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We consider a predator-prey system with Beddington-DeAngelis functional response and delays, in which not only the stage
structure on prey but also the delay due to digestion is considered. First, we give a sufficient and necessary condition for the
existence of a unique positive equilibrium by analyzing the corresponding locations of a hyperbolic curve and a line. Then, by
constructing an appropriate Lyapunov function, we prove that the positive equilibrium is locally asymptotically stable under a
sufficient condition. Finally, by using comparison theorem and the 𝜔-limit set theory, we study the global asymptotic stability of
the boundary equilibrium and the positive equilibrium, respectively. Also, we obtain a sufficient condition to assure the global
asymptotic stability.

1. Introduction

The purpose of this paper is to consider the following
predator-prey systemwith Beddington-DeAngelis functional
response and delays:
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󸀠

𝑖
(𝑡) = 𝑎𝑥 (𝑡) − 𝑑

𝑖
𝑥
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1
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𝑓𝑥 (𝑡 − 𝜏
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) 𝑦 (𝑡 − 𝜏

2
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𝑚
1
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2
) + 𝑚
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,

(1)

where 𝑥
𝑖
(𝑡) denotes the immature prey population density,

𝑥(𝑡) denotes the mature prey population density, and 𝑦(𝑡)

denotes the mature predator population density, and all the
parameters 𝜏

1
, 𝜏
2
, 𝑎, 𝑑
𝑖
, 𝑏, 𝑐, 𝑑, 𝑓,𝑚

1
,𝑚
2
, and𝑚

3
are positive.

More precisely, the parameters 𝜏
1
and 𝜏
2
represent the time

that the prey juveniles and the predator juveniles take to
be mature, respectively. 𝑎 is the intrinsic growth rate of the
prey and 𝑑

𝑖
is the death rate of immature preys. The term

𝑎𝑒
−𝑑𝑖𝜏1 denotes the surviving rate of the immature prey during

the delay period to be mature. The constant 𝑏 denotes the
intensity of intraspecific action on the prey and 𝑑 is the death
rate of the predator. The function 𝑐𝑥(𝑡)𝑦(𝑡)/(𝑚

1
+ 𝑚
2
𝑥(𝑡) +

𝑚
3
𝑦(𝑡)) represents the Beddington-DeAngelis functional

response and the function 𝑓𝑥(𝑡 − 𝜏
2
)𝑦(𝑡 − 𝜏

2
)/(𝑚
1
+ 𝑚
2
𝑥(𝑡 −

𝜏
2
) + 𝑚
3
𝑦(𝑡 − 𝜏

2
)) represents the predator’s growth rate that

comes from the Beddington-DeAngelis functional response
during time period [𝑡 − 𝜏

2
, 𝑡].

Actually, the predator-prey system with Beddington-
DeAngelis functional response has been extensively studied
in the literature. In the original work, Beddington [1] and
DeAngelis et al. [2] proposed the predator-prey system as

𝑥
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(𝑡) = 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥
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(𝑡) = −𝑑𝑦 (𝑡) +

𝑓𝑥 (𝑡) 𝑦 (𝑡)

𝑚
1
+ 𝑚
2
𝑥 (𝑡) + 𝑚

3
𝑦 (𝑡)

.

(2)

Shaikhet [3] considered the stability of a positive point of
equilibrium of one nonlinear system with aftereffect and
stochastic perturbations. Indeed, the author in [3] not only
obtained sufficient conditions for asymptotic mean square
stability of the considered systems, but also showed that the
trivial solution is asymptotically mean square stable and the
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positive equilibrium is stable in probability by construct-
ing appropriate Lyapunov functions. In particular, Shaikhet
expounded a general method of construction of Lyapunov
functions for stochastic functional differential equations and
obtained the stability conditions for functional differential
equations in [4]. See also [5–10] for the corresponding
results about the predator’s functional response. Particularly,
Huo [8] studied the global attractiveness of delay diffusive
prey-predator systems with the Michaelis-Menten functional
response.

In the real world, many species usually have a life history
that takes them through two stages, immature stage and
mature stage. Recently, the system with the stage structure
on prey has been extensively studied. In particular, She and
Li [11] analyzed the following Beddington-DeAngelis model
with the stage structure on prey:

𝑥
󸀠

𝑖
(𝑡) = 𝑎𝑥 (𝑡) − 𝑑

𝑖
𝑥
𝑖
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(𝑡) = −𝑑𝑦 (𝑡) +
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𝑚
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,

(3)

where the stage structure was introduced by a constant time
delay. In fact, it is the case of 𝜏

2
= 0 in system (1). See also [12–

15] for predator-prey models with Beddington-DeAngelis
functional response and stage structure.

More recently, Xiang et al. [16] established a virus dynam-
ics model with Beddington-DeAngelis functional response
and delays. In [16], they not only incorporated the delay
𝜏
1
, which described the time between viral entry into a

target cell and the production of new virus particles, but also
incorporated the delay 𝜏

2
, which described the maturation

time of the newly produced viruses. Additionally, it is well
known that the growth of the predator is affected by the time
delay due to digestion. This motivates us to resolve the issue.

Motivated by [16], in the present paper, we study the
predator-prey system (1) with Beddington-DeAngelis func-
tional response and delays, in which not only the stage
structure on prey but also the delay due to digestion is
considered.

More precisely, let 𝑎 = 𝑎𝑒
−𝑑𝑖𝜏1 and assume that

𝑥
𝑖
(0) = 𝑎∫

0

−𝜏1

𝑒
−𝑑𝑖𝑠

𝑥 (𝑠) 𝑑𝑠 (4)

holds. Then, based on similar conclusions for Lemma 3.1 in
[10], we obtain

𝑥
𝑖
(𝑡) = 𝑎∫

0

−𝜏1

𝑒
−𝑑𝑖𝑠

𝑥 (𝑡 + 𝑠) 𝑑𝑠, (5)

which means that 𝑥
𝑖
(𝑡) depends on 𝑥(𝑡) completely. Thus, we

can obtain the following system, which is separated from (1):

𝑥
󸀠

(𝑡) = 𝑎𝑥 (𝑡 − 𝜏
1
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(𝑡) −

𝑐𝑥 (𝑡) 𝑦 (𝑡)

𝑚
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+ 𝑚
2
𝑥 (𝑡) + 𝑚

3
𝑦 (𝑡)

,

𝑦
󸀠

(𝑡) = −𝑑𝑦 (𝑡) +

𝑓𝑥 (𝑡 − 𝜏
2
) 𝑦 (𝑡 − 𝜏

2
)

𝑚
1
+ 𝑚
2
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2
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3
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2
)

.

