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We introduce the new notion of a hybrid rational Geraghty contractive mapping and investigate the existence of fixed point and
coincidence point for such mappings in ordered b-metric spaces. We also provide an example to illustrate the results presented
herein. Finally, we establish an existence theorem for a solution of an integral equation.

1. Introduction

Recently,many researchers have focused ondifferent contrac-
tive conditions in complete metric spaces endowed with a
partial order and obtained many fixed point results in such
spaces. For more details on fixed point results, their appli-
cations, comparison of different contractive conditions, and
related results in orderedmetric spaces, we refer the reader to
[1–4].

The concept of a 𝑏-metric space was introduced by
Czerwik in [5]. After that, several interesting results about the
existence of fixed points for single-valued and multivalued
operators in 𝑏-metric spaces have been obtained (see, e.g., [6–
11] and [12–15]).

Definition 1 (see [5]). Let𝑋 be a (nonempty) set and let 𝑠 ≥ 1
be a given real number. A function 𝑑 : 𝑋 × 𝑋 → 𝑅

+ is a
𝑏-metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions are
satisfied:

(𝑏
1
) 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦,

(𝑏
2
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),

(𝑏
3
) 𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)].

The pair (𝑋, 𝑑) is called a 𝑏-metric space.

A 𝑏-metric is a metric if (and only if) 𝑠 = 1.The following
example shows that in general a 𝑏-metric need not to be a
metric.

Example 2 (see [16]). Let (𝑋, 𝑑) be a metric space, and
𝜌(𝑥, 𝑦) = (𝑑(𝑥, 𝑦))

𝑝, where 𝑝 ≥ 1 is a real number. Then, 𝜌
is a 𝑏-metric with 𝑠 = 2𝑝−1.

However, (𝑋, 𝜌) is not necessarily a metric space. For
example, if 𝑋 = R is the set of real numbers and 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦| is the usual metric, then 𝜌(𝑥, 𝑦) = (𝑥 − 𝑦)

2 is a 𝑏-
metric on R with 𝑠 = 2, but it is not a metric on R.

Definition 3 (see [17]). Let (𝑋, 𝑑) be a 𝑏-metric space.Then, a
sequence {𝑥

𝑛
} in𝑋 is called

(a) 𝑏-convergent if and only if there exists𝑥 ∈ 𝑋 such that
𝑑(𝑥
𝑛
, 𝑥) → 0, as 𝑛 → ∞ and in this case, we write

lim
𝑛→∞

𝑥
𝑛
= 𝑥.

(b) 𝑏-Cauchy if and only if 𝑑(𝑥
𝑛
, 𝑥
𝑚
) → 0, as 𝑛,𝑚 →

∞.

Proposition 4 (see Remark 2.1 in [17]). In a 𝑏-metric space
(𝑋, 𝑑), the following assertions hold.

(𝑝
1
) A 𝑏-convergent sequence has a unique limit.

(𝑝
2
) Each 𝑏-convergent sequence is 𝑏-Cauchy.

(𝑝
3
) In general, a 𝑏-metric is not continuous.
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The 𝑏-metric space (𝑋, 𝑑) is 𝑏-complete if every 𝑏-Cauchy
sequence in𝑋 is 𝑏-convergent.

Note that a 𝑏-metric might not be a continuous function.
The following example (corrected from [18]) illustrates this
fact.

Example 5. Let 𝑋 = N ∪ {∞} and let 𝑑 : 𝑋 × 𝑋 → R be
defined by

𝑑 (𝑚, 𝑛) =

{{{{{{{{{{

{{{{{{{{{{

{

0, if 𝑚 = 𝑛,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑚
−
1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, if one of 𝑚, 𝑛 is even and

the other is even or ∞,

5, if one of 𝑚, 𝑛 is odd and the
other is odd (and 𝑚 ̸= 𝑛) or ∞,

2, otherwise.
(1)

Then, considering all possible cases, it can be checked that for
all𝑚, 𝑛, 𝑝 ∈ 𝑋, we have

𝑑 (𝑚, 𝑝) ≤
5

2
(𝑑 (𝑚, 𝑛) + 𝑑 (𝑛, 𝑝)) . (2)

Thus, (𝑋, 𝑑) is a 𝑏-metric space (with 𝑠 = 5/2). Let 𝑥
𝑛
= 2𝑛 for

each 𝑛 ∈ N. Then

𝑑 (2𝑛,∞) =
1

2𝑛
󳨀→ 0 as 𝑛 󳨀→ ∞; (3)

that is,𝑥
𝑛
→ ∞, but𝑑(𝑥

𝑛
, 1) = 2 󴀀󴀂󴀠 5 = 𝑑(∞, 1) as 𝑛 → ∞.

Lemma 6 (see [16]). Let (𝑋, 𝑑) be a 𝑏-metric space with 𝑠 ≥ 1,
and suppose that {𝑥

𝑛
} and {𝑦

𝑛
} are 𝑏-convergent to 𝑥, 𝑦, respec-

tively. Then, we have
1

𝑠2
𝑑 (𝑥, 𝑦) ≤ lim inf

𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦
𝑛
)

≤ lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝑠
2

𝑑 (𝑥, 𝑦) .

(4)

In particular, if 𝑥 = 𝑦, then we have lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0.

Moreover, for each 𝑧 ∈ 𝑋, we have
1

𝑠
𝑑 (𝑥, 𝑧) ≤ lim inf

𝑛→∞

𝑑 (𝑥
𝑛
, 𝑧)

≤ lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑧) ≤ 𝑠𝑑 (𝑥, 𝑧) .

(5)

LetS denote the class of all real functions 𝛽 : [0, +∞) →

[0, 1) satisfying the condition

𝛽 (𝑡
𝑛
) 󳨀→ 1 implies 𝑡

𝑛
󳨀→ 0, as 𝑛 󳨀→ ∞. (6)

In order to generalize the Banach contraction principle,
Geraghty in 1973 proved the following.

