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We consider positive solutions and optimal control problem for a second order impulsive differential equation with mixed
monotone terms. Firstly, by using a fixed point theorem of mixed monotone operator, we study positive solutions of the boundary
value problem for impulsive differential equations with mixed monotone terms, and sufficient conditions for existence and
uniqueness of positive solutions will be established. Also, we study positive solutions of the initial value problem for our system.
Moreover, we investigate the control problem of positive solutions to our equations, and then, we prove the existence of an optimal
control and its stability. In addition, related examples will be given for illustrations.

1. Introduction

Mixed monotone operators have been introduced by Guo and
Lakshmikantham [1] in 1987 Recently, many authors have
investigated those kinds of operators in Banach spaces and
obtained a lot of interesting and important results (see [2-
9]). In this work, by using a fixed point theorem of mixed
monotone operator, we study the existence and uniqueness of
positive solutions to the boundary value problem of impulsive
differential equations with mixed monotone terms:

="M =a®) ftx®),x®)+ud),
te (0, D)\ {tpts . st}

Axlt:tk = Ik (.x (tk),x(tk)), (1)
k=12,...,m,
x' (1) =0.

(BP;u)
x(0) = by,

Here, J] = [0,1], R" = [0,+00), f € C[J x R" x R",R"],
and a € C[J,R"] with min,.;a(t) > 0 on any subinterval of
J. A function u is given on [0,1],0 < t; < t, < -+ < t,, <
1, Ax]|,-, denotes the jump of x(t) at t = t; and Ax|,_, =
x(t{)—x(t;), where x(t; ) and x(¢, ) represent the right and left
limits of x(¢) att = t;, respectively. Also, I is a given function

in C[R* x R",R*],k = 1,2,...
given constant.
For convenience, we put J, = [0,¢,], J; = (t;,t,],...,
Jo1 = Gpeistmds Jow = (1, and J' = T\ {t),ths .t
Then, we study the existence and uniqueness of positive
solutions to initial value problem as follows:

,m. Furthermore, b, > O is a

X"t =a@®) ft,x(t),x)+u®),

te (0, D)\ {t;ty. st}

(IPsu) § Axlpy, = I (x (t), x (1)) » (2)
k=12,...,m,
x(0) = by, x' (0) = b,

where f € C[J x R" x R",R] and b, > 0 and b, > 0 are given
constants. Moreover, we consider the related optimal control
problem (OP) of (2) as follows:

Problem (OP). Find an optimal control u™ € %, such that
* — . f .
m(u®) Jof n (u) 3)
Here, %, is a control space defined by

Upg={ue L’ (0,1) [ -M<u®)<0ae te[01]}, (4)
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where M is a fixed positive number and 7(u) is the cost
functional defined by

1 1
m) =3 |l - %) OFde+ x4 2 [ a6
2 Jo 2 Jo
where u € %, is the control, function x is a unique positive
solution to the state problem (IP; u), and x,; is the given
desired target profiles in L*(0, 1).

The existence and uniqueness of solutions for boundary
value problem have been discussed by many authors, and the
boundary value problem of impulsive differential equation
is a new and important branch of the differential equation
theory, which has an extensive physical, chemical, biological,
and engineering background, realistic mathematical model,
and so forth (see [10-14]). The theory on mixed monotone
operators has attracted much attention and has been widely
studied, such as Guo and Lakshmikantham [1] have applied
the monotone iterative technique to discuss an initial value
problem of differential equations without impulse:

u' ()= ftu®),u(t)),
u (0) = x,.

t €[0,a],
(6)

They obtained the existence of the coupled quasisolutions
by mixed monotone sequence of coupled quasi upper and
lower solutions. Zhai and Zhang [7] showed a new fixed point
theorem for differential equations with mixed monotone
term. Jinli and Yihai [15] considered the following problem:

u”(x)—f(x,u,u)z@, xe], x#x; i=12,...,m,

Aul,_y =1, (u(x)), i=1,2,...,m,
a| o =T(u(x). i=L2...,m,
u(©0) =w, ' (0)=w.

7)

They used the coupled fixed point theorem for mixed
monotone condensing operators to obtain the existence and
uniqueness of solutions.