(6)

It is obvious that, for studying the dynamics of the
predator-prey system (1) with Beddington-DeAngelis func-
tional response and delays, it is sufficient to study the
dynamics of (6).

The rest of the organization of this paper is as follows. In
Section 2, we first establish the local stability of the boundary
equilibria of (6) by analyzing the characteristic equations,
and then, we study the local asymptotic stability of the
positive equilibria of (6) by constructing an appropriate
Lyapunov function. In Section 3, we consider the global
asymptotic stability of the boundary equilibrium and the
positive equilibrium, respectively.

2. Local Stability of Equilibria

In this section, we study the local stability of the equilibria
of (6). By direct calculations, we have that the system (6) has
the origin equilibrium𝐸

0
(0, 0) and the boundary equilibrium

𝐸
1
((𝑎/𝑏), 0).
In order to investigate the existence of the positive

equilibrium, we consider the equations

(𝑎 − 𝑏𝑥) (𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦) − 𝑐𝑦 = 0

−𝑑 (𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦) + 𝑓𝑥 = 0

(7)

and obtain the following result.

Theorem 1. The system (6) has a unique positive equilibrium
𝐸
∗
(𝑥
∗
, 𝑦
∗
) if and only if the condition

(𝑓 − 𝑑𝑚
2
)

𝑎

𝑏

> 𝑑𝑚
1 (8)

holds, which is equivalent to the condition

(𝑓 − 𝑑𝑚
2
)

𝑎𝑒
−𝑑𝑖𝜏1

𝑏

> 𝑑𝑚
1
. (9)

Proof. We prove the existence of the positive equilibrium by
analyzing (7). For the first equation of (7), it is easy to see
that its corresponding curves go through the points (𝑎/𝑏, 0),
(−𝑚
1
/𝑚
2
, 0), and (0, 𝑎𝑚

1
/(𝑐 − 𝑎𝑚

3
)) when 𝑐 − 𝑎𝑚

3
̸= 0.

Furthermore, in case of ((𝑐 − 𝑎𝑚
3
)/𝑏𝑚
3
) ̸=𝑚
1
/𝑚
2
, the first

equation is a hyperbolic equation and has two asymptotic
lines 𝑥+ ((𝑐 − 𝑎𝑚

3
)/𝑏𝑚
3
) = 0 and 𝑦+ (𝑚

2
/𝑚
3
)𝑥+ ((𝑏𝑚

1
𝑚
3
−

𝑐𝑚
2
)/𝑏𝑚
2

3
) = 0. If ((𝑐 − 𝑎𝑚

3
)/𝑏𝑚
3
) = 𝑚

1
/𝑚
2
, the first

equation can be simplified as (𝑚
1
+ 𝑚
2
𝑥)(𝑎𝑚

2
− 𝑏𝑚
2
𝑥 −

𝑏𝑚
3
𝑦) = 0, which are two lines.
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For the second equation of (7), it implies a linewhich goes
through the points (0, −𝑚

1
/𝑚
3
) and (𝑑𝑚

1
/(𝑓−𝑑𝑚

2
), 0)when

𝑑𝑚
1
/(𝑓−𝑑𝑚

2
) ̸= 0.Their corresponding figures are as shown

in Figures 1, 2, and 3.
Consequently, by analyzing Figures 1, 2, and 3 and

discussions, we obtain that (6) has a unique positive equilib-
rium.

Condition (9) indicates that the positive equilibrium 𝐸
∗

exists for all 𝜏
1
in the interval 𝐼 = (0, 𝜏

∗
), where

𝜏
∗
=

1

𝑑
𝑖

ln
𝑎 (𝑓 − 𝑑𝑚

2
)

𝑏𝑑𝑚
1

. (10)

Furthermore, 𝐸∗ will coincide with 𝐸
1
when 𝜏

1
= 𝜏
∗ and

there exists no positive equilibrium for 𝜏
1
> 𝜏
∗.

Now, we study the stability of equilibria
𝐸
0
(0, 0), 𝐸

1
((𝑎/𝑏), 0) and 𝐸∗(𝑥∗, 𝑦∗), respectively.

At the beginning, we rewrite system (6) as 𝑍

󸀠

(𝑡) =

𝐹(𝑍(𝑡), 𝑍(𝑡 − 𝜏
1
), 𝑍(𝑡 − 𝜏

2
)), where 𝑍(𝑡) = (𝑥(𝑡), 𝑦(𝑡)), 𝑍(𝑡 −

𝜏
1
) = (𝑥(𝑡 − 𝜏

1
), 𝑦(𝑡 − 𝜏

1
)), 𝑍(𝑡 − 𝜏

2
) = (𝑥(𝑡 − 𝜏

2
), 𝑦(𝑡 − 𝜏

2
)).

Then, for an arbitrary fixed point 𝑍
∗

= (𝑥, 𝑦), by letting
𝑃 = (𝜕𝐹/𝜕𝑍(𝑡))

𝑍
∗ , 𝑄 = (𝜕𝐹/𝜕𝑍(𝑡 − 𝜏

1
))
𝑍
∗ , and 𝑅 =

(𝜕𝐹/𝜕𝑍(𝑡 − 𝜏
2
))
𝑍
∗ , we have

𝑃 = (

−2𝑏𝑥 − 𝑐𝑞
󸀠

𝑥
−𝑐𝑞
󸀠

𝑦

0 −𝑑

)

𝑋
∗

, 𝑄 = (

𝑎 0

0 0
)

𝑋
∗

,

𝑅 = (

0 0

𝑓𝑞
󸀠

𝑥
𝑓𝑞
󸀠

𝑦

)

𝑋
∗

,

(11)

where

𝑞 (𝑥, 𝑦) =

𝑥𝑦

𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦

,

𝑞
󸀠

𝑥
=

𝑦 (𝑚
1
+ 𝑚
3
𝑦)

(𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦)
2
,

𝑞
󸀠

𝑦
=

𝑥 (𝑚
1
+ 𝑚
2
𝑥)

(𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦)
2
.

