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We study peakon, cuspon, compacton, and loop solutions for the three-dimensional Kadomtsev-Petviashvili equation (3DKP(3,
2) equation) with nonlinear dispersion. Based on the method of dynamical systems, the 3DKP(3, 2) equation is shown to have the
parametric representations of the solitary wave solutions such as peakon, cuspon, compacton, and loop solutions. As a result, the
conditions under which peakon, cuspon, compacton, and loop solutions appear are also given.

1. Introduction

Nonlinear phenomena play a crucial role in applied mathe-
matics and physics. Studies of various physical structures of
nonlinear dispersive equations had attracted much attention
in connection with the important problems that arise in sci-
entific applications. Mathematically, these physical structures
have been studied by using various powerful and efficient
methods, such as inverse scattering method [1], Darboux
transformationmethod [2, 3], Hirota bilinearmethod [4], Lie
groupmethod [5, 6], bifurcation method of dynamic systems
[7, 8], tanh function method [9–12], Fan-expansion method
[13, 14], and homogenous balance method [15]. Practically,
there is no unified technique that can be employed to handle
all types of nonlinear dispersive equations.

Recently, Xie andYan [16] considered the following three-
dimensional Kadomtsev-Petviashvili equation with nonlin-
ear dispersion (the 3DKP(𝑚, 𝑛) equations in short):

[𝑢
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+ 𝑎(𝑢
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𝑥𝑥𝑥

]
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𝑧𝑧
= 0, (1)

where 𝑎 is a nonzero real number.
When 𝑛 = 1, 𝑚 = 2, 3DKP(2, 1) equation becomes the

3DKP equation [17, 18]
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𝑧𝑧
= 0. (2)

When 𝑛 = 1, 𝑚 = 3, 3DKP(3, 1) equation becomes the
3DmKP equation

[𝑢
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+ 3𝑎𝑢𝑢
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𝑥𝑥𝑥
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𝑥
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= 0. (3)

When 𝑎 = 1/2,𝑚 = 𝑛 = 2, Rosenau andHyman [19] have
given a compacton solution to 3DKP(2, 2) equation

[𝑢
𝑡
+ 𝑢𝑢
𝑥
+ (𝑢
2
)
𝑥𝑥𝑥

]
𝑥
+ (𝑢)
𝑦𝑦
+ (𝑢)
𝑧𝑧
= 0. (4)

By using some transformations, some compactons and soli-
tary patterns are obtained [16]. Recently, by using the ansatz
method and the Exp-function method, Inc [20] consid-
ered some compact and noncompact solutions for (1) and
obtained a new traveling wave solution for the 3DKP(2, 1)
equation. The authors did not study the bifurcation behavior
of the traveling wave solutions of the corresponding traveling
wave equations in its parameter space. It is important to
understand the dynamical behavior for the traveling wave
solutions governed by a singular traveling wave equation. We
emphasize that peakon, cuspon, and loop solutions have not
been available as yet. To answer this question,wewill consider
the bifurcations of traveling wave solutions of 3DKP(3, 2)
equation in the three-parameter space (𝛼, 𝑟, 𝛽).
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We now assume that 𝑚 = 3, 𝑛 = 2 and make the
transformations 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝜙(𝑘(𝑥 + 𝑙𝑦 + 𝑠𝑧 − 𝜆𝑡)) = 𝜙(𝜉),
where 𝑘, 𝑙, 𝑠, 𝜆 ̸= 0. Thus, (1) becomes

[−𝜆𝜙
󸀠
+ 𝑎(𝜙
3
)
󸀠
+ 𝑘
2
(𝜙
2
)
󸀠󸀠󸀠
]

󸀠

+ (𝑙
2
+ 𝑠
2
) 𝜙
󸀠󸀠
= 0, (5)

where “󸀠” is the derivative with respect to 𝜉. Integrating (5)
twice, we have

𝛼 (𝑔 + 𝛽𝜙 + 𝜙
3
) + 2(𝜙

󸀠
)

2

+ 2𝜙𝜙
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where 𝑔 is an integration constant, 𝛼 = 𝑎/𝑘
2, and 𝛽 =

(1/𝑎)(𝑙
2
+ 𝑠
2
− 𝜆). We further make the transformation

𝜓 = 𝜙 (𝜉) − 𝑟, 𝜉 = 𝜉, 𝑦 = 𝑦, (7)

where 𝑟 satisfies the equation 𝜙
3
+ 𝛽𝜙 + 𝑔 = 0. Then (6) is

equivalent to the following two-dimensional systems:
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(8)

which admits the following first integral:
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Systems (8) are planar dynamical systems defined in the
3-parameter space (𝛼, 𝑟, 𝛽). For a fixed 𝛼, we will investigate
the bifurcations of phase portraits of (8) in the phase plane
(𝜓, 𝑦) as the parameters 𝑟, 𝛽 are changed.