Theorem 7 (see [19]). Let (𝑋, 𝑑) be a complete metric space,
and let 𝑓 : 𝑋 → 𝑋 be a self-map. Suppose that there exists
𝛽 ∈ S such that

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) (7)

holds for all 𝑥, 𝑦 ∈ 𝑋. Then, f has a unique fixed point 𝑧 ∈ 𝑋

and for each 𝑥 ∈ 𝑋 Picard’s sequence {𝑓𝑛𝑥} converges to 𝑧.

In 2010, Amini-Harandi and Emami [20] characterized
the result of Geraghty in the framework of a partially ordered
complete metric space in the following way.

Theorem 8. Let (𝑋, 𝑑, ⪯) be a complete partially ordered
metric space. Let 𝑓 : 𝑋 → 𝑋 be an increasing self-map such
that there exists 𝑥

0
∈ 𝑋 with 𝑥

0
⪯ 𝑓𝑥
0
. Suppose that there

exists 𝛽 ∈ S such that

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) (8)

holds for all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ⪯ 𝑥. Assume that either 𝑓 is
continuous or𝑋 is such that if an increasing sequence {𝑥

𝑛
} in𝑋

converges to 𝑥 ∈ 𝑋, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛. Then, 𝑓 has a fixed

point in 𝑋. If, moreover, for each 𝑥, 𝑦 ∈ 𝑋 there exists 𝑧 ∈ 𝑋

comparable with 𝑥, 𝑦, then the fixed point of 𝑓 is unique.

Cabellero et al. [21] discussed the existence of a best prox-
imity point of Geraghty contraction. In [22], some fixed point
theorems for mappings satisfying Geraghty-type contractive
conditions are proved in various generalized metric spaces.
As in [22], we will consider the class of functions F, where
𝛽 ∈ F if 𝛽 : [0,∞) → [0, 1/𝑠) and has the property

𝛽 (𝑡
𝑛
) 󳨀→

1

𝑠
implies 𝑡

𝑛
󳨀→ 0, as 𝑛 󳨀→ ∞. (9)

Theorem9 (see [22]). Let 𝑠 > 1, and let (𝑋,𝐷, 𝑠) be a complete
metric type space. Suppose that amapping𝑓 : 𝑋 → 𝑋 satisfies
the condition

𝐷(𝑓𝑥, 𝑓𝑦) ≤ 𝛽 (𝐷 (𝑥, 𝑦))𝐷 (𝑥, 𝑦) , (10)

for all 𝑥, 𝑦 ∈ 𝑋 and some 𝛽 ∈ F. Then f has a unique fixed
point 𝑧 ∈ 𝑋, and for each 𝑥 ∈ 𝑋 Picard’s sequence {𝑓𝑛𝑥}
converges to z in (𝑋,𝐷,𝐾).

The aim of this paper is to present some fixed point and
coincidence point theorems for hybrid rational Geraghty
contractive mappings in partially ordered 𝑏-metric spaces. In
fact, our results extendTheorems 7, 8, and 9.

2. Main Results

LetF denote the class of all functions 𝛽 : [0,∞) → [0, 1/𝑠)

satisfying the following condition:

𝛽 (𝑡
𝑛
) 󳨀→

1

𝑠
implies 𝑡

𝑛
󳨀→ 0, as 𝑛 󳨀→ ∞. (11)

Theorem 10. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a 𝑏-metric𝑑 on𝑋 such that (𝑋, 𝑑) is a complete
𝑏-metric space (with parameter 𝑠 > 1). Let 𝑓 : 𝑋 → 𝑋 be an
increasing mapping with respect to ⪯ such that there exists an
element 𝑥

0
∈ 𝑋 with 𝑥

0
⪯ 𝑓(𝑥

0
). Suppose that

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦))𝑀 (𝑥, 𝑦) + 𝐿𝑁 (𝑥, 𝑦) (12)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋, where 𝐿 ≥ 0,

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} ,

𝑁 (𝑥, 𝑦) = min {𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑥, 𝑓𝑦) , 𝑑 (𝑦, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦)} .
(13)
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If 𝑓 is continuous, then 𝑓 has a fixed point. Moreover, the set
of fixed points of 𝑓 is well ordered if and only if 𝑓 has one and
only one fixed point.

Proof. Put 𝑥
𝑛
= 𝑓
𝑛
(𝑥
0
). Since 𝑥

0
⪯ 𝑓(𝑥

0
) and 𝑓 is an

increasing function, we obtain by induction that

𝑥
0
⪯ 𝑓 (𝑥

0
) ⪯ 𝑓
2

(𝑥
0
) ⪯ ⋅ ⋅ ⋅ ⪯ 𝑓

𝑛

(𝑥
0
) ⪯ 𝑓
𝑛+1

(𝑥
0
) ⪯ ⋅ ⋅ ⋅.

(14)

Step 1.We will show that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0. Since 𝑥
𝑛
⪯

𝑥
𝑛+1

for each 𝑛 ∈ 𝑁, then by (12), we have

𝑠𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)

= 𝑠𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)

≤ 𝛽 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
))𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
) + 𝐿𝑁 (𝑥

𝑛−1
, 𝑥
𝑛
)

≤ 𝛽 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

<
1

𝑠
𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ,

(15)

because
𝑀(𝑥
𝑛−1

, 𝑥
𝑛
)

= max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ,
𝑑 (𝑥
𝑛−1

, 𝑓𝑥
𝑛−1

) 𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
)

1 + 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)

}

= max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ,
𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)

1 + 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
}

= 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ,

𝑁 (𝑥
𝑛−1

, 𝑥
𝑛
)

= min {𝑑 (𝑥
𝑛−1

, 𝑓𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛
) ,

𝑑 (𝑥
𝑛−1

, 𝑓𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛−1

)}

= min {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛
)}

= 0.