(12)

Therefore, the characteristic equation of the system (6) at the
point 𝑍

∗

is as follows:

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃 + 𝑄𝑒

−𝜆𝜏1
+ 𝑅𝑒
−𝜆𝜏2

− 𝜆𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−2𝑏𝑥 − 𝑐𝑞
󸀠

𝑥
+ 𝑎𝑒
−𝜆𝜏1

− 𝜆 −𝑐𝑞
󸀠

𝑦

𝑓𝑞
󸀠

𝑥
𝑒
−𝜆𝜏2

−𝑑 + 𝑓𝑞
󸀠

𝑦
𝑒
−𝜆𝜏2

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−2𝑏𝑥 −

𝑐𝑦 (𝑚
1
+ 𝑚
3
𝑦)

(𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦)
2
+ 𝑎𝑒
−𝜆𝜏1

− 𝜆 −

𝑐𝑥 (𝑚
1
+ 𝑚
2
𝑥)

(𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦)
2

𝑓𝑦 (𝑚
1
+ 𝑚
3
𝑦)

(𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦)
2
𝑒
−𝜆𝜏2

−𝑑 +

𝑓𝑥 (𝑚
1
+ 𝑚
2
𝑥)

(𝑚
1
+ 𝑚
2
𝑥 + 𝑚

3
𝑦)
2
𝑒
−𝜆𝜏2

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0.

(13)

Thus, according to the characteristic equation at the point
𝐸
0
, we obtain the following result.

Theorem 2. The equilibrium 𝐸
0
(0, 0) is unstable.

Proof. The characteristic equation of the system (6) at the
point 𝐸

0
is

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃 + 𝑄𝑒

−𝜆𝜏1
+ 𝑅𝑒
−𝜆𝜏2

− 𝜆𝐼

󵄨
󵄨
󵄨
󵄨
󵄨(0,0)

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎𝑒
−𝜆𝜏1

− 𝜆 0

0 −𝑑 − 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= (𝜆 + 𝑑) (𝜆 − 𝑎𝑒
−𝜆𝜏1

) = 0.

(14)

Obviously, 𝜆 = −𝑑 is a negative eigenvalue and the other
eigenvalue depends on the solution of 𝜆 − 𝑎𝑒−𝜆𝜏1 = 0.

Noticing that the line𝑦 = 𝜆 and the curve𝑦 = 𝑎𝑒
−𝜆𝜏1 must

intersect at a unique point (𝜆, 𝑦), where 𝜆 is a positive value,
we can obtain that 𝐸

0
is a saddle. Thus, 𝐸

0
is unstable.

According to the characteristic equation of the point 𝐸
1
,

we have the following theorem.

Theorem 3. The equilibrium 𝐸
1
((𝑎/𝑏), 0) is unstable if (𝑓 −

𝑑𝑚
2
)(𝑎/𝑏) > 𝑑𝑚

1
and is locally asymptotically stable if (𝑓 −

𝑑𝑚
2
)(𝑎/𝑏) < 𝑑𝑚

1
.

Proof. The characteristic equation of the system (6) at the
point 𝐸

1
is

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃 + 𝑄𝑒

−𝜆𝜏1
+ 𝑅𝑒
−𝜆𝜏2

− 𝜆𝐼

󵄨
󵄨
󵄨
󵄨
󵄨((𝑎/𝑏),0)

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−2𝑎 + 𝑎𝑒
−𝜆𝜏1

− 𝜆 −

𝑎𝑐

𝑏𝑚
1
+ 𝑎𝑚
2

0 −𝑑 +

𝑎𝑓

𝑏𝑚
1
+ 𝑎𝑚
2

𝑒
−𝜆𝜏2

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= (𝜆 + 2𝑎 − 𝑎𝑒
−𝜆𝜏1

) (𝜆 + 𝑑 −

𝑎𝑓

𝑏𝑚
1
+ 𝑎𝑚
2

𝑒
−𝜆𝜏2

)

= 0.

(15)

For the equation𝜆 + 2𝑎 − 𝑎𝑒−𝜆𝜏1 = 0, it is clear that the line
𝑦 = 𝜆+2𝑎 and the curve 𝑦 = 𝑎𝑒

−𝜆𝜏1 must intersect at a unique
point (𝜆, 𝑦), where 𝜆 is a negative value. And for the equation
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Figure 1: −𝑚
1
/𝑚
2
< −(𝑐 − 𝑎𝑚

3
)/𝑏𝑚
3
< 0.
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Figure 2: −(𝑐 − 𝑎𝑚
3
)/𝑏𝑚
3
< −𝑚

1
/𝑚
2
< 0.

𝜆 + 𝑑 − (𝑎𝑓/(𝑏𝑚
1
+ 𝑎𝑚
2
))𝑒
−𝜆𝜏2

= 0, noticing that the line 𝑦 =

𝜆+𝑑 and the curve 𝑦 = (𝑎𝑓/(𝑏𝑚
1
+𝑎𝑚
2
))𝑒
−𝜆𝜏2 must intersect

at a unique point (𝜆, 𝑦), we have that 𝜆 is positive when (𝑓 −

𝑑𝑚
2
)(𝑎/𝑏) > 𝑑𝑚

1
and is negative when (𝑓 − 𝑑𝑚

2
)(𝑎/𝑏) <

𝑑𝑚
1
. Consequently, 𝐸

1
is unstable if (𝑓 − 𝑑𝑚

2
)(𝑎/𝑏) > 𝑑𝑚

1

and locally asymptotically stable if (𝑓 − 𝑑𝑚
2
)(𝑎/𝑏) < 𝑑𝑚

1
.