We emphasize that when 𝜓 = 𝑟, the right-hand side
of the second equation of systems (8) is discontinuous. We
call such systems the singular traveling wave systems. The
straight line 𝜓 = 𝑟 in the 𝜓-𝑦-phase plane is called a singular
straight line.There are some general theories andmethods for
investigating this type of singular traveling wave systems [21–
25]. It is now well known that the existence of the singular
straight lines implies the occurrence of some nonsmooth
dynamical behaviors and curve breaking phenomena of the
traveling wave solutions of such system, more precisely the
so-called peakon and cuspon, and so forth.

It is important to understand the dynamical behavior for
the traveling wave solutions governed by a singular traveling
wave equation.

The rest of this paper is organized as follows. In Section 2,
we discuss the bifurcations of phase portraits of (8), where
explicit parametric conditions will be derived. In Section 3,
we give explicit parametric representations for peakon,
cuspon, compacton, and loop solutions of (1). Section 4
contains the concluding remarks.

2. Bifurcation Set and All Phase
Portraits of System (8)

Throughout we assume that 𝛼 < 0. Otherwise, we can make
a transformation

𝛼 󳨀→ −𝛼, 𝑦 󳨀→ −𝑦, 𝜓 󳨀→ −𝜓,

𝜁 󳨀→ −𝜁, 𝑟 󳨀→ −𝑟, 𝛽 󳨀→ 𝛽,

(11)

to reduce (8) to this case. Based on 𝜓 = 𝑟 being a straight line
solution to the system

𝑑𝜓

𝑑𝜁

= (𝜓 − 𝑟) 𝑦,
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2
+ 𝛽) ,

(12)

where 𝑑𝜉 = (𝜓 − 𝑟)𝑑𝜁, for 𝜓 ̸= 𝑟, we say that the system (12)
is the associated regular system of (8) [25].

Thus, system (12) has five equilibrium points 𝑂(0, 0),
𝐴
±
(𝜓
±
, 0), and 𝑆

±
(𝑟, ±√𝑌), where

𝜓
±
=

1

2

(−3𝑟 ± √Δ) , Δ = −3𝑟
2
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𝑟𝛼 (7𝑟
2
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Let 𝑀(𝜓
𝑒
, 𝑦
𝑒
) be the coefficient matrix of the linearized

systemof (12) at an equilibriumpoint (𝜓
𝑒
, 𝑦
𝑒
) and let 𝐽(𝜓
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, 𝑦
𝑒
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be its Jacobin determinant. Then, we have
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2
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By the theory of planar dynamical systems, we know that
for an equilibriumpoint (𝜓

𝑒
, 𝑦
𝑒
) of a planar integrable system,

if 𝐽 < 0, then the equilibrium point is a saddle point; if 𝐽 > 0

and Trace (𝑀(𝜓
𝑒
, 𝑦
𝑒
)) = 0, then it is a center point; if 𝐽 > 0

and (Trace (𝑀(𝜓
𝑒
, 𝑦
𝑒
)))
2
− 4𝐽(𝜓

𝑒
, 𝑦
𝑒
) > 0, then it is a node;

and if 𝐽 = 0 and the Poincare index of the equilibrium point
is zero, then it is a cusp.

For the Hamiltonian defined by (10), we write that
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Abstract and Applied Analysis 3

0

0.2

0.5 1

–0.8

–0.6

–0.4

–0.2

–1

–1 –0.5

(A1)(A8)

(A1)

(A3)

(A5)(A4)

(A2)

(A8)

(A7)

(A6)

(L1−)

(L3−)

(L2−) (L1+)(L2+)

(L3+)

r

𝛽

Figure 1:The bifurcation set of system (8) in (𝑟, 𝛽)-parameter plane
for 𝛼 < 0.