(16)

Therefore, {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is decreasing. Then there exists 𝑟 ≥ 0
such that lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑟. We will prove that 𝑟 = 0.
Suppose on contrary that 𝑟 > 0. Then, letting 𝑛 → ∞ from
(15), we have

𝑠𝑟 ≤ lim
𝑛→∞

𝛽 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) 𝑟 < 𝑟 (17)

which implies that 𝑠 < 1, a contradiction. Hence, 𝑟 = 0. That
is,

lim
𝑛→∞

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) = 0. (18)

Step 2. Now, we prove that the sequence {𝑥
𝑛
} is a 𝑏-Cauchy

sequence. Suppose the contrary; that is, {𝑥
𝑚
} is not a 𝑏-

Cauchy sequence. Then, there exists 𝜀 > 0 for which we can

find two subsequences {𝑥
𝑚𝑖
} and {𝑥

𝑛𝑖
} of {𝑥

𝑛
} such that 𝑛

𝑖
is

the smallest index for which

𝑛
𝑖
> 𝑚
𝑖
> 𝑖, 𝑑 (𝑥

𝑚𝑖
, 𝑥
𝑛𝑖
) ≥ 𝜀. (19)

This means that

𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

) < 𝜀. (20)

From (19) and using the triangular inequality, we get

𝜀 ≤ 𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖
) ≤ 𝑠𝑑 (𝑥

𝑚𝑖
, 𝑥
𝑚𝑖+1

) + 𝑠𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
) . (21)

By taking the upper limit as 𝑖 → ∞, we get

𝜀

𝑠
≤ lim sup
𝑖→∞

𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
) . (22)

Using the triangular inequality, we have

𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖
) ≤ 𝑠𝑑 (𝑥

𝑚𝑖
, 𝑥
𝑛𝑖−1

) + 𝑠𝑑 (𝑥
𝑛𝑖−1

, 𝑥
𝑛𝑖
) . (23)

Taking the upper limit as 𝑖 → ∞ in the above inequality and
using (20), we get

lim sup
𝑖→∞

𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖
) ≤ 𝜀𝑠. (24)

From the definition of 𝑀(𝑥, 𝑦) and 𝑁(𝑥, 𝑦) and the above
limits, we have

lim sup
𝑖→∞

𝑀(𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

)

= lim sup
𝑖→∞

max{𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

) ,

𝑑 (𝑥
𝑚𝑖
, 𝑓𝑥
𝑚𝑖
) 𝑑 (𝑥

𝑛𝑖−1
, 𝑓𝑥
𝑛𝑖−1

)

1 + 𝑑 (𝑓𝑥
𝑚𝑖
, 𝑓𝑥
𝑛𝑖−1

)
}

= lim sup
𝑖→∞

{𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

) ,
𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑚𝑖+1

) 𝑑 (𝑥
𝑛𝑖−1

, 𝑥
𝑛𝑖
)

1 + 𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
)

} ,

≤ 𝜀,

lim sup
𝑖→∞

𝑁(𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

)

= lim sup
𝑖→∞

min {𝑑 (𝑥
𝑚𝑖
, 𝑓𝑥
𝑚𝑖
) , 𝑑 (𝑥

𝑚𝑖
, 𝑓𝑥
𝑛𝑖−1

) ,

𝑑 (𝑥
𝑛𝑖−1

, 𝑓𝑥
𝑚𝑖
) , 𝑑 (𝑥

𝑛𝑖−1
, 𝑓𝑥
𝑛𝑖−1

)}

= lim sup
𝑖→∞

min {𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑚𝑖+1

) , 𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖
) ,

𝑑 (𝑥
𝑛𝑖−1

, 𝑥
𝑚𝑖+1

) , 𝑑 (𝑥
𝑛𝑖−1

, 𝑥
𝑛𝑖
)}

= 0.

(25)
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Now, from (12) and the above inequalities, we have

𝜀 = 𝑠 (
𝜀

𝑠
) ≤ (𝑠 lim sup

𝑖→∞

𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
))

≤ lim sup
𝑖→∞

𝛽 (𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

))

× lim sup
𝑖→∞

𝑀(𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

)

+ 𝐿 lim sup
𝑖→∞

𝑁(𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

)

≤ 𝜀 lim sup
𝑖→∞

𝛽 (𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

)) + 0 ≤
1

𝑠
(𝜀) ,

(26)

which is a contradiction. So, we conclude that {𝑥
𝑛
} is a 𝑏-

Cauchy sequence. 𝑏-Completeness of 𝑋 yields that {𝑥
𝑛
}𝑏-

converges to a point 𝑢 ∈ 𝑋.

Step 3. Now, we show that 𝑢 is a fixed point of 𝑓. Since 𝑓 is
continuous, we have

𝑢 = lim
𝑛→∞

𝑥
𝑛+1

= lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓𝑢. (27)

Finally, suppose that the set of fixed points of 𝑓 is well
ordered. Assume, on contrary, that 𝑢, V are two fixed points
for 𝑓 such that 𝑢 ̸= V. Then by (12), we have

𝑠𝑑 (𝑢, V) = 𝑠𝑑 (𝑓𝑢, 𝑓V)

≤ 𝛽 (𝑑 (𝑢, V))𝑀 (𝑢, V) + 𝐿𝑁 (𝑢, V)

= 𝛽 (𝑑 (𝑢, V)) 𝑑 (𝑢, V) <
1

𝑠
𝑑 (𝑢, V)

(28)

because

𝑀(𝑢, V) = max{𝑑 (𝑢, V) ,
𝑑 (𝑢, 𝑓𝑢) 𝑑 (V, 𝑓V)
1 + 𝑑 (𝑓𝑢, 𝑓V)

}

= max {𝑑 (𝑢, V) , 0} = 𝑑 (𝑢, V) ,

𝑁 (𝑢, V) = min {𝑑 (𝑢, 𝑓𝑢) , 𝑑 (𝑢, 𝑓V) , 𝑑 (V, 𝑓𝑢) , 𝑑 (V, 𝑓V)}

= min {0, 𝑑 (𝑢, V) , 𝑑 (V, 𝑢) , 0} = 0.
(29)

So, we get 𝑠𝑑(𝑢, V) < (1/𝑠)𝑑(𝑢, V), a contradiction. Hence,
𝑢 = V, and 𝑓 has a unique fixed point. Conversely, if 𝑓 has a
unique fixed point, then the set of fixed points of 𝑓 is a sing-
leton and is well ordered.

