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Species living in a fluctuating medium and human exploitation activities might result in the duration of continuous changes.
Such changes can be well-approximated as feedback controls. In this contribution a periodic discrete competitive system subject
to feedback controls is proposed. By using the methods of discrete inequality, fixed point theorem, and analysis techniques, a
good understanding of the existence and global asymptotic stability of positive periodic solutions is obtained. Some numerical
investigations are provided to verify our analytical results.

1. Introduction

Manymathematical models about bioecology play important
roles for researchers to realize the interactions of ecological
species. There has been increasing interest in studying the
dynamical behaviors such as stability, permanence, and
periodicity of competitive systems (see [1–5]). Recently,
motivated by an autonomous competitive model of [6] in [7]
we introduced a corresponding nonautonomous version
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where 𝑦
1
(𝑡) and 𝑦

2
(𝑡) can be interpreted as the density of two

competing species at time 𝑡, respectively. 𝑎
𝑖
(𝑡) stand for the

growth rates of species, 𝑏
𝑖
(𝑡) and 𝑑

𝑖
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of intraspecific competition, and 𝑐
𝑖
(𝑡) are the rates of inter-

specific competition. Furthermore, we took the influence of
almost periodic environment and impulsive perturbations
into account and established sufficient conditions for the

uniformly asymptotic stability of a unique positive almost
periodic solution for the above system (for details see [7]).

Note that ecosystems in the real world are often disturbed
by outside continuous forces which can lead to changes in
biological coefficients such as survival rates. In the language
of control, we call the disturbance functions as feedback
control variables. Many good results on this direction are
deliberated (see [8–12]) and some similar works on the topic
have been done (see [13, 14]). This paper is concerned with
a discrete model and is a continuation of the work in [7];
in this contribution we search for certain schemes (such as
harvesting procedure) to ensure the system coexists under
appropriate conditions. For this reason,we consider a discrete
version which corresponds to differential version (i.e., system
(1)), meanwhile, replacing abrupt external perturbations
(impulses) in [7] by continuous external perturbations (feed-
back control variables), a nonautonomous discrete controlled
system can be described as follows:
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Here 𝑦
𝑖
(0) > 0, V

𝑖
(0) > 0. ΔV

𝑖
(𝑘) are the first-order forward

difference operators, 𝑦
𝑖
(𝑘) stand for the densities of species 𝑦

𝑖

at the 𝑘th generation, 𝑎
𝑖
(𝑘) represent the natural growth rates

of species 𝑦
𝑖
at the 𝑘th generation, 𝑏

𝑖
(𝑘) and 𝑑

𝑖
(𝑘) stand for

the intraspecific effects of the 𝑘th generation of species 𝑦
𝑖
on

own population, and 𝑐
𝑖
(𝑘)measure the interspecific effects of

the 𝑘th generation of species 𝑦
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(𝑘)} are 𝑇-periodic sequences with 0 < 𝑓
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(𝑘) < 1, 𝑖, 𝑗 =

1, 2; 𝑖 ̸= 𝑗. Z+ is the set of nonnegative integers.
It is well known that the discrete models governed

by difference equations may be more appropriate than
the continuous ones when populations have a short life
expectancy or nonoverlapping generations. Also, discrete
models can provide efficient computational methods of
continuous models for numerical simulations. A very
important ecological problem associated with the study
of multispecies population interaction in a periodic
environment is the positive periodic solution which plays
the role played by the equilibrium of the autonomous model.
In this paper, we will discuss the above discrete system (2)
and focus on the existence and stability of positive periodic
solution of system (2). To the best of our knowledge, there
are few published papers concerning system (2).

The rest structure of this paper is as follows. In the next
section, we establish sufficient conditions for the existence of
positive periodic solutions. In Section 3, we further discuss
the global asymptotic stability of positive periodic solutions.
In Section 4, we carry out an example and its numerical
simulations to substantiate our theoretical results. To simplify
the reading of paper, we give the proofs of lemmas and
theorems in appendices.

2. Existence

In this section, we establish sufficient conditions for the
existence of positive periodic solutions of system (2). To do
this, we first give two preliminary lemmas. For convenience,
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The proof of Lemma 1 is given in Appendix A.
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hold, then every positive solution {𝑦
1
(𝑘), 𝑦
2
(𝑘), V
1
(𝑘), V
2
(𝑘)}

of system (2) satisfies lim inf
𝑘→+∞

𝑦
𝑖
(𝑘) ≥ 𝑚

𝑖
and

lim inf
𝑘→+∞

V
𝑖
(𝑘) ≥ 𝑛

𝑖
, 𝑖 = 1, 2.

The proof of Lemma 2 is given in Appendix B.

Theorem 3. If the inequalities in (4) hold, then system (2) has
at least one strictly positive 𝑇-periodic solution.

The proof of Theorem 3 is given in Appendix C.

3. Global Asymptotic Stability

In this section, we further investigate the stability of positive
periodic solutions of system (2). Denote
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Theorem 4. In addition to (4), further suppose that 𝜌
𝑖
< 1,

𝑖 = 1, 2, 3, 4. Then the positive periodic solution of system (2) is
globally asymptotically stable.

The proof of Theorem 4 is given in Appendix D.

4. An Example

In this section we give a numerical example and its corre-
sponding simulations.
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Example 1. Consider a discrete competitive system with
feedback controls
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A computation shows that
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so the assumptions of Theorem 4 are also satisfied. Thus,
there exists a globally asymptotically stable positive periodic
solution of system (6). Figure 1 shows that system (6) exists
a positive periodic solution(𝑦∗

1
(𝑘), 𝑦
∗

2
(𝑘), V∗
1
(𝑘), V∗
2
(𝑘)), and

the two-dimensional phase portrait of periodic system (6)
is displayed in Figure 2. From Figure 3, we can see that
any positive solution (𝑦

1
(𝑘), 𝑦
2
(𝑘), V
1
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(𝑘)) tends to the

periodic solution (𝑦
∗
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∗

2
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(𝑘)), and the two-

dimensional phase portrait reflects the fact in Figure 4.