The relations Δ = 0,𝐻(𝑟, ±√𝑌) = 𝐻(0, 0), and 𝑌 = 0 give
the following three bifurcation curves:

(𝐿
1
) : 𝛽 = −

3

4

𝑟
2
; (𝐿

2
) : 𝛽 = −

24

5

𝑟
2
;

(𝐿
3
) : 𝛽 = −7𝑟

2
.

(16)

Thus, in the (𝑟, 𝛽)-plane, we have 8 different parameter
regions partitioned by the curves (𝐿

𝑖
), 𝑖 = 1, 2, 3, and 𝑟 = 0,

which are shown in Figure 1.
We use Figure 2 to show the bifurcations of the phase

portraits of (12) for 𝛼 < 0.

3. Explicit Parametric Representations of
Peakon, Cuspon, Compacton, and Loop
Solutions of (8)

In this section, we give some parametric representations of
peakon, cuspon, compacton, and loop solutions. To discuss
the existence of peakon and cuspon solutions, we need to use
the following two lemmas related to the singular straight line
(see [25]).

Lemma 1 (the rapid-jump property of the derivative near
the singular straight line). Suppose that in a left (or right)
neighborhood of a singular straight line there exists a family
of periodic orbits. Then, along a segment of every orbit near the
straight line, the derivative of the wave function jumps down
rapidly on a very short time interval.

Lemma 2 (existence of finite time interval of solution with
respect to wave variable in the positive or negative direction).
For a singular nonlinear traveling wave system of the first
class with possible change of the wave variable, if an orbit
transversely intersects with a singular straight line at a point or
it approaches a singular straight line, but the derivative tends to

infinity, then it only takes a finite time interval to make moved
point of the orbit arrive on the singular straight line.

In the following, we give explicit parametric representa-
tions of peakon, cuspon, compacton, and loop solutions.

3.1. Peakon. (1) Suppose that 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐿
1+
. In this case,

we have the phase portrait of (8) shown in Figure 2(i). Notice
that𝐻(𝜓

±
, 0) = 𝐻(−(3/2)𝑟, 0) = 𝐻(𝑟, ±√𝑌) = (27/40)𝑟

5. We
see from (10) that two arch curves connecting 𝑆

±
in the left

side of the straight line 𝜓 = 𝑟 have the algebraic equation

𝑦
2
= −

𝛼

5

(𝜓 +

3

2

𝑟)

3

. (17)

Thus, by Lemma 2, we can take initial value as𝜓(0) = 0.Then,
we have

𝜓 (𝜉) = −

3

2

𝑟 +

4

[2√2/5𝑟 + √−𝛼/5
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
]

2
, (18)

which is a a solitary peaked wave solution to (1) (so called
“peakon” [26]). The profile of peakon soliton solution is
shown in Figure 3(a).

(2) Suppose that 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐿
2+
. In this case, we have

the phase portrait of (8) shown in Figure 2(k). Notice that
𝐻(𝜓
±
, 0) = 𝐻(0, 0) = 0.We see from (10) that two arch curves

connecting 𝑆
±
in the left side of the straight line 𝜓 = 𝑟 have

the algebraic equation

𝑦
2
= −

𝛼

5

𝜓
2
(𝜓 +

9

2

𝑟) . (19)

Thus, by Lemma 2, we can take initial value as𝜓(0) = 𝑟.Then,
we have

𝜓 (𝜉) =

9𝑟

2

[coth2 (coth−1√11

9

−

3

2

√−

𝑟𝛼

10

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
)] , (20)

which is a peakon soliton solution to (1).Theprofile of peakon
soliton solution is shown in Figure 3(b).

Therefore, we have the following.

Theorem 3. (1) When the parameter groups 𝛼, 𝑟, 𝛽 of system
(8) satisfy the condition 𝛼 < 0 with 𝑟 > 0, 𝛽 = −(3/4)𝑟

2, there
exists a heteroclinic loop of system (12) given by three branches
of the curves𝐻(𝜓, 𝑦) = (27/40)𝑟

5
(= ℎ
𝑠
). As the limit curves of

a family of periodic orbits of system (8), the curve triangle (i.e.,
heteroclinic loop) in Figure 2(i) gives rise to a solitary peaked
wave solution (a peakon) of (1), which has the exact parametric
representation given by (18).