Also, there is a vast literature on optimal control problems
(see [16-19]). For instance, with a fixed point theorem of
generalized concave operator, the authors [19] have studied
the optimal control problem of positive solutions to the
following second order impulsive differential equation:

~X"(t)= ft,x®)+u®), teOT)\{tty....t},
Axliy, = T (x (), k=1,2,...,m,
Ax’)t:t :Tk (x(tk))> k=12,...,m,
x(O=a X (0)=b.
(8)

In this paper, we investigate impulsive differential equa-
tions with mixed monotone terms, which have variable
coeflicient nonlinear terms. Then, we prove the existence
and uniqueness of positive solutions to (BP; u) and (IP; u).
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Moreover, we prove the existence of an optimal control to
(OP) and its stability.

The plan of this paper is as follows. In Section 2,
we recall the fundamentals of a fixed point theorem of
mixed monotone operators. In Section 3, we deal with the
existence and uniqueness of positive solutions to (BP; u).
In Section 4, we show the existence and uniqueness of
positive solutions to (IP; u). In Section 5, we prove the
existence of an optimal control to (OP) and its stability.
In the final Section 6, related examples on the main results
are given.

1.1 Notations. Throughout this paper, we use the following
notations.

Let PC[J,R] := {x | x : J] — R, x(t) is continuous
at t#1, and left continuous at t = f,x(f;) exists, k =
1,2,...,m}. Then, we can easily find that PC[], R] is a Banach
space with the norm |x|pc := sup,;|x|.

We put H := L2(J) with the usual real Hilbert structure
and denote by |- |y the norm in H, for simplicity, and
W?(J,R) is a usual Sobolev space, namely,

W (LR ={fel'(N:Dfel'()),k=12}, (9

where D f denoted the kth derivative of f.
Also, N; and Ni', i = 1,2,3,..., denote positive (or
nonnegative) constants only depending on their arguments.

2. A Fixed Point Theorem of Mixed
Monotone Operator

In this section, we recall the fundamentals of a fixed point
theorem of mixed monotone operator.

Suppose that (E, | - ||) is a real Banach space which is
partially ordered by a cone P C E, that is, x < y if and only if
y—x € P.Ifx < yand x# y, then we denote x < yor y > x.
By 0 we denote the zero element of E. Recall that a nonempty
closed convex set P C E is a cone if it satisfies

i)xeP, A20= Ax € P;

(i) xeP, -xe P=>x=0.

Putting P= {x € P | x is an interior point of P}, a cone

P is said to be solid if its interior P is nonempty. Moreover,
P is called normal if there exists a constant M > 0 such that,
forall x, y € E,0 < x < y implies ||x|| < M||y|; in this case
M is called the normality constant of P. If x,, x, € E, the set
[x1,%,] = {x € E | x; < x < x,} is called the order interval
between x, and x,.

For all x, y € E, the notation x ~ y means that there
exist A > 0 and p > 0 such that Ax > y > ux. Clearly, ~ is
an equivalence relation. Giving h > 0 (i.e., h > 6 and h #0),
we denote by P, the set P, = {x € E | x ~ h}. It is easy
to see that P, ¢ Pis convex and AP, = P, forall A > 0. If

P#0and h € P, it is clear that P, = P. For other detailed
properties of cones, we refer to the monograph by Guo and
Lakshmikantham [20].
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Definition 1 (cf. [1, 2]). A : Px P — P issaid to be a
mixed monotone operator if A(x, y) is increasing in x and
decreasing in y, thatis, u;,v; € P (i = 1,2), u; Suy, v; 2 v,
implies that A(u;, v;) < A(uy, v,). Element x € P is called a
fixed point of A if A(x, x) = x.

Here, one recalls the following fixed point theorem of
mixed monotone operator which has been established by
Zhai and Zhang [7].

Proposition 2 (cf. [7, Theorem 2.1]). Let P be a normal cone
of a real Banach space E. Also, let A: P x P — P be a mixed
monotone operator. Assume that

(A,) there exists h € P with h# 0 such that A(h, h) € Py;

(A,) foranyu,v € Pandt € (0,1), there exists ¢(t) € (£,1]
such that A(tu,t 1v) > () A(u, v).

Then operator A has a unique fixed point x* in P,. Moreover,
for any initial xy,y, € P, constructing successively the
sequences

Yn = A(yn—l’xn—1)>
n=12,...,

Xp = A ('xn—l’ yn—l) 4 (10)

one has ||x,, — x| — Oand|y,—x"| > 0asn — oo.

By applying Proposition 2, one shows the existence and
uniqueness of the positive solution to (BP; u) and (IP; u) on

J.

3. Boundary Value Problem (BP; u)

In this section, we show the existence and uniqueness of the
positive solution to (BP; «) by applying a fixed point theorem
of mixed monotone operator (Proposition 2).

