assume that (𝐻
1
), (𝐻

2
), and (𝐻

32
) hold; then

(46) has a unique solution 𝑢(𝑛) ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) if

(‖𝐴‖|𝑠(𝜆, ⋅)|
1
Φ)

𝑛

(𝑡) → 0 as 𝑛 → ∞ for each 𝑡 > 0.

Proof. Define the operatorF as in (54), soF is well defined.
For 𝑢, V ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋), one has

‖(F𝑢) (𝑛) − (FV) (𝑛)‖

≤

𝑛−1

∑
𝑘=−∞

|𝑠 (𝜆, 𝑛 − 1 − 𝑘)|
󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝐴𝑢 (𝑘)) − 𝑓 (𝑘, 𝐴V (𝑘))

󵄩󵄩󵄩󵄩

≤

𝑛−1

∑
𝑘=−∞

|𝑠 (𝜆, 𝑛 − 1 − 𝑘)| Φ (‖𝐴𝑢 (𝑘) − 𝐴V (𝑘)‖)

≤ ‖𝐴‖ |𝑠 (𝜆, ⋅)|
1
Φ (‖𝑢 (𝑘) − V (𝑘)‖) .

(56)

Since (‖𝐴‖|𝑠(𝜆, ⋅)|
1
Φ)

𝑛

(𝑡) → 0 as 𝑛 → ∞ for each 𝑡 > 0, by
Matkowski fixed point theorem (Theorem 1),F has a unique
fixed point 𝑢 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋), which is the unique 𝑊𝑃𝐴𝐴

𝑑

solution to (46).

4.2. Nonautonomous Semilinear Difference Equations. In this
subsection, consider the following nonautonomous semilin-
ear difference equations

𝑢 (𝑛 + 1) = 𝐴 (𝑛) 𝑢 (𝑛) + 𝑓 (𝑛, 𝑢 (𝑛)) , 𝑛 ∈ Z. (57)

Its associated homogeneous linear difference equation is
given by

𝑢 (𝑛 + 1) = 𝐴 (𝑛) 𝑢 (𝑛) , 𝑛 ∈ Z. (58)

To establish our results, we introduce the following
condition.

(A
1
) 𝐴 ∈ 𝐴𝐴

𝑑
(Z, 𝑋).

(A
2
) 𝑓 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z × 𝑋,𝑋), 𝜌

1
, 𝜌

2
∈ 𝑉

∞
.

(A
3
) There exists a constant 𝐿

𝑓
> 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑘, 𝑢) − 𝑓 (𝑘, V)󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑓
‖𝑢 − V‖ , ∀𝑘 ∈ Z, 𝑢, V ∈ 𝑋.

(59)

(A
4
) Equation (58) admits an exponential dichotomy onZ
with positive constants 𝜂, ], 𝛼, 𝛽.

Theorem 22. Assume that (A
1
)–(A

4
) hold and (𝜂/(1 − 𝑒−𝛼) +

]𝑒−𝛽/(1 − 𝑒−𝛽))𝐿
𝑓

< 1; then (57) has a unique solution 𝑢(𝑛) ∈

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) which is given by

𝑢 (𝑛) =

𝑛−1

∑
𝑗=−∞

A (𝑛, 𝑗 + 1) 𝑃 (𝑗 + 1) 𝑓 (𝑗, 𝑢 (𝑗))

−

∞

∑
𝑗=𝑛

A (𝑛, 𝑗 + 1)𝑄 (𝑗 + 1) 𝑓 (𝑗, 𝑢 (𝑗)) , 𝑛 ∈ Z.

(60)

Proof. Similar to the proof of [14, 15], it can be shown that 𝑢(⋅)

given by (60) is the solution of (57).
Define an operator Γ : 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋) → 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋)

as follows:

(Γ𝑢) (𝑛) :=

𝑛−1

∑
𝑗=−∞

A (𝑛, 𝑗 + 1) 𝑃 (𝑗 + 1) 𝑓 (𝑗, 𝑢 (𝑗))

−

∞

∑
𝑗=𝑛

A (𝑛, 𝑗 + 1)𝑄 (𝑗 + 1) 𝑓 (𝑗, 𝑢 (𝑗)) , 𝑛 ∈ Z.

(61)

Since 𝑢 ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) and (A

3
) holds, Ψ(⋅) = 𝑓(⋅, 𝑢(⋅)) ∈

𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋) by Corollary 17. Let Ψ = Ψ

1
+ Ψ

2
, where Ψ

1
∈

𝐴𝐴
𝑑
(Z, 𝑋), Ψ

2
∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋); then

(Γ𝑢) (𝑛) := (Γ
1
𝑢) (𝑛) + (Γ

2
𝑢) (𝑛) , (62)

where

(Γ
1
𝑢) (𝑛) =

𝑛−1

∑
𝑗=−∞

A (𝑛, 𝑗 + 1) 𝑃 (𝑗 + 1)Ψ
1
(𝑗)

−

∞

∑
𝑗=𝑛

A (𝑛, 𝑗 + 1)𝑄 (𝑗 + 1)Ψ
1
(𝑗) ,

(Γ
2
𝑢) (𝑛) =

𝑛−1

∑
𝑗=−∞

A (𝑛, 𝑗 + 1) 𝑃 (𝑗 + 1)Ψ
2
(𝑗)

−

∞

∑
𝑗=𝑛

A (𝑛, 𝑗 + 1)𝑄 (𝑗 + 1)Ψ
2
(𝑗) .