(2) When the parameter groups 𝛼, 𝑟, 𝛽 of system (8) satisfy
the condition 𝛼 < 0 with 𝑟 > 0, 𝛽 = −(24/5)𝑟

2, there exists a
heteroclinic loop of system (12) given by three branches of the
curves𝐻(𝜓, 𝑦) = 0. As the limit curves of a family of periodic
orbits of system (8), the curve triangle (i.e., heteroclinic loop) in
Figure 2(k) gives rise to a peakon soliton solution to (1), which
has the exact parametric representation given by (20).

Remark 4. To the best of our knowledge, solutions (18) and
(20) obtained for (1) have not been reported in the literature.
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Figure 2: The phase portraits of (8) for 𝛼 < 0.

3.2. Cuspon. (3) Suppose that 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐿
3+
. In this

case, we have the phase portrait of (8) shown in Figure 2(m).
Notice that𝐻(0, 0) = 0.We see from (10) that two arch curves
connecting 𝑂(0, 0) in the right side of the straight line 𝜓 = 𝑟

have the algebraic equation

𝑦
2
= −

𝛼𝜓
2

5(𝜓 − 𝑟)
2
(𝜓 − 𝜓

0
) [(𝜓 +

1

2

(𝜓
0
+

5

2

𝑟))

2

+ 𝛿
2
] ,

(21)

where𝜓
0
< 𝜓
−
and 𝛿2 = (−1/4𝜓

0
)((5/2)𝑟𝜓

2

0
+(215/12)𝑟

2
𝜓
0
+

30𝑟
3
).
On the basis of Lemma 2, we can take initial value 𝜓(0) =

𝑟. Then, we have

𝜉 = √−

5

𝛼

∫

𝑟

𝜓

(𝜓 − 𝑟) 𝑑𝜓
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0
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0
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]

.
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By introducing a new variable 𝜒, from (22), one obtains the
parametric representation of the following cuspon solution to
(1)

𝜓 (𝜒) =

𝐴 + 𝜓
0
− (𝐴 − 𝜓

0
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1 + cn (𝜒, 𝑘)
,
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2𝐴

, 𝑔 =

1

√𝐴

,

𝑓
1
=

1

2

√

𝛼
2

1
− 1

𝑘
2
+ 𝑘
󸀠2
𝛼
2

1

× ln[[

[

√𝑘
2
+ 𝑘
󸀠2
𝛼
2

1
dn (𝜒, 𝑘) + √𝛼2

1
− 1sn (𝜒, 𝑘)

√𝑘
2
+ 𝑘
󸀠2
𝛼
2

1
dn (𝜒, 𝑘) − √𝛼2

1
− 1sn (𝜒, 𝑘)

]

]

]

,

𝐴 = √(−

1

2

𝜓
0
+

5

4

𝑟)

2

+ 𝛿
2
, Π(⋅,

𝛼
2

1

𝛼
2

1
− 1

, 𝑘)

(24)

is the elliptic integral of the third kind and sn (𝑢, 𝑘) and
dn (𝑢, 𝑘) are the Jacobian elliptic functions [27]. According to
(23), we may plot the graph of cuspon solution to (1) shown
in Figure 4(a).

(4) Suppose that 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐴
3
. In this case, we have

the phase portrait of (8) shown in Figure 2(c). Notice that
𝐻(0, 0) = 0. This case is completely similar to the case of 𝛼 <

0, (𝑟, 𝛽) ∈ 𝐿
3+
.

Theorem 5. When the parameter groups 𝛼, 𝑟, 𝛽 of system (8)
satisfy the condition 𝛼 < 0 with 𝑟 > 0, 𝛽 = −7𝑟

2 or 𝛼 < 0,
(𝑟, 𝛽) ∈ 𝐴

3
, corresponding to the stable and unstable manifolds

in the right phase plane of the equilibrium point 0(0, 0) in
Figure 2(m) or Figure 2(c) defined by 𝐻(𝜓, 𝑦) = 0; (1) has a
cuspon solution given by (23).

Remark 6. To the best of our knowledge, solutions (23)
obtained for (1) have not been reported in the literature.

3.3. Compacton. (5) Suppose that 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐿
3−
. In this

case, we have the phase portrait of (8) shown in Figure 2(n).
Notice that 𝐻(𝜓

−
, 0) = 𝐻(𝑟, 0) = −(11/30)𝑟

5. We see from
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Figure 4: The cuspon and compacton solutions of (8) for 𝛼 < 0.