Throughout this section, we assume the following condi-
tions (H;)-(H;):

(H,) f: ] xR"xR" — R, f(t,x, y) is nondecreasing in
xforeacht € Jand y € R*,and s nonincreasing in y
foreacht € J and x € R". Also, f(t,(1/2),1) > 0 for
allt € J.

(H,) Poreachk =1,2,...,m, I, : R"xR" — R", I(x,y)
is nondecreasing in x for each y € R" and is
nonincreasing in y for each x € R".

(H;) Forally € (0, 1), there exists a constant ¢, (y), ¢,(y) €
(y,1] such that

fEyey™y) 20 (0) f (6% 9),
(11)

L (yoy™'y) 2 02 (1) L (% 7).
foranyx,y € R",anyt € J,andanyk = 1,2,...,m.

We give the definition of solutions to (BP; u).

Definition 3. Let u € H, and let b, be a given constant. Then,
a function x € PC[J,R] n W*(J, R) is called a solution to
(BP; u) on J if it satisfies (1).

Now, we mention our first main theorem in this paper,
which is concerned with the existence-uniqueness of the
positive solution to (BP; u) on J.

Theorem 4. Assuming the conditions (H,)-(H;), and having
M has a fixed positive constant, then for each function u € H
with 0 < u(t) < M a.e. t € ], there exists a unique positive
solution to (BP; u) on J.

Here, we give the key lemma, which is concerned with the
characterization of solutions to (BP; u).

Lemma 5. Assume the same conditions as in Theorem 4. Then,

x € PC[]J,R] n W>'(J, R) is a solution to (BP; u) on J if and
only if x € PCI], R] satisfies the following integral equation:

1
x(t)=by + Jo G(t,s){a(s) f(s,x(s),x(s) +u(s)}ds

+ ) L(x(t),x(t)), vte],
0<ty<t
(12)
where

t, 0<t<s<l,
(13)

> X < X 1.

G(t,s) = {

Proof. Firstly, integrating —x"'(s) = a(s) f (s, x(s), x(s)) + u(s)
from 0 to ¢, we obtain

t
x (1) = x' (0) - J {a(s) f(s,x(s),x(s)) +u(s)}ds,
0 (14)
Vte].
Again, integrating (14), we have

x(t) = x(0) +x' (0)t
_ L (t—s){a(s) f(s,x(s),x(s) +u(s)}ds (15)
+ Y fx () -x ()}, veel

0<ty<t

From (14) with x'(1) = 0, we infer that

1
x' (0) = L {a(s) f(s,x(s),x(s)) +u(s)}ds.  (16)

Hence, from x(0) = by, (15), and (16), we can find that
1
x(t)=b, + Jo G(t,s){a(s) f(s,x(s),x(s) +u(s)}ds

+ Y L(x(t).x(t), Vel

O<ty<t

17)

where G(t, s) is the function defined as in (13). Thus, the proof
is completed. O



By Lemma 5, we can show the solvability of (BP; u). In
fact, we define an operator A : PC[],R] x PC[],R] —
PC[J, R] by

A(xy) (@)
1
=by+ L G(ts){a(s) f(sx(s),y(s)) +u(s)lds

+ Y L(x(t),y(t)) Vx,yePC[R], te],

0<t<t

(18)

where G(t, s) is the function defined as in (13).
We can easily find that the following lemma holds.

Lemma 6. Assume the same conditions as in Theorem 4. Then,
x € PC[J,R] n W*Y(J,R) is a solution to (BP; u) on J if
and only if x € PCI],R] is the fixed point of the operator
A : PC[],R] x PC[],R] — PCI],R] defined by (18).

Taking account of Proposition2 and Lemmas 5 and
6, one can prove Theorem 4 concerning the existence and
uniqueness of the positive solution to (BP; «) on J.

Proof of Theorem 4. By applying a fixed point theorem of
mixed monotone operator (Proposition 2), we show the
existence and uniqueness of the positive solution to (BP; u)
on J.

To do so, set

P:={xePC[],R];x(t)>0,Vt € J}. (19)

Clearly, P is a normal cone in PC[J, R] and the normality
constant is 1.

Let A : PC[],R] x PC[],R] — PC[]J, R] be the operator
defined by (18). Then, we infer from (H,), (H,), (13), and
u(t) > 0a.e. t € J that

A(x,y)t) >0 Vx,yeP, te]. (20)

Thus, we see that A: Px P — P.

Firstly, by (H,), (H,), and (18), we can easily prove that
A:PxP — Pisamixed monotone operator.