In the rest of this section, by constructing an appropriate
Lyapunov function, we study the stability of the positive
equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
) under condition (8). Let

𝑥 (𝑡) = 𝑥
∗
+ 𝑢 (𝑡) ,

𝑦 (𝑡) = 𝑦
∗
+ V (𝑡) ;

(16)

then, the linearization of the system (6) is

𝑢
󸀠

(𝑡) = 𝐴𝑢 (𝑡 − 𝜏
1
) − 𝐵𝑢 (𝑡) − 𝐶V (𝑡) ,

V󸀠 (𝑡) = −𝐷V (𝑡) + 𝐸V (𝑡 − 𝜏
2
) + 𝐹𝑢 (𝑡 − 𝜏

2
) ,

(17)
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Figure 3: −(𝑐 − 𝑎𝑚
3
)/𝑏𝑚
3
> 0.

where

𝐴 = 𝑎, 𝐵 = 2𝑏𝑥
∗
+

𝑐𝑦
∗
(𝑚
1
+ 𝑚
3
𝑦
∗
)

(𝑚
1
+ 𝑚
2
𝑥
∗
+ 𝑚
3
𝑦
∗
)
2
,

𝐶 =

𝑐𝑥
∗
(𝑚
1
+ 𝑚
2
𝑥
∗
)

(𝑚
1
+ 𝑚
2
𝑥
∗
+ 𝑚
3
𝑦
∗
)
2
, 𝐷 = 𝑑,

𝐸 =

𝑓𝑥
∗
(𝑚
1
+ 𝑚
2
𝑥
∗
)

(𝑚
1
+ 𝑚
2
𝑥
∗
+ 𝑚
3
𝑦
∗
)
2
,

𝐹 =

𝑓𝑦
∗
(𝑚
1
+ 𝑚
3
𝑦
∗
)

(𝑚
1
+ 𝑚
2
𝑥
∗
+ 𝑚
3
𝑦
∗
)
2
.

(18)

Obviously, all the constants defined above are positive, and
the system (17) can be recast as

𝑢
󸀠

(𝑡) = (𝐴 − 𝐵) 𝑢 (𝑡) − 𝐶V (𝑡) − 𝐴∫

𝑡

𝑡−𝜏1

𝑢
󸀠

(𝑠) 𝑑𝑠

= (𝐴 − 𝐵) 𝑢 (𝑡) − 𝐶V (𝑡)

− 𝐴∫

𝑡

𝑡−𝜏1

[𝐴𝑢 (𝑠 − 𝜏
1
) − 𝐵𝑢 (𝑠) − 𝐶V (𝑠)] 𝑑𝑠

V󸀠 (𝑡) = (𝐸 − 𝐷) V (𝑡) − 𝐸∫
𝑡

𝑡−𝜏2

V󸀠 (𝑠) 𝑑𝑠 + 𝐹𝑢 (𝑡)

− 𝐹∫

𝑡

𝑡−𝜏2

𝑢
󸀠

(𝑠) 𝑑𝑠

= (𝐸 − 𝐷) V (𝑡) + 𝐹𝑢 (𝑡)

− 𝐹∫

𝑡

𝑡−𝜏2

[𝐴𝑢 (𝑠 − 𝜏
1
) − 𝐵𝑢 (𝑠) − 𝐶V (𝑠)] 𝑑𝑠

− 𝐸∫

𝑡

𝑡−𝜏2

[−𝐷V (𝑠) + 𝐸V (𝑠 − 𝜏
2
) + 𝐹𝑢 (𝑠 − 𝜏

2
)] 𝑑𝑠.

(19)
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By constructing an appropriate Lyapunov function, we have
the following theorem.

Theorem 4. Let 𝜏
1
∈ (0, 𝜏

∗
) with 𝜏

∗ defined in (10), and
assume that

𝜏
1
, 𝜏
2
∈ (0, 𝜏

∗
) , |𝐹 − 𝐶| < min {2 (𝐷 − 𝐸) , 2 (𝐵 − 𝐴)} ,

(20)

also holds, where

𝜏
∗
= min{ 2 (𝐷 − 𝐸) − |𝐹 − 𝐶|

𝐴𝐶 + 𝐹 (𝐴 + 𝐵 + 𝐸) + 2 (𝐶𝐹 + 𝐷𝐸 + 𝐸
2
)

,

2 (𝐵 − 𝐴) − |𝐹 − 𝐶|

𝐴 (2𝐴 + 2𝐵 + 𝐶) + 𝐹 (𝐴 + 𝐵 + 𝐸)

} .

(21)

Then, the equilibrium (0, 0) of the system (17) is locally asymp-
totically stable, which implies that the positive equilibrium
𝐸
∗
(𝑥
∗
, 𝑦
∗
) of the system (6) is locally asymptotically stable.

Proof. To illustrate the equilibrium (0, 0) of the system (17)
is locally asymptotically stable, it is sufficient to study the
existence of a strict Lyapunov function. By letting 𝑊

11
(𝑡) =

𝑢
2
(𝑡) and differentiating𝑊

11
(𝑡) with respect to 𝑡, we have

𝑊
󸀠

11
(𝑡) = 2 (𝐴 − 𝐵) 𝑢

2

(𝑡) − 2𝐶𝑢 (𝑡) V (𝑡)

− 2𝐴𝑢 (𝑡) ∫

𝑡

𝑡−𝜏1

[𝐴𝑢 (𝑠 − 𝜏
1
) − 𝐵𝑢 (𝑠) − 𝐶V (𝑠)] 𝑑𝑠

≤ 2 (𝐴 − 𝐵) 𝑢
2

(𝑡) − 2𝐶𝑢 (𝑡) V (𝑡)

+ 𝐴 (𝐴 + 𝐵 + 𝐶) 𝜏
1
𝑢
2

(𝑡)

+ 𝐴∫

𝑡

𝑡−𝜏1

[𝐴𝑢
2
(𝑠 − 𝜏
1
) + 𝐵𝑢

2

(𝑠) + 𝐶V2 (𝑠)] 𝑑𝑠.