(10) that arch curve connecting 𝐴
+
in the right side of the

straight line 𝜓 = 𝑟 has the algebraic equation

𝑦
2
= −

𝛼

5

(𝜓 − 𝑟) (𝜓 − 𝜓
1
) (𝜓 − 𝜓

2
) , (25)

where 𝜓
1,2

= ((−11 ± 5√11/3)𝑟)/4. Thus, by using the
first equation of (8) and (25), we obtain the parametric
representation of the arch curve as follows:

𝜓 (𝜉) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

(𝜓
1
(𝜓
2
− 𝑟) − 𝜓

2
(𝜓
1
− 𝑟) sn2

×(

1

2

√

𝛼

5

(𝑟 − 𝜓
2
)𝜉, √

𝑟 − 𝜓
1

𝑟 − 𝜓
2

))

×(𝜓
2
− 𝑟 − (𝜓

1
− 𝑟) sn2

×(

1

2

√

𝛼

5

(𝑟 − 𝜓
2
)𝜉, √

𝑟 − 𝜓
1

𝑟 − 𝜓
2

))

−1

,

if 󵄨󵄨󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 2√

−5

2 (𝜓
2
− 𝑟)

𝐾(√

𝑟 − 𝜓
1

𝑟 − 𝜓
2

) ,

0, if 󵄨󵄨󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
> 2√

−5

2 (𝜓
2
− 𝑟)

𝐾(√

𝑟 − 𝜓
1

𝑟 − 𝜓
2

) .

(26)

Therefore, we have the following.

Theorem 7. (1) When the parameter groups 𝛼, 𝑟, 𝛽 of system
(8) satisfy the condition 𝛼 < 0 with 𝑟 < 0, 𝛽 = −7𝑟

2, there
exists a homoclinic loop of system (12) given by branch of the
curve𝐻(𝜓, 𝑦) = −(11/30)𝑟

5.

(2) As the limit curves of a family of periodic orbits of system
(8), the periodic curve in Figure 2(n) gives rise to a compacton
soliton solution to (1), which has the exact parametric represen-
tation given by (26).

The profile of compacton soliton solution is shown in
Figure 4(b).

Remark 8. To the best of our knowledge, solutions (26)
obtained for (1) have not been reported in the literature.

3.4. Loop Solution. (6) Suppose that 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐿
3−
. We

notice that the curves defined by 𝐻(𝜓, 𝑦) = ℎ
+
correspond

to different orbits of (8) consisting of two stable manifolds,
two unstablemanifolds of the saddle point𝐴

+
(𝜓
+
, 0), and the

open curve passing through the point ((7/2)𝑟, 0), respectively
(see Figure 2(n)).

We next discuss the parametric representation of𝜓(𝜉) for
these curves.We see from (10) that the arch curves in the right
side of the straight line 𝜓 = 𝑟 have the algebraic equation

𝑦
2
= −

𝛼

5(𝜓 − 𝑟)
2

× (𝜙
5
+

5

2

𝑟𝜓
4
−

35

3

𝑟
2
𝜓
3
+ 10𝑟
3
𝜓
2
−

1568

3

𝑟
5
)

= −

𝛼(𝜓 + 4𝑟)
2

5(𝜓 − 𝑟)
2
(𝜓 −

7

2

𝑟) (𝜓
2
− 2𝑟𝜓 +

28

3

𝑟
2
) .

(27)

We first consider the unstable (or stable) manifold of the
saddle point𝐴

+
(𝜓
+
, 0). On the basis of Lemma 2, we can take
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initial value 𝜓(0) = −(103𝑟/50), 𝑦(0) = −(97𝑟/573750)

√276735795𝛼𝑟 (or 𝑦(0) = (97𝑟/573750)√276735795𝛼𝑟); we
have from (27) that

𝜉 = ±√−

5

𝛼

∫

𝜓(0)

𝜓

Ψ (𝜓) 𝑑𝜓

= ±√−

5

𝛼

[∫

𝜓(0)

7𝑟/2

Ψ (𝜓) 𝑑𝜓 − ∫

𝜓

7𝑟/2

Ψ (𝜓) 𝑑𝜓] ,

(28)

where Ψ(𝜓) = (𝜓 − 𝑟)/((𝜓 + 4𝑟)