Next, we show (A,). Put

¢ (y) =min{gp, (y),9, (y)}, ye(©1). (1)

Then, we see from (H;) that ¢(y) € (y, 1]. Therefore, for any
ye(0,1)andx, y € P, we observe from (H,)-(H;), (13), and
u(t) 2 0a.e. t € J that

Ayxyy) @)

1
=b+ J G(t,s) {a (s)f(s, yx (s) ,y_ly(s))

0

+1 (s) } ds
+ Z Iy (Yx (t),y "'y ()

0<t <t
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1

> by + g, (y)j G(t5){a(s) f (5,x(s), y (5))

+u(s)}tds
0, () ) Le(x(t), y (1)

0<ty<t

2@ (y)A(x,y) (), Vte],

(22)

which implies that

A(yxy"'y)29()A(xy) VxyeP, ye(1).
(23)

Thus, the condition (A,) holds.
Now, we show (A,), defining a function h by

1

h(t) := % + Jo G(t,s)ds,

Vt € J; (24)

hence, h(t) = —(t?/2) + t + (1/2) for all t € ], then we can
easily see that (1/2) < h(t) < 1forallt € J.
Now we show that A(h, h) € P,. Set

r, = maxf (t, 1, %) , (25)

te]

1
r = minf(t,§,1>,

te]

then, 0 < r; <7,.

Note that a(t) has maximum and minimum on J, since
a(t) € C[J,R"] with min,;a(t) > 0 on any subinterval of J.
So, let

Amin = Mina t), Omax = TAXa (t). (26)

Here, put r; := min{2b,, ,a,,;,}. Then, from (H,), (H,),
(13), and u(t) > 0 a.e. t € J, it follows that

A (hyh)(t)
1
=by + L G(t,s){a(s) f(s,h(s),h(s)) +u(s)ds
+ Z L (h(t) . (t))

0<t<t

. (27)
= b, +aminJ G(t,s)f(s, %, 1)ds
0

1
= by + 11000 J G(t,s)ds
0

>rh(t), Vte].
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Also, we have

A (h,h)(t)
1
=by+ L G(t,s){a(s) f(s,h(s),h(s)+u(s)}ds
+ Z L (h(t) b (t))

0<t, <t

! 1
< by + Aoy .[o G(ts) f (s, L E) ds (28)

> ()

0<ty<t

1
+MJ G(t,s)ds +
0

- 1
<26y + 10 +M+2) 1 (1,—) h(t),

Vte].

Thus, we observe that

rh< A(hh) < [zbo g+ M+2Y T, (1, %)] h,
k=1

(29)

which implies that A(h, h) € P,.

By arguments as above, we see that the operator A :
Px P — P defined by (18) satisfies conditions (A,) and
(A,) in Proposition 2. Therefore, by applying Proposition 2,
we conclude that an operator equation x = A(x,x) has a
unique solution in P,; hence there exists a unique positive
solution to (BP; u) on J.

4. Initial Value Problem (IP; u)

In this section, we show the existence-uniqueness of the
positive solution to (IP; #) on J by arguments similar to (BP;
u).

Throughout this section, we assume the following condi-
tions (Hl)', (H3)':

(H))' f:JxR"xR" — R,such that f(t,x, y) < 0 for all
t € Jand x, y € R". Also, f(t, x, y) is nonincreasing
inx foreacht € Jand y € R" and is nondecreasing in
yforeacht € Jand x € R". Moreover, f(t,(1/2),1) <
Oforallte].

(H3)' Forally € (0, 1), there exists a constant ¢, (), ¢,(y) €
(y,1] such that

flLyxy™y) <o) f(txy),
) (30)
L(yoy™y) 2 02 (1) L (% 9),
foranyx,y € R",anyt € J,andanyk = 1,2,...,m.

Here, we give the definition of solutions to (IP; u).

Definition 7. Letu € H and b, and b, as given constants. Then,
afunction x € PC[]J, RInW?!(J, R) is called a solution to (IP;
u) on J if it satisfies (2).

Now, we mention our second main theorem in this paper,
which is concerned with the existence-uniqueness of the
positive solution to (IP; u) on J.

Theorem 8. Assuming the conditions (H,), (Hl)', and (H3)'
and having M has a fixed positive constant. Then, for each
function u € H with —-M < u(t) < 0 a.e. t € ], there exists
a unique positive solution to (IP; u) on J.

Based on the proof of Lemma5 (cf. (15)), one can get
the following key lemma concerning the characterization of
solutions to (IP; u).