(63)

Similar to the proof of [14, 15], Γ
1
𝑢 ∈ 𝐴𝐴

𝑑
(Z, 𝑋).

Next, we show that Γ
2
𝑢 ∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋). In fact, let

(Γ
2
𝑢) (𝑛) := (Γ

21
𝑢) (𝑛) + (Γ

22
𝑢) (𝑛) , (64)

where

(Γ
21

𝑢) (𝑛) =

𝑛−1

∑
𝑗=−∞

A (𝑛, 𝑗 + 1) 𝑃 (𝑗 + 1)Ψ
2
(𝑗) ,

(Γ
22

𝑢) (𝑛) =

∞

∑
𝑗=𝑛

A (𝑛, 𝑗 + 1)𝑄 (𝑗 + 1)Ψ
2
(𝑗) .

(65)

Then,

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩(Γ21𝑢) (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

=
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘−1

∑
𝑗=−∞

A (𝑘, 𝑗 + 1) 𝑃 (𝑗 + 1)Ψ
2
(𝑗)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜌
2
(𝑘)
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≤
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

𝑘−1

∑
𝑗=−∞

𝜂𝑒
−𝛼(𝑘−𝑗−1) 󵄩󵄩󵄩󵄩Ψ2

(𝑗)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

=
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

∞

∑
𝑗=0

𝜂𝑒
−𝛼𝑗 󵄩󵄩󵄩󵄩Ψ2

(𝑘 − 1 − 𝑗)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

=

∞

∑
𝑗=0

𝜂𝑒
−𝛼𝑗

(
1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩Ψ2
(𝑘 − 1 − 𝑗)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘)) .

(66)

Since Ψ
2

∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋), Ψ

2
(⋅ − 1 − 𝑗) ∈ 𝑊𝑃𝐴𝐴

0
(Z, 𝑋) for

each 𝑗 ∈ Z by Lemma 10; then

lim
𝑇→∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩Ψ2
(𝑘 − 1 − 𝑗)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘) = 0; (67)

by Lebesgue dominated convergence theorem, one has

lim
𝑇→∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩(Γ21𝑢) (𝑘)
󵄩󵄩󵄩󵄩 𝜌

2
(𝑘)

≤

∞

∑
𝑗=0

𝜂𝑒
−𝛼𝑗

( lim
𝑇→∞

1

𝜇 (𝑇, 𝜌
1
)

𝑇

∑
𝑘=−𝑇

󵄩󵄩󵄩󵄩Ψ2
(𝑘 − 1 − 𝑗)

󵄩󵄩󵄩󵄩 𝜌
2
(𝑘))

= 0;

(68)

hence Γ
21

𝑢 ∈ 𝑊𝑃𝐴𝐴
0
(Z, 𝑋). Similarly, one can prove Γ

22
𝑢 ∈

𝑊𝑃𝐴𝐴
0
(Z, 𝑋). So Γ is well defined.

For 𝑢, V ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋), by the exponential dichotomy

and Lipschitz condition, one has

‖(Γ𝑢) (𝑛) − (ΓV) (𝑛)‖

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛−1

∑
𝑗=−∞

A (𝑛, 𝑗 + 1) 𝑃 (𝑗 + 1) [𝑓 (𝑗, 𝑢 (𝑗)) − 𝑓 (𝑗, V (𝑗))]

−

∞

∑
𝑗=𝑛

A (𝑛, 𝑗 + 1)𝑄 (𝑗 + 1)

× [𝑓 (𝑗, 𝑢 (𝑗)) − 𝑓 (𝑗, V (𝑗))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

𝑛−1

∑
𝑗=−∞

𝜂𝑒
−𝛼(𝑛−𝑗−1)

𝐿
𝑓

󵄩󵄩󵄩󵄩𝑢 (𝑗) − V (𝑗)
󵄩󵄩󵄩󵄩

+

+∞

∑
𝑗=𝑛

]𝑒−𝛽(𝑗+1−𝑛)𝐿
𝑓

󵄩󵄩󵄩󵄩𝑢 (𝑗) − V (𝑗)
󵄩󵄩󵄩󵄩

≤ 𝜂𝐿
𝑓
‖𝑢 − V‖

𝑑

+∞

∑
𝑗=0

𝑒
−𝛼𝑗

+ ]𝐿
𝑓
‖𝑢 − V‖

𝑑

+∞

∑
𝑗=1

𝑒
−𝛽𝑗

≤
𝜂𝐿

𝑓

1 − 𝑒−𝛼
‖𝑢 − V‖

𝑑
+
]𝐿

𝑓
𝑒−𝛽

1 − 𝑒−𝛽
‖𝑢 − V‖

𝑑

= (
𝜂

1 − 𝑒−𝛼
+

]𝑒−𝛽

1 − 𝑒−𝛽
)𝐿

𝑓
‖𝑢 − V‖

𝑑
;

(69)

hence Γ is a contraction. By the Banach contraction mapping
principle, Γ has a unique fixed point 𝑢 ∈ 𝑊𝑃𝐴𝐴

𝑑
(Z, 𝑋),

which is the unique 𝑊𝑃𝐴𝐴
𝑑
solution to (57). The proof is

completed.