√(𝜓 − (7/2)𝑟)(𝜓
2
− 2𝑟𝜓 + (28/3)𝑟

2
)). By introducing

a new variable 𝜒, from (28), one obtains the parametric
representation of the unstable manifold:

𝜓 (𝜒) =

(𝑟/2) (1 − 5√7 + (1 + 5√7) cn (𝜒, 𝑘))
1 + cn (𝜒, 𝑘)

,

𝜉 (𝜒) = ±

5 + 4√7

8 + 3√7

√

2

5√7𝛼𝑟

× (−𝜒 − Ψ
2
(𝜒) + 𝜒

0
+ Ψ
2
(𝜒
0
)) ,

(29)

where

Ψ
2
(𝜒) =

16 − 6√7

3 (5 + 4√7)

× (Π(arc cos (cn (𝜒, 𝑘)) ,
𝛼
2

1

𝛼
2

1
− 1

, 𝑘) − 𝛼
1
𝑓
1
) ,

𝜒
0
= cn−1 (125

√7 − 278

125√7 + 278

, 𝑘) , 𝛼
1
= 8 + 3√7,

𝑓
1
=

1

2

√

𝛼
2

1
− 1

𝑘
2
+ 𝑘
󸀠2
𝛼
2

1

× ln[[

[

√𝑘
2
+ 𝑘
󸀠2
𝛼
2

1
dn (𝜒, 𝑘) + √𝛼2

1
− 1sn (𝜒, 𝑘)

√𝑘
2
+ 𝑘
󸀠2
𝛼
2

1
dn (𝜒, 𝑘) − √𝛼2

1
− 1sn (𝜒, 𝑘)

]

]

]

,

𝑘 = √
1

2

(1 +

1

7

√7).

(30)

In addition, taking the initial condition 𝜓(0) = 7𝑟/2,
𝑦(0) = 0, for the left open curve defined by a branch of
𝐻(𝜓, 𝑦) = ℎ

+
, we have the parametric representation:

𝜓 (𝜒) =

(𝑟/2) (1 − 5√7 + (1 + 5√7) cn (𝜒, 𝑘))
1 + cn (𝜒, 𝑘)

,

𝜉 (𝜒) = ±

5 + 4√7

8 + 3√7

√

2

5√7𝛼𝑟

(𝜒 + Ψ
2
(𝜒)) .

(31)

Employing the above formulas to draw the graphs of𝜓(𝜉),
we obtain corresponding wave profiles shown in Figure 5.

Remark 9. The loop solution, that is, the so-called loop
soliton solution, is not one real soliton solution (see [28, 29]).

(7) Suppose that 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐴
4
. We notice that

the curves defined by 𝐻(𝜓, 𝑦) = 0 correspond to differ-
ent orbits of (8) consisting of two stable manifolds, two
unstable manifolds of the saddle point 𝑂(0, 0), and the open
curve passing through the point (𝜓

2
, 0), respectively (see

Figure 2(d)).
We next discuss the parametric representation of𝜓(𝜉) for

these curves. We see from (10) that the arch curves in the left
side of the straight line 𝜓 = 𝑟 have the algebraic equation

𝑦
2
= −

𝛼𝜓
2

5(𝜓 − 𝑟)
2
(𝜙
3
+

5

2

𝑟𝜓
2
+

5

3

𝛽𝜓 −

5

2

(3𝑟
2
+ 𝛽))

= −

𝛼𝜓
2

5(𝜓 − 𝑟)
2
(𝜓 − 𝜓

1
) (𝜓 − 𝜓

2
) (𝜓 − 𝜓

3
) ,

(32)

where 𝜓
1
< 0 < 𝜓

2
< 𝜓
3
.

We first consider the unstable (or stable) manifold of the
saddle point 𝑂(0, 0). On the basis of Lemma 2, we can take
initial value

𝜓 (0) = −

11𝑟

25

,

𝑦 (0) = √−

121𝛼𝑟

980

(

17787𝑟
2

31250

+

11𝛽

15

−

5 (3𝑟
2
+ 𝛽)

2

)

(or

𝑦 (0)

= −√−

121𝛼𝑟

980

(

17787𝑟
2

31250

+

11𝛽

15

−

5 (3𝑟
2
+ 𝛽)

2

)) .