Lemma9. Assume the same conditions as in Theorem 8. Then,
x € PC[J,R] n W>!(J, R) is a solution to (IP; u) on J if and
only if x € PC[], R] satisfies the following integral equations:

t
x(t)=by+bt— L (t—s){a(s) f(s,x(s),x(s) +u(s)}ds

+ Y L(x(t),x(t)), Vel

0<ty <t

(31)

By Lemma 9 and Proposition 2, one can show Theorem 8
concerning the existence-uniqueness of the positive solution
to (IP; u) on J.

Proof of Theorem 8. Now, we define an operator A : PC[], R]
x PC[J,R] — PC[],R] by

A(x,y) (®)
=by +bt - L (t—s){a(s) f(s,x(s),y(s)) +u(s)}ds

+ Y L(x(t),y(t) Vx,y € PC[LR], te].

0<ty<t

(32)

Then, we have to find the fixed point of the operator A in
order to show the existence-uniqueness of the solution to (IP;
u)onJ.

Let P be the same space defined by (19). Then, we infer
from (Hl)', (H,), (32),and u(t) < 0 a.e. t € J that

A(x,y)() >0 Vx,yeP, te]. (33)

Thus, we see that A: Px P — P,

Also, we observe from (Hl)', (H,), and (32) that A : P x
P — Pisa mixed monotone operator.

Next, we show (A,). Put

¢ (y) =min{gp, (y),9, (y)}, ye(0,1).  (34)



Then, we see from (H3)' that ¢(y) € (y, 1]. Therefore, for any
y €(0,1)and x, y € P, we observe from (H,), (Hl)', (H3)',
(32), and u(t) < O a.e. t € J that

A(yxy™y) ()

=b + bt - j (t-s) {a (s)f(s, yx (s) ,y_ly(s))

0

+1 (s) } ds
+ Z Ii (yx (tk)s)’_l,“/(tk))
0<t, <t
(35)
t
>habit- 9 () | ¢-9100) (26,5 0)
+u(s)}ds
9, (v) ) Le(x (), y (1)
0<t<t
>p(y)A(xy) (@), Vte],
which implies that
A(yx,yily) >p(p)A(x,y) Vx,yeP, ye(0,1).
(36)
Thus, the condition (A,) holds.
Now, we show (A,), defining a function h by
t
h(t) :=%+J (t—s)ds, Vte]; (37)
0

hence, h(t) = (£2/2) + (1/2) for all ¢ € J. Then, we can easily
see that (1/2) < h(t) < Lforallt € J.
Now we show that A(h, h) € P,,. Set

rlzntqei]n[—f<t,%,l>], rzzntleajx[—f<t,l,%)](, |
38

then, 0 < r; <7,.
From (Hl)', (H,), (32), and u(t) < 0 a.e. t € J, it follows
that

Ak (t)
by + byt - JO (t=5){a(s) f(sh(s),h(s) +us)ds

+ Z L (h (i) h(t))

0<tp<t
Lt (t —s)f(s, % 1>ds]

t
2 by + a5 J (t—s)ds
0

= by + agin [—

>rsh(t), Vtel].

(39)
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Also, we have

A(h,h)(t)

t
=by+bt— JO (t—s){a(s) f(s,h(s),h(s)) +u(s)}ds

+ Y L (h(t),h(t)

0<ty<t

t
<by+ b+ an [—J (t—s)f<s,1,%>dsj|
0

+Mjg(t—s)ds+ Z Ik(l,%>

0<ty<t

<2 [bo +b +1an,, + M+ ZI,C(L%)] h(t),

k=1
vVt e].
(40)
Thus, we observe that
rh<A(hh) <2 [bo byt t M+ Y, (1, %)] h,
. (41)

which implies that A(h, h) € P,.

By arguments as above, we see that the operator A :
P x P — P defined by (32) satisfies conditions (A;) and
(A,) in Proposition 2. Therefore, by applying Proposition 2,
we conclude that an operator equation x = A(x,x) has a
unique solution in P,; hence there exists a unique positive
solution to (IP; u) on J. O

5. Optimal Control Problem (OP)

In this section, we consider an optimal control problem
(OP) to (IP; u). Throughout this section, we assume all
the conditions of Theorem 8. Also, we assume the following
additional conditions.

(H,) There is a constant C >0 such that

|f %)= f(t.yy)| <Crlx—y| Vte], x,yeR".

(42)

Also, for each k = 1,2,...
constant C; > 0 such that

,m, there exists a positive

I 6, %) = L (3 y)| < Ci|x - y| ¥x,y e R (43)

(H;) x, is a given desired target profile in H.