Note that the continuity of 𝑓 in Theorem 10 is not neces-
sary and can be dropped.

Theorem 11. Under the same hypotheses of Theorem 10, with-
out the continuity assumption of 𝑓, assume that whenever {𝑥

𝑛
}

is a nondecreasing sequence in 𝑋 such that 𝑥
𝑛
→ 𝑢 ∈ 𝑋, one

has 𝑥
𝑛
⪯ 𝑢 for all 𝑛 ∈ N. Then, 𝑓 has a unique fixed point.

Proof. Repeating the proof of Theorem 10, we construct an
increasing sequence {𝑥

𝑛
} in 𝑋 such that 𝑥

𝑛
→ 𝑢 ∈ 𝑋. Using

the assumption on𝑋, we have 𝑥
𝑛
⪯ 𝑢. Now, we show that 𝑢 =

𝑓𝑢. By Lemma 6, we have

𝑑 (𝑢, 𝑓𝑢) = 𝑠
1

𝑠
𝑑 (𝑢, 𝑓𝑢)

≤ 𝑠 lim sup
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑓𝑢)

≤ lim sup
𝑛→∞

𝛽 (𝑑 (𝑥
𝑛
, 𝑢)) lim sup

𝑛→∞

𝑀(𝑥
𝑛
, 𝑢)

+ 𝐿 lim sup
𝑛→∞

𝑁(𝑥
𝑛
, 𝑢) ,

(30)

where

lim
𝑛→∞

𝑀(𝑥
𝑛
, 𝑢)

= lim
𝑛→∞

max{𝑑 (𝑥
𝑛
, 𝑢) ,

𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
) 𝑑 (𝑢, 𝑓𝑢)

1 + 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑢)

}

= lim
𝑛→∞

max{𝑑 (𝑥
𝑛
, 𝑢) ,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) 𝑑 (𝑢, 𝑓𝑢)

1 + 𝑑 (𝑥
𝑛+1

, 𝑓𝑢)
}

= max {0, 0}

= 0,

(31)

lim
𝑛→∞

𝑁(𝑥
𝑛
, 𝑢)

= lim
𝑛→∞

min {𝑑 (𝑥
𝑛
, 𝑓𝑢) , 𝑑 (𝑢, 𝑓𝑥

𝑛
) , 𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (𝑢, 𝑓𝑢)}

= lim
𝑛→∞

min {𝑑 (𝑥
𝑛
, 𝑓𝑢) , 𝑑 (𝑢, 𝑥

𝑛+1
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑢, 𝑓𝑢}

= 0.

(32)

Therefore, from the above relations, we deduce that 𝑑(𝑢,
𝑓𝑢) = 0, so, 𝑢 = 𝑓𝑢.

If in the above theorems we take 𝛽(𝑡) = 𝑟, where 0 ≤ 𝑟 <

1/𝑠, then we have the following corollary.

Corollary 12. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a 𝑏-metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 𝑏-
complete 𝑏-metric space, and let 𝑓 : 𝑋 → 𝑋 be an increasing
mappingwith respect to⪯ such that there exists an element𝑥

0
∈

𝑋 with 𝑥
0
⪯ 𝑓(𝑥

0
). Suppose that

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) + 𝐿𝑁 (𝑥, 𝑦) , (33)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋, where 𝐿 ≥ 0,

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} , (34)

𝑁(𝑥, 𝑦) = min {𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑥, 𝑓𝑦) , 𝑑 (𝑦, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦)} .
(35)

If 𝑓 is continuous or, for any nondecreasing sequence {𝑥
𝑛
} in𝑋

such that 𝑥
𝑛
→ 𝑢 ∈ 𝑋, one has 𝑥

𝑛
⪯ 𝑢 for all 𝑛 ∈ 𝑁, then, 𝑓

has a fixed point.
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Corollary 13. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a 𝑏-metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 𝑏-
complete 𝑏-metric space, and let 𝑓 : 𝑋 → 𝑋 be an increasing
mappingwith respect to⪯ such that there exists an element𝑥

0
∈

𝑋 with 𝑥
0
⪯ 𝑓(𝑥

0
). Suppose that

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑟max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} ,

(36)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝑟 < 1/𝑠. If𝑓 is
continuous or, for any nondecreasing sequence {𝑥

𝑛
} in 𝑋 such

that 𝑥
𝑛
→ 𝑢 ∈ 𝑋, one has 𝑥

𝑛
⪯ 𝑢 for all 𝑛 ∈ N, then, 𝑓 has a

fixed point.

Corollary 14. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a 𝑏-metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 𝑏-
complete 𝑏-metric space, and let 𝑓 : 𝑋 → 𝑋 be an increasing
mappingwith respect to⪯ such that there exists an element𝑥

0
∈

𝑋 with 𝑥
0
⪯ 𝑓(𝑥

0
). Suppose that

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑎𝑑 (𝑥, 𝑦) + 𝑏
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
, (37)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋, where 𝑎, 𝑏 ≥ 0 and 0 ≤
𝑎 + 𝑏 < 1/𝑠.

If𝑓 is continuous or, for any nondecreasing sequence {𝑥
𝑛
} in

𝑋 such that 𝑥
𝑛
→ 𝑢 ∈ 𝑋, one has 𝑥

𝑛
⪯ 𝑢 for all 𝑛 ∈ 𝑁, then,𝑓

has a fixed point.

Proof. Since

𝑎𝑑 (𝑥, 𝑦) + 𝑏
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)

≤ (𝑎 + 𝑏)max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} ,

(38)

then from (38) we have

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑟 max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} , (39)

where 𝑟 = 𝑎+𝑏. Hence, all the conditions of Corollary 13 hold
and 𝑓 has a fixed point.

Let Ψ be the family of all nondecreasing functions 𝜓 :

[0,∞) → [0,∞) such that

lim
𝑛→∞

𝜓
𝑛

(𝑡) = 0, (40)

for all 𝑡 > 0.