(33)

We have from (32) that

𝜉 = ±√−

5

𝛼

∫

𝜓

𝜓(0)

(𝜓 − 𝑟) 𝑑𝜓

𝜓√(𝜓 − 𝜓
1
) (𝜓 − 𝜓

2
) (𝜓 − 𝜓

3
)

. (34)

By introducing a new variable 𝜒, from (34), one obtains the
parametric representation of the unstable manifold:

𝜓 (𝜒) =

𝜓
2
(𝜓
3
− 𝜓
1
) − 𝜓
3
(𝜓
2
− 𝜓
1
) sn2 (𝜒, 𝑘)

(𝜓
3
− 𝜓
1
) − (𝜓

2
− 𝜓
1
) sn2 (𝜒, 𝑘)

,

𝜉 (𝜒) = ±2√

5

−𝛼 (𝜓
3
− 𝜓
1
)

× ((1 −

𝑟

4

) 𝜒 + Ψ
3
(𝜒) − (1 −

𝑟

4

) 𝜒
0
− Ψ
3
(𝜒
0
)) ,

(35)
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Figure 5: The profiles of waves when 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐿
3−
. (a) shows the kink wave corresponding to the unstable manifold. (b) shows the

kink wave corresponding to the stable manifold. (c) shows the breaking wave corresponding to the open curve passing through the point
𝐴
+
(𝜓
+
, 0). (d) shows the wave profile of three curves—loop solution.
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Figure 6:The profiles of waves when 𝛼 < 0, (𝑟, 𝛽) ∈ 𝐴
4
. (a) shows the kink wave corresponding to the unstable manifold. (b) shows the kink

wave corresponding to the stable manifold. (c) shows the breaking wave corresponding to the open curve passing through the point 𝑂(0, 0).
(d) shows the wave profile of three curves—loop solution.

where

Ψ
3
(𝜒) = −

𝑟(𝜓
2
− 𝜓
1
)
2

𝜓
2
(𝜓
3
− 𝜓
1
)

(Π (arc sin (sn (𝜒, 𝑘)) , 𝛼2
1
, 𝑘)) ,

𝜒
0
= sn−1(√

(𝜓
3
− 𝜓
1
) (𝜓
2
− 𝜓 (0))

(𝜓
2
− 𝜓
1
) (𝜓
3
− 𝜓 (0))

, 𝑘) ,

𝛼
1
=

𝜓
3
(𝜓
2
− 𝜓
1
)

𝜓
2
(𝜓
3
− 𝜓
1
)

, 𝑘
2
=

𝜓
2
− 𝜓
1

𝜓
3
− 𝜓
1

.

(36)

In addition, taking the initial condition𝜓(0) = 𝜓
2
, 𝑦(0) =

0, for the right open curve defined by a branch of𝐻(𝜓, 𝑦) = 0,
we have the parametric representation:

𝜓 (𝜒) =

𝜓
2
(𝜓
3
− 𝜓
1
) − 𝜓
3
(𝜓
2
− 𝜓
1
) sn2 (𝜒, 𝑘)

(𝜓
3
− 𝜓
1
) − (𝜓

2
− 𝜓
1
) sn2 (𝜒, 𝑘)

,

𝜉 (𝜒) = ±2√

5

−𝛼 (𝜓
3
− 𝜓
1
)

((1 −

𝑟

4

) 𝜒 + Ψ
3
(𝜒)) .

(37)

Employing the above formulas to draw the graphs of𝜓(𝜉),
we obtain corresponding wave profiles shown in Figure 6.

Finally, we note that in Figures 2(e), 2(f), 2(g), 2(h), and
2(l), there is at least one loop solution to (1). Due to space
limitations, we omit them.

Remark 10. To the best of our knowledge, solutions (31) and
(37) obtained for (1) have not been reported in the literature.

4. Discussion

In this paper, we used the qualitative analysis methods
of a dynamical system to investigate the peakon, cuspon,
compacton, and loop solutions of 3DKP(3, 2) equation. Our
procedure shows that the 3DKP(3, 2) equation either has
peakon, cuspon, compacton, or loop solutions. The phase
portrait bifurcation of the traveling wave system correspond-
ing to the equation is given. Particularly, cuspon and loop
belong to the compound-type solutions; that is, they consist
of two or three branches of nonsmooth solutions due to
the existence of the singular straight line 𝜓 = 𝑟 in the
corresponding phase portraits. The approach we used is
simple and can be extended to study the soliton solutions of
some other equations.
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