At first, we give the key lemma in order to show the result
of continuous dependence of positive solutions to (IP; u).

Lemma 10 (cf. [19, Lemma 5.1]). Let {u,} ¢ H, and let Q :
H — C[J,R] be an operator given by

(Q2) (t) = Lt (t-s)z(s)ds, VzeH, Vte]. (44)
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Assume that u, — uweaklyin Hasn — oo for someu € H.
Then

Qu, — Qu inC[J,R] as n — oo. (45)
For the detailed proof of Lemma 10, we refer to [19,
Lemma 5.1].
Taking account of Lemma 10, one can show the following
proposition concerning the result of continuous dependence
of positive solutions to (IP; u).

Proposition 11 (cf. [19, Proposition 5.2]). Assume the same
conditions as in Theorem 8, (H,), and (Hs). Let {u,} C U,
and u € U, where U, is the control space defined by (4).
Assume u,, — u weakly in H asn — oo. Then, the unique
positive solution x,, to (IP; u,) on ] converges to one x to (IP;
u) on J in the sense that

x, — x in PC[J,R] as n — oo. (46)
Proof. By arguments similar to [19, Proposition 5.2], we can
prove (46). In fact, note from Lemma 9 that x,, is a solution
to (IP;u,,) on J if and only if

x,(t)=by + bt — Jt (t=s)a(s) f (s x,(s),x,(s)ds
0

- [¢-9m@dst ¥ K505 0),
0<t, <t
Vi e].
(47)

Now, let t € J, = [0,¢;] C ], then, we obtain from (H,)
that

|, (£) = x (1)

<

-Lt (t=s)a(s) f (s x,(s),x,(s)ds

- Lt (t—-s)a(s) f(s,x(s),x(s))ds

t

Jt(t—s)un(s)ds—J (t—-s)u(s)ds

0 0

+

t
< Cylalapy J-O |x,, (s) = x ()| ds + |Qu,, — Qui| oy s

vt € J,
(48)

foralln =1,2,..., where Q is a function defined in (44).
Applying a Gronwall-type inequality (e.g., [21, Proposi-
tion 0.4.1]) to (48), we obtain

t
L |x, (s) = x (s)| ds < Crlélanm |Qu, - Q”lcu,R]’ vt € ],
(49)

for all n = 1,2,.... Therefore, it follows from (48) and (49)
that

|x, () = x (1)]
< Claleyy,reM|Qu, - Qul gy, 5 + [Qu, — Quleyy

= Ni|Qu,, — Quleyypp  VEE€ Ty =[0,11],

(50)
foralln=1,2,....
By (50) and the assumption (H,), we also have
|xn (tf) —-X (t;)l
= |2, (1) + I (x, (1) %, (1) = % (8)
=1 (x(t1),x (tl))l
(51)

<(1+Cy) |x, (1)) = x (t,)]
<(1+C))Ny|Qu, - Q“lc[J,R]
= N,|Qu,, - Quley
foralln=1,2,....
Next, we consider the time interval J; = (¢,,t,]. Then, we

see from (50) and (H,) that

|x, (t) = x (t)]

<

J: (t—s)a(s) f (s x,(s),x,(s)ds

—Jt (t—s)a(s) f(s,x(s),x(s)ds
0

+

Jt(t—s)un(s)ds—Jt(t—s)u(s)ds
0 0

LG (1) o3, (0)) — I (x (1), x (1)) ©P)

t
< Crlaley.r JO |x, (s) = x (s)| ds
+|Qu, = Qulyy gy + Ci |, (81) = x (1))
t
< Crlaleym JO |x, (s) = x ()| ds

+(1+C;Ny) |Qun - Q”lc[},R]’

forany t € J, and n = 1,2,.... By the same arguments as
before (cf. (49) and (50)), we can take some constants N, > 0
so that

%, () = x (B)] < No|Qu = Quil gy VE €Ty = (t115],
(53)

forallm=1,2,....