Lemma 15 (Berinde [23], Rus [24]). If 𝜓 ∈ Ψ, then the
following are satisfied:

(a) 𝜓(𝑡) < 𝑡 for all 𝑡 > 0;
(b) 𝜓(0) = 0.

Example 16. 𝜓
1
(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0, where 𝑘 ∈ [0, 1), and

𝜓
2
(𝑡) = ln(𝑡 + 1) for all 𝑡 ≥ 0 are in Ψ.

Theorem 17. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a 𝑏-metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 𝑏-
complete 𝑏-metric space, and let 𝑓 : 𝑋 → 𝑋 be an increasing
mappingwith respect to⪯ such that there exists an element𝑥

0
∈

𝑋 with 𝑥
0
⪯ 𝑓(𝑥

0
). Suppose that

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) , (41)

where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑓𝑥) 𝑑 (𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} , (42)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋. If𝑓 is continuous, then𝑓
has a fixed point.

Proof. Since 𝑥
0
⪯ 𝑓(𝑥

0
) and 𝑓 is an increasing function, we

obtain by induction that

𝑥
0
⪯ 𝑓 (𝑥

0
) ⪯ 𝑓
2

(𝑥
0
) ⪯ ⋅ ⋅ ⋅ ⪯ 𝑓

𝑛

(𝑥
0
) ⪯ 𝑓
𝑛+1

(𝑥
0
) ⪯ ⋅ ⋅ ⋅.

(43)

Putting 𝑥
𝑛
= 𝑓
𝑛
(𝑥
0
), we have

𝑥
0
⪯ 𝑥
1
⪯ 𝑥
2
⪯ ⋅ ⋅ ⋅ ⪯ 𝑥

𝑛
⪯ 𝑥
𝑛+1

⪯ ⋅ ⋅ ⋅. (44)

If there exists 𝑛
0
∈ N such that 𝑥

𝑛0
= 𝑥
𝑛0+1

, then 𝑥
𝑛0
= 𝑓𝑥
𝑛0

andwe have nothing to prove.Hence, for all 𝑛 ∈ N, we assume
𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) > 0.

Step 1. We will prove that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (45)

Using condition (41), we obtain

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝑠𝑑 (𝑥

𝑛+1
, 𝑥
𝑛
) = 𝑠𝑑 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛−1

)

≤𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛−1

)) .

(46)

Here,

𝑀(𝑥
𝑛−1

, 𝑥
𝑛
)

= max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ,
𝑑 (𝑥
𝑛−1

, 𝑓𝑥
𝑛−1

) 𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
)

1 + 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)

}

= 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) .

(47)

Hence,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑠𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) . (48)

By induction,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤𝜓 (𝑑 (𝑥

𝑛
, 𝑥
𝑛−1

))

≤𝜓
2

(𝑑 (𝑥
𝑛−1

, 𝑥
𝑛−2

)) ≤ ⋅ ⋅ ⋅ ≤ 𝜓
𝑛

(𝑑 (𝑥
1
, 𝑥
0
)) .

(49)

As 𝜓 ∈ Ψ, we conclude

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (50)
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Step 2. We prove {𝑥
𝑛
} is a 𝑏-Cauchy sequence. Suppose the

contrary; that is, {𝑥
𝑚
} is not a 𝑏-Cauchy sequence.Then, there

exists 𝜀 > 0 for whichwe can find two subsequences {𝑥
𝑚𝑖
} and

{𝑥
𝑛𝑖
} of {𝑥

𝑛
} such that 𝑛

𝑖
is the smallest index for which

𝑛
𝑖
> 𝑚
𝑖
> 𝑖, 𝑑 (𝑥

𝑚𝑖
, 𝑥
𝑛𝑖
) ≥ 𝜀. (51)

This means that

𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

) < 𝜀. (52)

From (51) and using the triangular inequality, we have

𝜀 ≤ 𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖
) ≤ 𝑠𝑑 (𝑥

𝑚𝑖
, 𝑥
𝑚𝑖+1

) + 𝑠𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
) .

(53)

By taking the upper limit as 𝑖 → ∞, we have
𝜀

𝑠
≤ lim sup
𝑖→∞

𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
) . (54)

Using the triangular inequality, we have

𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖
) ≤ 𝑠𝑑 (𝑥

𝑚𝑖
, 𝑥
𝑛𝑖−1

) + 𝑠𝑑 (𝑥
𝑛𝑖−1

, 𝑥
𝑛𝑖
) . (55)

Taking the upper limit as 𝑖 → ∞ in the above inequality and
using (52), we get

lim sup
𝑖→∞

𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖
) ≤ 𝜀𝑠. (56)

From the definition of𝑀(𝑥, 𝑦),

𝑀(𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

)

= max{𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

) ,
𝑑 (𝑥
𝑚𝑖
, 𝑓𝑥
𝑚𝑖
) 𝑑 (𝑥

𝑛𝑖−1
, 𝑓𝑥
𝑛𝑖−1

)

1 + 𝑑 (𝑓𝑥
𝑚𝑖
, 𝑓𝑥
𝑛𝑖−1

)
}

= {𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

) ,
𝑑 (𝑥
𝑚𝑖
, 𝑥
𝑚𝑖+1

) 𝑑 (𝑥
𝑛𝑖−1

, 𝑥
𝑛𝑖
)

1 + 𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
)

} .

(57)

If 𝑖 → ∞, by (50) and (52), then we have

lim sup
𝑖→∞

𝑀(𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

) ≤ 𝜀. (58)

Now, from (41), we have

𝑠𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
) = 𝑠𝑑 (𝑓𝑥

𝑚𝑖
, 𝑓𝑥
𝑛𝑖−1

)

≤ 𝜓 (𝑀(𝑥
𝑚𝑖
, 𝑥
𝑛𝑖−1

)) .

(59)

Again, if 𝑖 → ∞, by (52) and (54), we obtain

𝜀 = 𝑠 (
𝜀

𝑠
) ≤ (𝑠 lim sup

𝑖→∞

𝑑 (𝑥
𝑚𝑖+1

, 𝑥
𝑛𝑖
)) ≤ 𝜓 (𝜀) < 𝜀 (60)

which is a contradiction. Thus, {𝑥
𝑛
} is a 𝑏-Cauchy sequence.