(22)

Letting𝑊
12
(𝑡) = 𝐴∫

𝑡

𝑡−𝜏1

∫

𝑡

𝑧
[𝐴𝑢
2
(𝑠−𝜏
1
)+𝐵𝑢
2
(𝑠)+𝐶V2(𝑠)]𝑑𝑠 𝑑𝑧

and differentiating𝑊
12
(𝑡) with respect to 𝑡, we have

𝑊
󸀠

11
(𝑡) + 𝑊

󸀠

12
(𝑡) ≤ 2 (𝐴 − 𝐵) 𝑢

2

(𝑡) − 2𝐶𝑢 (𝑡) V (𝑡)

+ 𝐴 (𝐴 + 𝐵 + 𝐶) 𝜏
1
𝑢
2

(𝑡)

+ 𝐴𝜏
1
[𝐴𝑢
2
(𝑡 − 𝜏
1
) + 𝐵𝑢

2

(𝑡) + 𝐶V2 (𝑡)] .
(23)

Furthermore, by letting 𝑊
13
(𝑡) = 𝐴

2
𝜏
1
∫

𝑡

𝑡−𝜏1

𝑢
2
(𝑠)𝑑𝑠 and

𝑊
1
(𝑡) = 𝑊

11
(𝑡) + 𝑊

12
(𝑡) + 𝑊

13
(𝑡), we have

𝑊
󸀠

1
(𝑡) ≤ [2 (𝐴 − 𝐵) + 𝐴 (2𝐴 + 2𝐵 + 𝐶) 𝜏

1
] 𝑢
2

(𝑡)

+ 𝐴𝐶𝜏
1
V2 (𝑡) − 2𝐶𝑢 (𝑡) V (𝑡) .

(24)

Next, by letting𝑊
21
(𝑡) = V2(𝑡) and differentiating𝑊

21
(𝑡)

with respect to 𝑡, we obtain

𝑊
󸀠

21
(𝑡)

= 2 (𝐸 − 𝐷) V2 (𝑡) + 2𝐹𝑢 (𝑡) V (𝑡) − 2V (𝑡)

× ∫

𝑡

𝑡−𝜏2

{𝐹 [𝐴𝑢 (𝑠 − 𝜏
1
) − 𝐵𝑢 (𝑠) − 𝐶V (𝑠)]

+ 𝐸 [−𝐷V (𝑠) + 𝐸V (𝑠 − 𝜏
2
) + 𝐹𝑢 (𝑠 − 𝜏

2
)]} 𝑑𝑠

≤ 2 (𝐸 − 𝐷) V2 (𝑡) + 2𝐹𝑢 (𝑡) V (𝑡)

+ [𝐹 (𝐴 + 𝐵 + 𝐶) + 𝐸 (𝐷 + 𝐸 + 𝐹)] 𝜏
2
V2 (𝑡)

+ ∫

𝑡

𝑡−𝜏2

{𝐹 [𝐴𝑢
2
(𝑠 − 𝜏
1
) + 𝐵𝑢

2

(𝑠) + 𝐶V2 (𝑠)]

+ 𝐸 [𝐷V2 (𝑠) + 𝐸V2 (𝑠 − 𝜏
2
) + 𝐹𝑢

2
(𝑠 − 𝜏
2
)]} 𝑑𝑠.

(25)

Letting𝑊
22
(𝑡) = ∫

𝑡

𝑡−𝜏2

∫

𝑡

𝑧
{𝐹[𝐴𝑢

2
(𝑠 − 𝜏
1
) + 𝐵𝑢

2
(𝑠) + 𝐶V2(𝑠)] +

𝐸[𝐷V2(𝑠)+𝐸V2(𝑠−𝜏
2
)+𝐹𝑢

2
(𝑠−𝜏
2
)]}𝑑𝑠 𝑑𝑧 and differentiating

𝑊
22
(𝑡) with respect to 𝑡, we have

𝑊
󸀠

21
(𝑡) + 𝑊

󸀠

22
(𝑡)

≤ 2 (𝐸 − 𝐷) V2 (𝑡) + 2𝐹𝑢 (𝑡) V (𝑡)

+ [𝐹 (𝐴 + 𝐵 + 𝐶) + 𝐸 (𝐷 + 𝐸 + 𝐹)] 𝜏
2
V2 (𝑡)

+ {𝐹 [𝐴𝑢
2
(𝑡 − 𝜏
1
) + 𝐵𝑢

2

(𝑡) + 𝐶V2 (𝑡)]

+ 𝐸 [𝐷V2 (𝑡) + 𝐸V2 (𝑡 − 𝜏
2
) + 𝐹𝑢

2
(𝑡 − 𝜏
2
)]} 𝜏
2
.

(26)

By letting 𝑊
23
(𝑡) = 𝐴𝐹𝜏

2
∫

𝑡

𝑡−𝜏1

𝑢
2
(𝑠)𝑑𝑠, 𝑊

24
(𝑡) =

𝐸
2
𝜏
2
∫

𝑡

𝑡−𝜏1

V2(𝑠)𝑑𝑠, and 𝑊
25
(𝑡) = 𝐸𝐹𝜏

2
∫

𝑡

𝑡−𝜏2

𝑢
2
(𝑠)𝑑𝑠, we

have

𝑊
󸀠

23
(𝑡) = 𝐴𝐹𝜏

2
[𝑢
2

(𝑡) − 𝑢
2
(𝑡 − 𝜏
1
)] ,

𝑊
󸀠

24
(𝑡) = 𝐸

2
𝜏
2
[V2 (𝑡) − V2 (𝑡 − 𝜏

2
)] ,

𝑊
󸀠

25
(𝑡) = 𝐸𝐹𝜏

2
[𝑢
2

(𝑡) − 𝑢
2
(𝑡 − 𝜏
2
)] .