Also, we obtain from (H,) and (53) that
|, (£5) - x ()]
<y (1) = x ()] + |1 (%, (£2) 5 %, (£))
-L (x(t;),x ()] (54)
<(1+G)|x, (1) - x (t,)]
< N£|Qun - Q”lcu,R]’ Vn=12,...,

for some positive constants N; > 0.
By repeating this procedure, we can take positive con-
stants N} > 0 and N, > 0 such that

|xn (t)—x (t)| < Nk|Qun - Qu|c[],R]’

viel,, k=1,2...,m+]1,

[0 () = x ()] < NJQuy ~ Qulggyye k= 1,22,
(55)

foralln=1,2,....
Here, put N := max{N,, N|,N,, N,
Then, we infer from (55) that

veets Ny NP UN )

|xn - x|PC < N|Qun - Q”'cu,R]’ Vn=12,.... (56)

Since u,, — u weaklyin H asn — 00, we observe from
Lemma 10 that

Qu, — Qu

Hence, we see from (56) and (57) that

in C[J,R] as n — oo. (57)
x, — x in PC[J,R] as n — oo. (58)
Thus, the proof of Proposition 11 has been completed. O

Now, we mention our main result concerning the exis-
tence of an optimal control to (OP).

Theorem 12. Assume the same conditions as in Theorem 8,
(Hy), and (Hs). Then, the problem (OP) has at least one optimal
control u™ € U, such that

m(u) = uiEr%lan (u), (59)

where U, is a control space defined by (4) and 7(-) is the cost
functional defined in (5).

Proof. By the quite standard method, we can prove
Theorem 12. In fact, let {u,} < %,; be a minimizing
sequence so that

lim 7 (u,) = ulel%sz” (u). (60)

By the definition (5) of 71(-), we see that {u,} is bounded in
H. Hence, there is a subsequence {#,} C {n} and a function
u" € %, such thatn, — oo and

u, — u weakly in H as k — oo. (61)
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For any k € N, let x,, be a unique positive solution to
(IP;u,, ) on J. Then, from (61) and Proposition 11, we observe
that

x, — x in PC[],R] as k — oo, (62)
where x is a unique positive solution to (IP; u) on J.

Hence, it follows from (61), (62), and the weak lower

semicontinuity of H-norm that

m(u") < klingon (u,,k) = uiél;{an (u), (63)

which implies that u* € %,, is an optimal control to (OP).
O

Now, we mention our final main result in this paper,
which is concerned with the stability of the optimal control
to (OP).

Theorem 13. Assume the same conditions as in Theorem 12.
Letu € Uy and u + euy, € Uy, for some u, € H and
small positive constant €. Also, let x and x, be unique positive
solutions to (IP; u) and (IP;u + €uy) on ], respectively. Then,
|x. = x[pc = 0O(e), (e—0). (64)

Proof. Note from Lemma 9 that x is a solution of (IP; u) on J
if and only if
t
x(t)=by+ bt - J (t-=s)a(s) f(s,x(s),x(s)ds
0

—Jtu—snu»ds+ Y L(x (). x (%), ©)
0

0<ty<t

Vte].

Now, let t € J, = [0,¢,] € J. Then, we obtain from (H,)
that

|x, (£) = x (1)

<

KG—QM@f@%“L&GD$

—Lt(t—s)a(s)f(s,x(s),x(s))ds

+

Jt (t—s)(u+euy) (s)ds — Jt (t-s)u(s)ds
0 0

t
< Colaley g L |x8 (s) - x(s)| ds+ s|uo|H, vt € J,.
(66)

Applying a Gronwall-type inequality (e.g., [21, Proposi-
tion 0.4.1]) to (66), we obtain

t
J |x, (s) = x ()| ds < eeCrlaleun [uolyy  VEE T, (67)
0
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Therefore, it follows from (66) and (67) that

e (6) = x (0)] < Clalcyyme ™ g5y + ol

_ (68)
=eNj|ugl|y, VE€ Ty =1[0.1].
By (68) and the assumption (H,), we also have
|xs (tr) —-Xx (tr)l
=[x (1) + I (x, (1) . (1)) = x (1)
=1y (x (t,), x (1))
(69)

<(1+C) Ixa (t)) - x(t1)|
<(1 +C1)8N1|MO|H
- ¥y

Next, we consider the time interval J; = (t1,t,]. Then, we
see from (68) and (H,) that

|x, (£) = x (1)

<

Jt (t—s)a(s) f (s x.(s),x,(s))ds
0

t
—L (t—-s)a(s) f(s,x(s),x(s)ds

+

Jt (t—3) (u+euy) (s)ds — Jt (t-s)u(s)ds
0 0

L ()% (0)) - L (x (), x () 7O

t
< Crlaleyry L |xe () = x (s)| ds + e|ug|
+Cy |x, (1)) = x (t,)]
t
< Crlaleyry L |x () = x (s)| ds

+ s(l + Clﬁl) |u0|H,

for any t € J,. By the same arguments as before (cf. (67) and
(68)), we can take some constant N, > 0 so that

|x. (t) = x (1) < eNyugl,y  VEET = (tt,].  (71)
Also, we obtain from (H,) and (71) that
|x. (£5) = x (£3)]
< (1) = x ()] + |1 (xe (1) 5 % (£2))
“L(x(t),x(L)]  (72)
<(1+Gy)[x (1) - x ()]
< eN,|uol 0

ees N7/
for some positive constant N, > 0.