Completeness of 𝑋 yields that {𝑥
𝑛
} converges to a point 𝑢 ∈

𝑋; that is, 𝑥
𝑛
→ 𝑢 as 𝑛 → ∞.

Step 3. Now, we show that 𝑢 is a fixed point of 𝑓. Since, 𝑓 is
continuous, we have

𝑢 = lim
𝑛→∞

𝑥
𝑛+1

= lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓𝑢. (61)

So, 𝑢 is a fixed point of 𝑓.

Theorem 18. Under the same hypotheses of Theorem 17, with-
out the continuity assumption of 𝑓, assume that whenever {𝑥

𝑛
}

is a nondecreasing sequence in𝑋 such that 𝑥
𝑛
→ 𝑢 ∈ 𝑋, 𝑥

𝑛
⪯

𝑢 for all 𝑛 ∈ N. Then, 𝑓 has a fixed point.

Proof. Repeating the proof of Theorem 17, we construct an
increasing sequence {𝑥

𝑛
} in 𝑋 such that 𝑥

𝑛
→ 𝑢 ∈ 𝑋. Using

the assumption on𝑋, we have 𝑥
𝑛
⪯ 𝑢. Now, we show that 𝑢 =

𝑓𝑢. By (41), we have
𝑠𝑑 (𝑓𝑢, 𝑥

𝑛
) = 𝑠𝑑 (𝑓𝑢, 𝑓𝑥

𝑛−1
) ≤ 𝜓 (𝑀 (𝑢, 𝑥

𝑛−1
)) , (62)

where

𝑀(𝑢, 𝑥
𝑛−1

) = max{𝑑 (𝑢, 𝑥
𝑛−1

) ,
𝑑 (𝑢, 𝑓𝑢) 𝑑 (𝑥

𝑛−1
, 𝑓𝑥
𝑛−1

)

1 + 𝑑 (𝑓𝑢, 𝑓𝑥
𝑛−1

)
}

= max{𝑑 (𝑢, 𝑥
𝑛−1

) ,
𝑑 (𝑢, 𝑓𝑢) 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

1 + 𝑑 (𝑓𝑢, 𝑥
𝑛−1

)
} .

(63)
Letting 𝑛 → ∞ in (63), we get

lim sup
𝑛→∞

𝑀(𝑢, 𝑥
𝑛−1

) = 0. (64)

Again, taking the upper limit as 𝑛 → ∞ in (62) and using
Lemma 6 and (64), we get

𝑑 (𝑓𝑢, 𝑢) = 𝑠
1

𝑠
𝑑 (𝑓𝑢, 𝑢)

≤ 𝑠 lim sup
𝑛→∞

𝑑 (𝑓𝑢, 𝑥
𝑛
)

≤ lim sup
𝑛→∞

𝜓 (𝑀(𝑢, 𝑥
𝑛−1

))

= 0.

(65)

So, we get 𝑑(𝑓𝑢, 𝑢) = 0. That is, 𝑓𝑢 = 𝑢.

3. Coincidence Point Results

Lemma 19 (see [25]). Let 𝑋 be a nonempty set and let 𝑓 :

𝑋 → 𝑋 be a function. Then, there exists a subset 𝐸 ⊆ 𝑋 such
that 𝑓(𝐸) = 𝑓(𝑋) and 𝑓 : 𝐸 → 𝑋 is one-to-one.

Theorem 20. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a 𝑏-metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 𝑏-
complete 𝑏-metric space, and let 𝑓, 𝑇 : 𝑋 → 𝑋 be such that 𝑓
is an increasing mapping with respect to 𝑇,𝑓𝑋 ⊆ 𝑇𝑋 and there
exists an element 𝑥

0
∈ 𝑋 with 𝑇𝑥

0
⪯ 𝑓𝑥
0
. Suppose that (𝑇, 𝑓)

satisfies the following condition

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛽 (𝑑 (𝑇𝑥, 𝑇𝑦))𝑀
𝑇

(𝑥, 𝑦) + 𝐿𝑁
𝑇

(𝑥, 𝑦) , (66)
for all comparable elements 𝑥, 𝑦 ∈ 𝑋, where 𝐿 ≥ 0,

𝑀
𝑇

(𝑥, 𝑦)=max{𝑑 (𝑇𝑥, 𝑇𝑦) ,
𝑑 (𝑇𝑥, 𝑓𝑥) 𝑑 (𝑇𝑦, 𝑓𝑦)

1+𝑑 (𝑓𝑥, 𝑓𝑦)
} ,

𝑁
𝑇

(𝑥, 𝑦) = min {𝑑 (𝑇𝑥, 𝑓𝑥) , 𝑑 (𝑇𝑥, 𝑓𝑦) ,

𝑑 (𝑇𝑦, 𝑓𝑥) , 𝑑 (𝑇𝑦, 𝑓𝑦)} .

(67)
If 𝑓 is continuous, then (𝑓, 𝑇) has a coincidence point.
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Proof. Let 𝑓 : 𝑋 → 𝑋. From Lemma 19 there exists 𝐸 ⊂ 𝑋

such that 𝑓(𝐸) = 𝑓(𝑋) and 𝑓|
𝐸
is one-to-one. Since 𝑇(𝐸) ⊆

𝑇(𝑋) ⊆ 𝑋, we can define the mapping A : 𝑇(𝐸) → 𝑋 by
A(𝑇𝑥) = 𝑓𝑥, for all 𝑥 ∈ 𝐸. Since 𝑓|

𝐸
is one-to-one, thenA is

well defined. Now, since (𝑓, 𝑇) satisfies (66), we have

𝑠𝑑 (A (𝑇𝑥) ,A (𝑇𝑦))

= 𝑠𝑑 (𝑓𝑥, 𝑓𝑦)

≤ 𝛽 (𝑑 (𝑇𝑥, 𝑇𝑦))𝑀
𝑇

(𝑥, 𝑦) + 𝐿𝑁
𝑇

(𝑥, 𝑦) ,

(68)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀
𝑇

(𝑥, 𝑦)

= max{𝑑 (𝑇𝑥, 𝑇𝑦) ,
𝑑 (𝑇𝑥,A (𝑓𝑥)) 𝑑 (𝑇𝑦,A (𝑓𝑦))

1 + 𝑑 (A (𝑓𝑥) ,A (𝑓𝑦))
} ,

𝑁
𝑇

(𝑥, 𝑦) = min {𝑑 (𝑇𝑥,A (𝑓𝑥)) , 𝑑 (𝑇𝑦,A (𝑓𝑦)) ,

𝑑(𝑇𝑥,A (𝑓𝑦)) , 𝑑(𝑇𝑦,A (𝑓𝑥))} .