5. Examples

In this section, we provide some examples to illustrate our
main results.

Example 1. For 𝑎(𝑘) = 𝑝𝑘, where |𝑝| < 1, after a calculation
using in (48) the unilateral-𝑍 transform, that 𝑠(𝜆, 𝑘) = 𝜆(𝜆 +

𝑝)
𝑘−1, 𝑘 ≥ 1, and define

D (−𝑝, 1) := {𝑧 ∈ C :
󵄨󵄨󵄨󵄨𝑧 + 𝑝

󵄨󵄨󵄨󵄨 < 1} ⊆ Ω
𝑠
. (70)

Consider the following difference equation:

𝑢 (𝑛 + 1) = 𝜆

𝑛

∑
𝑘=−∞

𝑝
𝑛−𝑘

𝑢 (𝑘) + 𝜅𝑔 (𝑘) 𝑢 (𝑘) , 𝑛 ∈ Z, (71)

where |𝑝| < 1, 𝜆 ∈ D(−𝑝, 1), 𝑔 ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋). It is easy

to see that (H
1
), (H

2
), and (H

31
) hold with 𝐿

𝑓
= |𝜅|‖𝑔‖

𝑑
. By

Theorem 20, if |𝜆||𝜅| ‖ 𝑔‖
𝑑
∑

∞

𝑘=0
|𝜆 + 𝑝|𝑘−1 < 1, then (71) has

a unique solution 𝑢(𝑛) ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z, 𝑋).

Example 2. Consider the system

𝑢 (𝑘 + 1) = 𝐴𝑢 (𝑘) + ℎ (𝑘) 𝑔 (𝑢) , 𝑘 ∈ Z, (72)

where𝐴 is a nonsingular 𝑛×𝑛matrix such that𝜎
𝑝
(𝐴)∩𝑆1 = 0,

ℎ ∈ 𝑊𝑃𝐴𝐴
𝑑
(Z,R𝑛), and there exists a constant 𝐿

𝑓
> 0 such

that
󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (V)󵄩󵄩󵄩󵄩 ≤ 𝐿

𝑔
‖𝑢 − V‖ , 𝑢, V ∈ R

𝑛

. (73)

Since 𝜎
𝑝
(𝐴) ∩ 𝑆1 = 0, the system

𝑢 (𝑘 + 1) = 𝐴𝑢 (𝑘) , 𝑘 ∈ Z (74)

admits an exponential dichotomy with positive constants
𝜂, ], 𝛼, 𝛽 [19] and (A

3
) holds with 𝐿

𝑓
= 𝐿

𝑔
‖ℎ‖

𝑑
. By

Theorem 22, If we suppose that (𝜂/(1 − 𝑒−𝛼) + ]𝑒−𝛽/(1 −

𝑒−𝛽))𝐿
𝑔
‖ℎ‖

𝑑
< 1, then (72) has a unique discrete weighted

pseudo almost automorphic solution.
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[13] C. Cuevas,H. R.Henŕıquez, andC. Lizama, “On the existence of
almost automorphic solutions of Volterra difference equations,”
Journal of Difference Equations and Applications, vol. 18, no. 11,
pp. 1931–1946, 2012.

[14] T. Diagana, “Existence of globally attracting almost automor-
phic solutions to some nonautonomous higher-order difference
equations,” Applied Mathematics and Computation, vol. 219, no.
12, pp. 6510–6519, 2013.

[15] C. Lizama and J. G.Mesquita, “Almost automorphic solutions of
non-autonomous difference equations,” Journal of Mathemati-
cal Analysis and Applications, vol. 407, no. 2, pp. 339–349, 2013.

[16] P. H. Bezandry, “On the existence of almost automorphic
solutions of nonlinear stochastic Volterra difference equations,”
African Diaspora Journal of Mathematics, vol. 15, no. 1, pp. 14–
24, 2013.

[17] S. Abbas, “Weighted pseudo almost automorphic sequences and
their applications,” Electronic Journal of Differential Equations,
vol. 2010, no. 121, pp. 1–14, 2010.

[18] J. Matkowski, “Integrable solutions of functional equations,”
Dissertationes Mathematicae, vol. 127, pp. 1–68, 1975.

[19] R. P. Agarwal, Difference Equations and Inequalities: Theory,
Methods, and Applications, vol. 155, Marcel Dekker, New York,
NY, USA, 1992.

[20] Y. Li and C. Wang, “Almost periodic solutions to dynamic
equations on time scales and applications,” Journal of Applied
Mathematics, vol. 2012, Article ID 463913, 19 pages, 2012.

[21] W.A.Veech, “Almost automorphic functions,”Proceedings of the
National Academy of Sciences of theUnited States of America, vol.
49, pp. 462–464, 1963.
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