By repeating this procedure, we can take positive con-
stants Ni > 0 and N, > 0 such that
|, (1) = x (1)] < sﬁk|u0|H, Vte i, k=12,....m+1,

|x. () = x ()] < eNj|up|,p k=1,2,....m.

(73)

Here, put N := max{N,, N{, N,, Né, ...,N,, N:n, N1}
Then, we infer from (73) that

|x£ - leC < £N|u0|H. (74)

Thus, the proof of Theorem 13 has been completed. O

By Theorem 13 and the definition of 7 (cf. (5)), we easily
see that the following corollary holds.

Corollary 14. Assume the same conditions as in Theorem 12.
Letu € Uy and u + euy € U, for some u, € H and small
positive constant €. Then,

| (u+euy) —mw)|=0(), (—0). (75

6. Examples
In this section, we give an example of the main results.

Example 1. Consider the following boundary value problem
of second order impulsive differential equation:

") =@+ D) [+ xO) P+ @+ x @) ] +u),

1
tE(O,l), t%g,

13\ (/2 1\ (/4
Ax't=<1/3>=<”x(5)> *(1”(5)) >

x(0) =1, x' (1) =0.

(76)

Conclusion. The boundary value problem (76) admits a
unique positive solution, which is continuously differentiable
on [0, (1/3)) U ((1/3),1].

Proof. Let ] = [0,1], t; = (1/3), f(t,x,¥) == f(x, ) = (1 +
X)W 41 +y)_(1/4), a(t) =2t+1,and I, (x, y) = (1 +x) 12 4
(1+ )% Evidently, f(x, y) and I, (x, y) are increasing in
x for y > 0 and are decreasing in y for x > 0.

Set o(y) = Y2,y € (0, 1), then,

f(yeyy)
(1/2) —1 \—(1/4)
= (1) 4 (14yy) T 2 0() £ (xy)
(77)
Vx,y 20,

L(yoy'y) 2 (x,y) Vxy>0.
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Therefore, we easily see that (H, )-(H;) hold. Hence, applying
Theorem 4 to (76), we get a unique positive solution to (76)
on J foreachu € Hwith 0 < u(t) < M a.e.t € ], where
M > 0 is a given constant. O

Example 2. Consider the following initial value problem of
the second order impulsive differential equation:

X" (t)

=+ D) [A+x O+ @+ xO) ] v u),

1
te(0,1), t+-,
(0,1) ¢3

(1/2) —(1/4)
1 1
Al = (1 ”(5)) +(1 ”(5)) ’

x(0) =1, x' (0) = 0.

(78)

Conclusion. The initial value problem (78) admits a unique
positive solution, which is continuously differentiable on
[0,(1/3))U((1/3), 1]. Moreover, the problem (OP) to (78) has
at least one optimal control, and the stability result of optimal
control holds.

Proof. Let ] = [0,1], ¢, = (1/3), f(t.x,y) = f(x,y) =
—(1+ x)(l/z) —(1+ y)_(l/4), and a(t) = 2t + 1. Clearly, f(x, y)
is decreasing in x for y > 0 and is increasing in y for x > 0.
Also, let I, (x, ¥) = (1+x)M? + (1+ y)™?, evidently,
I, (x, y) is increasing in x for y > 0 and is decreasing in y for
x = 0.
Set p(y) =y, y € (0, 1), then,

fyxy™y)

(1/2) —1 \—(1/4)
=—(1+yx) "+ (1+y7y) T <o(y) f(xy)

Vx,y =0,

L(yey'y) 290 (xy) Vx>0
(79)

Therefore, we easily see that conditions (H,), (H,), (Hl)’,
(Hs)', and (Hs)’ hold. Hence, applying Theorem 8 to (78), we
get a unique positive solution to (78) on J for each u € H with
-M <u(t) <0Oae.t € J,where M > 0 is a given constant.
In addition, let C; = C; = 1. Then, we easily see that (Hy)
holds. Hence, applying Theorem 12, we see that Problem (OP)
to (78) has at least one optimal control for each desired target
profile x; in H. Also, applying Theorem 13, we get the result
on the stability of optimal control to (OP). O]
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