(69)

This shows that A satisfies the condition of Theorem 10. So,
there exists fixed point 𝑢 ∈ 𝑇(𝐸) ofA; that is,A𝑢 = 𝑢. Since
𝑢 ∈ 𝑇(𝐸), then there exists 𝑤 ∈ 𝐸 such that

𝑓𝑤 = A (𝑇𝑤) = A𝑢 = 𝑢 = 𝑇𝑤. (70)

That is, 𝑤 is a coincidence point of 𝑓 and 𝑇.

Theorem 21. Under the same hypotheses ofTheorem 20, with-
out the continuity assumption of 𝑓, assume that whenever {𝑥

𝑛
}

is a nondecreasing sequence in𝑋 such that 𝑥
𝑛
→ 𝑢 ∈ 𝑋, 𝑥

𝑛
⪯

𝑢 for all 𝑛 ∈ N. Then, (𝑓, 𝑇) has a coincidence point.

Theorem 22. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a 𝑏-metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 𝑏-
complete 𝑏-metric space, and let 𝑓, 𝑇 : 𝑋 → 𝑋 be such that 𝑓
is an increasing mapping with respect to 𝑇,𝑓𝑋 ⊆ 𝑇𝑋 and there
exists an element 𝑥

0
∈ 𝑋 with 𝑇𝑥

0
⪯ 𝑓𝑥
0
. Suppose that

𝑠𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜓 (𝑀
𝑇

(𝑥, 𝑦)) , (71)

where

𝑀
𝑇

(𝑥, 𝑦) = max{𝑑 (𝑇𝑥, 𝑇𝑦) ,
𝑑 (𝑇𝑥, 𝑓𝑥) 𝑑 (𝑇𝑦, 𝑓𝑦)

1 + 𝑑 (𝑓𝑥, 𝑓𝑦)
} ,

(72)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋. If 𝑓 is continuous, then
(𝑓, 𝑇) has a coincidence point.

Theorem23. Under the same hypotheses ofTheorem 22, with-
out the continuity assumption of 𝑓, assume that whenever {𝑥

𝑛
}

is a nondecreasing sequence in𝑋 such that 𝑥
𝑛
→ 𝑢 ∈ 𝑋, 𝑥

𝑛
⪯

𝑢 for all 𝑛 ∈ N. Then (𝑓, 𝑇) has a fixed point.

Remark 24. Taking 𝑠 = 1, our obtained results coincide with
the results in usual metric case. Also, Theorems 10 and 11 are
extensions of Theorem 3.8 of [22] andTheorem 8.

Example 25. Let 𝑋 = {0, 1, 3} and define the partial order ⪯
on𝑋 by

⪯:= {(0, 0) , (1, 1) , (3, 3) , (0, 3) , (3, 1) , (0, 1)} . (73)

Consider the function 𝑓 : 𝑋 → 𝑋 given as

f = (0 1 3

3 1 1
) (74)

which is increasing with respect to ⪯. Let 𝑥
0
= 0. Hence,

𝑓(𝑥
0
) = 3, so 𝑥

0
⪯ 𝑓𝑥
0
. Define first the 𝑏-metric 𝑑 on 𝑋 by

𝑑(0, 1) = 6, 𝑑(0, 3) = 9, 𝑑(1, 3) = 1/2, and 𝑑(𝑥, 𝑥) = 0. Then,
(𝑋, 𝑑) is a 𝑏-complete 𝑏-metric space with 𝑠 = 18/13 and the
function 𝛽 ∈ F given by

𝛽 (𝑡) =
13

18
𝑒
−𝑡/9

, 𝑡 ≥ 0 (75)

and 𝛽(0) ∈ [0, 13/18) and 𝐿 ≥ 0 is arbitrary. Then,

𝑠𝑑 (𝑓0, 𝑓3) =
18

13
𝑑 (3, 1) =

18

13
⋅
1

2

≤ 𝛽 (𝑑 (0, 3))𝑀 (0, 3)

+ 𝐿𝑁 (0, 3) ≤ 𝛽 (9)𝑀 (0, 3)

+ 𝐿𝑁 (0, 3) = 𝛽 (9) 9

(76)

because

𝑀(0, 3) = max{𝑑 (0, 3) ,
𝑑 (0, 𝑓0) 𝑑 (3, 𝑓3)

1 + 𝑑 (𝑓0, 𝑓3)
}

= max{𝑑 (0, 3) , 𝑑 (0, 3) 𝑑 (3, 1)
1 + 𝑑 (3, 1)

} = 9,

𝑁 (0, 3) = min {𝑑 (0, 𝑓0) , 𝑑 (3, 𝑓3) , 𝑑 (3, 𝑓0) , 𝑑 (0, 𝑓3)}

= min {𝑑 (0, 3) , 𝑑 (3, 1) , 𝑑 (3, 3) , 𝑑 (0, 1)} = 0.
(77)

Also,

𝑠𝑑 (𝑓0, 𝑓1) =
18

13
𝑑 (3, 1) =

18

13
⋅
1

2

≤ 𝛽 (𝑑 (0, 1))𝑀 (0, 1) + 𝐿𝑁 (0, 1)

≤ 𝛽 (6)𝑀 (0, 1) + 𝐿𝑁 (0, 1) = 𝛽 (6) 6

(78)

because

𝑀(0, 1) = max{𝑑 (0, 1) ,
𝑑 (0, 𝑓0) 𝑑 (1, 𝑓1)

1 + 𝑑 (𝑓0, 𝑓1)
}

= max{𝑑 (0, 1) , 𝑑 (0, 3) 𝑑 (1, 1)
1 + 𝑑 (3, 1)

} = 6.