(27)

By letting𝑊
2
(𝑡) = 𝑊

21
(𝑡) +𝑊

22
(𝑡) +𝑊

23
(𝑡) +𝑊

24
(𝑡) +𝑊

25
(𝑡),

we have

𝑊
󸀠

2
(𝑡)

≤ {2 (𝐸 − 𝐷) + 𝜏
2
[𝐹 (𝐴 + 𝐵 + 𝐸) + 2 (𝐶𝐹 + 𝐷𝐸 + 𝐸

2
)]}

× V2 (𝑡) + 𝐹 (𝐴 + 𝐵 + 𝐸) 𝜏
2
𝑢
2

(𝑡) + 2𝐹𝑢 (𝑡) V (𝑡) .
(28)
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Finally, we let 𝑊(𝑡) = 𝑊
1
(𝑡) + 𝑊

2
(𝑡). Obviously, 𝑊(𝑡) ≥ 0

and 𝑊(𝑡) = 0 if and only if 𝑢(𝑡) = V(𝑡) = 0. Besides, when
𝑢(𝑡) = V(𝑡) = 0,𝑊󸀠(𝑡) = 0. Furthermore,

𝑊
󸀠

(𝑡)

≤ {2 (𝐸 − 𝐷) + 𝐴𝐶𝜏
1

+ 𝜏
2
[𝐹 (𝐴 + 𝐵 + 𝐸) + 2 (𝐶𝐹 + 𝐷𝐸 + 𝐸

2
)]}

× V2 (𝑡) + 2 (𝐹 − 𝐶) 𝑢 (𝑡) V (𝑡)

+ [2 (𝐴 − 𝐵) + 𝐴 (2𝐴 + 2𝐵 + 𝐶) 𝜏
1
+ 𝐹 (𝐴 + 𝐵 + 𝐸) 𝜏

2
]

× 𝑢
2

(𝑡)

≤ {2 (𝐸 − 𝐷) + 𝐴𝐶𝜏
1

+ 𝜏
2
[𝐹 (𝐴 + 𝐵 + 𝐸) + 2 (𝐶𝐹 + 𝐷𝐸 + 𝐸

2
)]}

× V2 (𝑡) + 2 |𝐹 − 𝐶| |𝑢 (𝑡)| |V (𝑡)|

+ [2 (𝐴 − 𝐵) + 𝐴 (2𝐴 + 2𝐵 + 𝐶) 𝜏
1
+ 𝐹 (𝐴 + 𝐵 + 𝐸) 𝜏

2
]

× 𝑢
2

(𝑡)

≤ {2 (𝐸 − 𝐷) + |𝐹 − 𝐶| + 𝐴𝐶𝜏
1

+ 𝜏
2
[𝐹 (𝐴 + 𝐵 + 𝐸) + 2 (𝐶𝐹 + 𝐷𝐸 + 𝐸

2
)]} V2 (𝑡)

+ [2 (𝐴 − 𝐵) + |𝐹 − 𝐶| + 𝐴 (2𝐴 + 2𝐵 + 𝐶) 𝜏
1

+𝐹 (𝐴 + 𝐵 + 𝐸) 𝜏
2
] 𝑢
2

(𝑡) .

(29)

Based on the conditions in Theorem 4, we have 𝑊󸀠(𝑡) < 0

if 𝑢2(𝑡) + V2(𝑡) > 0. Thus,𝑊(𝑡) is a strict Lyapunov function.
According to the Lyapunov stability theorem, the equilibrium
(0, 0) of the system (17) is locally asymptotically stable, which
implies that the positive equilibrium𝐸

∗
(𝑥
∗
, 𝑦
∗
) of the system

(6) is locally asymptotically stable.

3. Global Stability of Equilibria

In this section, we study the global asymptotic stability of the
boundary equilibrium 𝐸

1
((𝑎/𝑏), 0) and the positive equilib-

rium𝐸
∗
(𝑥
∗
, 𝑦
∗
), respectively.Wefirst give two lemmaswhich

will be used later.

Lemma 5 (see [10, Lemma 3.2]). For a given system

𝑥
󸀠

(𝑡) = 𝑏
1
𝑥 (𝑡 − 𝜏) − 𝑎

1
𝑥 (𝑡) − 𝑎

2
𝑥
2

(𝑡) , (30)

where 𝑏
1
> 0, 𝑎

1
≥ 0, 𝑎

2
> 0, 𝜏 ≥ 0, and 𝑥(𝑡) > 0 for all

−𝜏 ≤ 𝑡 ≤ 0, we have
(i) lim

𝑡→+∞
𝑥(𝑡) = (𝑏

1
− 𝑎
1
)/𝑎
2
if and only if 𝑏

1
> 𝑎
1
;

(ii) lim
𝑡→+∞

𝑥(𝑡) = 0 if and only if 𝑏
1
≤ 𝑎
1
.

Lemma 6 (see [11, Lemma 3.2]). Let 𝑆 = {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 >

0} and 𝑆 = {(𝑥, 𝑦) : 𝑥 ≥ 0, 𝑦 ≥ 0}. Then, the sets 𝑆 and 𝑆 are
both invariant sets.

Based on Lemmas 5 and 6, we prove that the boundary
equilibrium 𝐸

1
is globally attractive.

Theorem 7. Let (𝑥(𝑡), 𝑦(𝑡)) be the solution of (6)with positive
initial condition in 𝑆.

(i) If (𝑓 − 𝑑𝑚
2
)(𝑎/𝑏) < 𝑑𝑚

1
, then 𝐸

1
((𝑎/𝑏), 0) is globally

attractive.

(ii) If (𝑓−𝑑𝑚
2
)(𝑎/𝑏) > 𝑑𝑚

1
, then 𝐸

1
((𝑎/𝑏), 0) is unstable.