(79)

Also,

𝑠𝑑 (𝑓1, 𝑓3) =
18

13
𝑑 (1, 1) = 0

≤ 𝛽 (𝑑 (1, 3))𝑀 (1, 3) + 𝐿𝑁 (1, 3) .

(80)

Hence, 𝑓 satisfies all the assumptions ofTheorem 10 and thus
it has a fixed point (which is 𝑢 = 1).
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4. Existence Theorem for a Solution of
an Integral Equation

Consider the integral equation

𝑥 (𝑡) = 𝑝 (𝑡) + ∫

𝑇

0

𝜆 (𝑡, 𝑟) 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟, 𝑡 ∈ [0, 𝑇] , (81)

where 𝑇 > 0. The purpose of this section is to give an exist-
ence theorem for a solution of (81) that belongs to 𝑋 = 𝐶(𝐼,

R) (the set of continuous real functions defined on 𝐼 = [0, 𝑇],
by using the obtained result in Theorem 17). Obviously, this
space with the 𝑏-metric given by

𝑑 (𝑥, 𝑦) = max
𝑡∈𝐼

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝

, (82)

for all 𝑥, 𝑦 ∈ 𝑋, is a 𝑏-complete 𝑏-metric space with 𝑠 = 2
𝑝−1

and 𝑝 ≥ 1.
We endow𝑋 with the partial order ⪯ given by

𝑥 ⪯ 𝑦 ⇐⇒ 𝑥 (𝑡) ≤ 𝑦 (𝑡) , (83)

for all 𝑡 ∈ 𝐼. It was proved in [3] that (𝑋, ⪯, 𝑑) is regular (the
proof is valid also in the 𝑏-metric case). We will consider (81)
under the following assumptions:

(i) 𝑓, 𝑝 : [0, 𝑇] ×R → R are continuous,
(ii) 𝜆 : [0, 𝑇] ×R → [0,∞) is continuous,
(iii) there exist 𝑞 > 0 such that for all 𝑥, 𝑦 with 𝑥 ⪯ 𝑦

0 ≤ 𝑓 (𝑟, 𝑦) − 𝑓 (𝑟, 𝑥) ≤ 𝑞 (𝑦 − 𝑥) , (84)

(iv) max
𝑡∈𝐼
(∫
𝑇

0
|𝜆(𝑡, 𝑟)|𝑑𝑟)

𝑝

≤ 1/2
2𝑝−2

𝑞
𝑝,

(v) there exists continuous function 𝛼 : [0, 𝑇] → R such
that

𝛼 (𝑡) ≤ 𝑝 (𝑡) + ∫

𝑇

0

𝜆 (𝑡, 𝑟) 𝑓 (𝑟, 𝛼 (𝑟)) 𝑑𝑟. (85)

Theorem26. Under assumptions (i)–(v), (81) has a solution in
𝑋, where𝑋 = 𝐶([0, 𝑇],R).

Proof. We define 𝐹 : 𝑋 → 𝑋 by

𝐹 (𝑥 (𝑡)) = 𝑝 (𝑡) + ∫

𝑇

0

𝜆 (𝑡, 𝑟) 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟. (86)

The mapping 𝐹 is increasing since, for 𝑥 ⪯ 𝑦,

𝑓 (𝑡, 𝑥) ≤ 𝑓 (𝑡, 𝑦) , (87)

and from 𝜆(𝑡, 𝑟) > 0, we have

𝐹 (𝑥 (𝑡)) = 𝑝 (𝑡) + ∫

𝑇

0

𝜆 (𝑡, 𝑟) 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟

≤ 𝑝 (𝑡) + ∫

𝑇

0

𝜆 (𝑡, 𝑟) 𝑓 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 = 𝐹 (𝑦 (𝑡)) .

(88)

Now, we have

2
𝑝−1󵄨󵄨󵄨󵄨𝐹𝑥 (𝑡) − 𝐹𝑦 (𝑡)

󵄨󵄨󵄨󵄨
𝑝

= 2
𝑝−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

𝜆 (𝑡, 𝑟) [𝑓 (𝑟, 𝑥 (𝑟)) − 𝑓 (𝑟, 𝑦 (𝑟))] 𝑑𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 2
𝑝−1

(∫

𝑇

0

󵄨󵄨󵄨󵄨𝜆 (𝑡, 𝑟) [𝑓 (𝑟, 𝑥 (𝑟)) − 𝑓 (𝑟, 𝑦 (𝑟))]
󵄨󵄨󵄨󵄨 𝑑𝑟)

𝑝

≤ 2
𝑝−1

𝑞
𝑝

(max
𝑟∈𝐼

󵄨󵄨󵄨󵄨𝑥 (𝑟) − 𝑦 (𝑟)
󵄨󵄨󵄨󵄨)

𝑝

(∫

𝑇

0

|𝜆 (𝑡, 𝑟)| 𝑑𝑟)

𝑝

≤ 2
𝑝−1

𝑞
𝑝

𝑑 (𝑥, 𝑦)
1

22𝑝−2𝑞𝑝

≤
1

2𝑝−1
𝑀(𝑥, 𝑦) ,

(89)

where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝐹𝑥) 𝑑 (𝑦, 𝐹𝑦)

1 + 𝑑 (𝐹𝑥, 𝐹𝑦)
} . (90)

Let 𝛼 be the function appearing in assumption (v). Then, we
get

𝛼 ⪯ 𝐹 (𝛼) . (91)

Thus, from Theorem 17, by 𝜓(𝑡) = (1/𝑠)𝑡 = (1/2
𝑝−1

)𝑡, we
deduce the existence of 𝑥 ∈ 𝑋 such that 𝑥 = 𝐹(𝑥).
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