Proof. If (𝑓 − 𝑑𝑚
2
)(𝑎/𝑏) < 𝑑𝑚

1
, we first prove that

lim
𝑡→+∞

𝑦(𝑡) = 0.
Due to the first equation (6), there is

𝑥
󸀠

(𝑡) ≤ 𝑎𝑥 (𝑡 − 𝜏
1
) − 𝑏𝑥

2

(𝑡) . (31)

In view of Lemma 6 and by considering the following com-
parison equation

𝑝
󸀠

(𝑡) = 𝑎𝑝 (𝑡 − 𝜏
1
) − 𝑏𝑝

2

(𝑡) , 𝑝 (0) = 𝑥 (0) > 0, (32)

we have 𝑥(𝑡) ≤ 𝑝(𝑡) for all 𝑡 ≥ 0. In addition, by Lemma 5,
we obtain that lim

𝑡→+∞
𝑝(𝑡) = (𝑎/𝑏). Thus, there exists a

sufficiently small positive constant 𝜀 with (𝑓 − 𝑑𝑚
2
)((𝑎/𝑏) +

𝜀) < 𝑑𝑚
1
such that, for this 𝜀, there exists a 𝑇

𝜀
> 0 such that

𝑥(𝑡) < (𝑎/𝑏) + 𝜀 for all 𝑡 > 𝑇
𝜀
. Substituting it into the second

equation of (6), we have

𝑦
󸀠

(𝑡) ≤ −𝑑𝑦 (𝑡) +

𝑓 ((𝑎/𝑏) + 𝜀)

𝑚
1
+ 𝑚
2
((𝑎/𝑏) + 𝜀)

𝑦 (𝑡 − 𝜏
2
) , (33)

for all 𝑡 > 𝑇
𝜀
. Considering the following comparison

equation:

𝑞
󸀠

(𝑡) = −𝑑𝑞 (𝑡) +

𝑓 ((𝑎/𝑏) + 𝜀)

𝑚
1
+ 𝑚
2
((𝑎/𝑏) + 𝜀)

𝑞 (𝑡 − 𝜏
2
) ,

𝑞 (𝑇
𝜀
+ 𝜏
2
) = 𝑦 (𝑇

𝜀
+ 𝜏
2
) > 0,

(34)

and letting 𝑞(𝑡) = 𝑒
𝜆𝑡, we have

𝑒
𝜆𝑡
[𝜆 + 𝑑 −

𝑓 ((𝑎/𝑏) + 𝜀)

𝑚
1
+ 𝑚
2
((𝑎/𝑏) + 𝜀)

𝑒
−𝜆𝜏2

] = 0. (35)

Then the line 𝑦 = 𝜆+𝑑 and the curve 𝑦 = (𝑓((𝑎/𝑏)+𝜀)/(𝑚
1
+

𝑚
2
((𝑎/𝑏) + 𝜀)))𝑒

−𝜆𝜏2 must intersect at a unique point (𝜆, 𝑦).
Since (𝑓 − 𝑑𝑚

2
)((𝑎/𝑏) + 𝜀) < 𝑑𝑚

1
, we can obtain that 𝑑 >

𝑓((𝑎/𝑏)+𝜀)/(𝑚
1
+𝑚
2
((𝑎/𝑏)+𝜀)).Thus, we deduce that 𝜆 < 0.

Therefore, lim
𝑡→+∞

𝑞(𝑡) = lim
𝑡→+∞

𝑒
𝜆𝑡
= 0.

Obviously, based on the comparison theorem, we get that
𝑦(𝑡) ≤ 𝑞(𝑡) for all 𝑡 ≥ 𝑇 + 𝜏

2
. Thus, lim

𝑡→+∞
𝑦(𝑡) = 0.

Next, we prove that 𝑥(𝑡) → (𝑎/𝑏) as 𝑡 → +∞.
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Since lim
𝑡→+∞

𝑦(𝑡) = 0, for any given 𝜀
1
∈ (0, (𝑎/𝑏)),

there exists a 𝑇
1
> 0 such that 0 < 𝑦(𝑡) < (𝑏𝑚

1
/2𝑐)𝜀
1
for

all 𝑡 ≥ 𝑇
1
. Thus, we have

𝑎𝑥 (𝑡 − 𝜏
1
) − 𝑏𝑥

2

(𝑡) ≥ 𝑥
󸀠

(𝑡)

= 𝑎𝑥 (𝑡 − 𝜏
1
) − 𝑏𝑥

2

(𝑡)

−

𝑐𝑥 (𝑡) 𝑦 (𝑡)

𝑚
1
+ 𝑚
2
𝑥 (𝑡) + 𝑚

3
𝑦 (𝑡)

≥ 𝑎𝑥 (𝑡 − 𝜏
1
) − 𝑏𝑥

2

(𝑡) −

𝑐𝑥 (𝑡) 𝑦 (𝑡)

𝑚
1

≥ 𝑎𝑥 (𝑡 − 𝜏
1
) − 𝑏𝑥

2

(𝑡) −

𝑏𝜀
1

2

𝑥 (𝑡) ,

(36)

for all 𝑡 ≥ 𝑇
1
. That is,

𝑎𝑥 (𝑡 − 𝜏
1
) − 𝑏𝑥

2

(𝑡) ≥ 𝑥
󸀠

(𝑡)

≥ 𝑎𝑥 (𝑡 − 𝜏
1
) − 𝑏𝑥

2

(𝑡) −

𝑏𝜀
1

2

𝑥 (𝑡) .

(37)

Then, we consider the following comparison equation:

𝑝
󸀠

(𝑡) = 𝑎𝑝 (𝑡 − 𝜏
1
) − 𝑏𝑝

2

(𝑡) −

𝑏𝜀
1

2

𝑝 (𝑡) ,

𝑝 (𝑇
1
) = 𝑥 (𝑇

1
) > 0.

(38)

Since 𝑎 > 𝑏𝜀
1
, based on Lemma 5, we have that

lim
𝑡→+∞

𝑝(𝑡) = (𝑎/𝑏) − (𝜀
1
/2). Additionally, we have that

𝑝(𝑡) ≤ 𝑥(𝑡) ≤ 𝑝(𝑡) for all 𝑡 ≥ 𝑇
1
.

Since lim
𝑡→+∞

𝑝(𝑡) = (𝑎/𝑏), for the above 𝜀
1
, there exists

a 𝑇
2
> 0 such that 𝑝(𝑡) ≤ (𝑎/𝑏) + 𝜀

1
for all 𝑡 > 𝑇

2
. Similarly,

since lim
𝑡→+∞

𝑝(𝑡) = (𝑎/𝑏) − (𝜀
1
/2) for the above 𝜀

1
, we also

get that there exists a 𝑇
3
> 0 such that 𝑝(𝑡) − (𝑎/𝑏) + (𝜀

1
/2) >

−(𝜀
1
/2) for all 𝑡 > 𝑇

3
.Therefore, if we let𝑇

0
= max{𝑇

1
, 𝑇
2
, 𝑇
3
},

there is −𝜀
1
< 𝑥(𝑡) − (𝑎/𝑏) < 𝜀

1
for all 𝑡 > 𝑇

0
. Thus, we have

lim
𝑡→+∞

𝑥(𝑡) = (𝑎/𝑏).
At last, we prove the second part of this theorem. We

can assure that (𝑓 − 𝑑𝑚
2
)(𝑎/𝑏) > 𝑑𝑚

1
and try to derive

a contradiction. If (𝑓 − 𝑑𝑚
2
)(𝑎/𝑏) > 𝑑𝑚

1
, then (6) has a

unique positive equilibrium (𝑥
∗
, 𝑦
∗
) by Theorem 1, which is

also a solution of (6); that is, (𝑥∗, 𝑦∗) = (𝑥
∗
(𝑡), 𝑦
∗
(𝑡)) satisfies

(6) and satisfies lim
𝑡→+∞

(𝑥
∗
(𝑡), 𝑦
∗
(𝑡)) = ((𝑎/𝑏), 0) by the

above arguments, which contradicts the fact that (𝑥∗, 𝑦∗)
is a positive equilibrium. Thus, conclusion (ii) holds. This
completes the proofs.

Remark 8. In the above theorem, we derive the global attrac-
tiveness of the boundary equilibrium 𝐸

1
((𝑎/𝑏), 0). Unfor-

tunately, we just obtain a sufficient condition that (𝑓 −

𝑑𝑚
2
)(𝑎/𝑏) < 𝑑𝑚

1
to ensure that 𝐸

1
is globally asymptotically

stable. If (𝑓 − 𝑑𝑚
2
)(𝑎/𝑏) = 𝑑𝑚

1
, since the second equation

of (6) is a delay diffusion equation, we cannot derive that
lim
𝑡→+∞

𝑦(𝑡) = 0 by using comparison theorem. We leave
it for a further study.

Furthermore, for the first equation of (1), we can solve
explicitly as

lim
𝑡→+∞

𝑥
𝑖
(𝑡) =

𝑎
2
(𝑒
𝑑𝑖𝜏1

− 1)

𝑏𝑑
𝑖

. (39)

Thus, by Theorem 7, we can obtain the following corollary
directly.

Corollary 9. Let (𝑥
𝑖
(𝑡), 𝑥(𝑡), 𝑦(𝑡)) be the solution of (1) with

the positive initial condition. If 𝑓 ≤ 𝑑𝑚
2
, then

lim
𝑡→+∞

(𝑥
𝑖
(𝑡) , 𝑥 (𝑡) , 𝑦 (𝑡)) = (

𝑎
2

𝑏𝑑
𝑖

(𝑒
𝑑𝑖𝜏1

− 1) ,

𝑎

𝑏

, 0) . (40)

In the rest of this section, we will study the global
attractiveness of the positive equilibrium 𝐸

∗ and obtain the
following result.

Theorem 10. Assume that (8) and the following conditions

𝑎𝑚
3
> 𝑐,

𝑓 (𝑎𝑚
3
− 𝑐)

𝑏𝑚
1
𝑚
3
+ 𝑚
2
(𝑎𝑚
3
− 𝑐)

> 𝑑, (41)

hold, and let (𝑥(𝑡), 𝑦(𝑡)) be the solution of (6) with the positive
initial condition in 𝑆 such that lim

𝑡→+∞
(𝑥(𝑡), 𝑦(𝑡)) = 𝐸

∗.
Then, the positive equilibrium 𝐸

∗ of (6) is globally attractive.

Proof. Provided that conditions (8) and (41) hold, based on
comparison theorem and by similar arguments in [11], we
can obtain that, for any solution (𝑥(𝑡), 𝑦(𝑡)) of (6) with the
positive initial condition in 𝑆, there exists a point 𝐸∗(𝑥∗, 𝑦∗)
such that lim

𝑡→+∞
(𝑥(𝑡), 𝑦(𝑡)) = (𝑥

∗
, 𝑦
∗
). Indeed, just by

modifying the coefficients of (6), the discussion in [11] also
holds. We omit the proof here and refer to [11] for details.

Then, in view of the property of the 𝜔-limit set in [17]
and by the uniqueness result of the positive equilibrium in
Theorem 1, we have 𝐸∗ = 𝐸

∗. Thus, we derive that 𝐸∗ is
globally attractive.

4. Conclusion

In the present paper, we considered the stability of the equi-
libria of a predator-prey system with Beddington-DeAngelis
functional response and delays. More precisely, we derived
a sufficient and necessary condition for the existence of a
unique positive equilibrium and proved that the positive
equilibrium is locally asymptotically stable under a sufficient
condition. Also, we established the local stability of the
boundary equilibria by analyzing the characteristic equa-
tions. Finally, by using comparison theorem and the 𝜔-limit
set theory, we studied the global asymptotic stability for both
the boundary equilibrium and the positive equilibrium.

In particular, in Theorem 7, we derived the global
attractiveness of the boundary equilibrium 𝐸

1
((𝑎/𝑏), 0). But

unfortunately, we just obtained a sufficient condition that
(𝑓 − 𝑑𝑚

2
)(𝑎/𝑏) < 𝑑𝑚

1
to ensure that 𝐸

1
was globally

asymptotically stable. If (𝑓 − 𝑑𝑚
2
)(𝑎/𝑏) = 𝑑𝑚

1
, since the

second equation of (6) was a delay diffusion equation, we
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could not derive that lim
𝑡→+∞

𝑦(𝑡) = 0 by using comparison
theorem.

Moreover, as pointed out in [11], there are two interesting
problems about system (1), which are related to the phenom-
ena of bifurcations and the existence of periodic orbits of (1).
We leave them for a further study.
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