Appendices

A. Proof of Lemma 1

We consider the following Cases I and II to show that

lim sup
𝑘→+∞

𝑦
𝑖
(𝑘) ≤ 𝑀

𝑖
, 𝑖 = 1, 2. (A.1)
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≤ 𝑦
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0
) exp [𝑎

𝑈

1
− 𝑏
𝐿

1
𝑦
1
(𝑘
0
)]

≤
exp (𝑎

𝑈

1
− 1)

𝑏𝐿
1

= 𝑀
1
.

(A.2)
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Figure 1: Positive periodic solution of system (6). (a)–(d) Time-series of 𝑦∗
1
(𝑘), 𝑦∗

2
(𝑘), V∗

1
(𝑘), and V∗

2
(𝑘) with initial values 𝑦∗

1
(0) = 1.1560,

𝑦
∗

2
(0) = 1.0720, V∗

1
(0) = 0.0128, and V∗

2
(0) = 0.0078 for 𝑘 ∈ [0, 100], respectively.

Here we use the fact that max
𝑥∈R+[𝑥 exp(𝑎 − 𝑏𝑥)] = [exp(𝑎 −

1)]/𝑏 for 𝑎, 𝑏 > 0 andR+ is the set of all positive real numbers.
Thus 𝑦

1
(𝑘
0
) ≤ 𝑦
1
(𝑘
0
+ 1) ≤ 𝑀

1
.

One claims that 𝑦
1
(𝑘) ≤ 𝑀

1
for all 𝑘 ≥ 𝑘

0
. Otherwise, if

there is a 𝑙
0
> 𝑘
0
such that 𝑦

1
(𝑙
0
) > 𝑀

1
, then 𝑙

0
≥ 𝑘
0
+ 2. Set

𝑙
0
= min {𝑙

0
: 𝑙
0
≥ 𝑘
0
+ 2, 𝑦
1
(𝑙
0
) > 𝑀

1
} ; (A.3)

namely, 𝑦
1
(𝑙
0
) > 𝑀

1
and 𝑙
0
≥ 𝑘
0
+ 2; then 𝑦

1
(𝑙
0
) > 𝑀

1
≥

𝑦
1
(𝑙
0
−1). From the above discussion one obtains that𝑦

1
(𝑙
0
) ≤

𝑀
1
, which is a contradiction. Hence, 𝑦

1
(𝑘) ≤ 𝑀

1
for all 𝑘 ≥

𝑘
0
; then lim sup

𝑘→+∞
𝑦
1
(𝑘) ≤ 𝑀

1
. Case I is complete.

Case II. Assume that 𝑦
1
(𝑘) > 𝑦

1
(𝑘 + 1) for 𝑘 ∈ Z+.

lim
𝑘→+∞

𝑦
1
(𝑘) especially exists, denoted by 𝑦

1
. One claims

that 𝑦
1
≤ 𝑎
𝑈

1
/𝑏
𝐿

1
. Otherwise, if 𝑦

1
> 𝑎
𝑈

1
/𝑏
𝐿

1
, then it follows

from the first equation of system (2) that

lim
𝑘→+∞

[𝑎
1
(𝑘) − 𝑏

1
(𝑘) 𝑦
1
(𝑘) − 𝑐

1
(𝑘) 𝑦
2
(𝑘)

−𝑑
1
(𝑘) 𝑦
2

1
(𝑘) − 𝑒

1
(𝑘) V
1
(𝑘)] = 0,

(A.4)

which is a contradiction since

lim
𝑘→+∞

[𝑎
1
(𝑘) − 𝑏

1
(𝑘) 𝑦
1
(𝑘) − 𝑐

1
(𝑘) 𝑦
2
(𝑘)

−𝑑
1
(𝑘) 𝑦
2

1
(𝑘) − 𝑒

1
(𝑘) V
1
(𝑘)]
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Figure 2: Two-dimensional phase portrait. (a) Phase portrait of 𝑦∗
1
(𝑘) and 𝑦

∗

2
(𝑘) with initial values 𝑦∗

1
(0) = 1.1560 and 𝑦

∗

2
(0) = 1.0720

for 𝑘 ∈ [0, 100], respectively. (b) Phase portrait of V∗
1
(𝑘) and V∗

2
(𝑘) with initial values V∗

1
(0) = 0.0128 and V∗

2
(0) = 0.0078 for 𝑘 ∈ [0, 100],

respectively.

≤ lim
𝑘→+∞

[𝑎
1
(k) − 𝑏

1
(𝑘) 𝑦
1
(𝑘)]

≤ 𝑎
𝑈

1
− 𝑏
𝐿

1
𝑦
1
< 0.

(A.5)

This proves the claim. By 𝑦
1

≤ 𝑎
𝑈

1
/𝑏
𝐿

1
and the fact that

min
𝑥∈R+[exp(𝑥 − 1)/𝑥] = 1, one can show that

𝑦
1
≤

𝑎
𝑈

1

𝑏𝐿
1

≤ (
𝑎
𝑈

1

𝑏𝐿
1

)
exp (𝑎

𝑈

1
− 1)

𝑎
𝑈

1

= 𝑀
1
. (A.6)

Hence lim sup
𝑘→+∞

𝑦
1
(𝑘) ≤ 𝑀

1
. We can prove that

lim sup
𝑘→+∞

𝑦
2
(𝑘) ≤ 𝑀

2
in the same way.

In the following, we prove that lim sup
𝑘→+∞

V
1
(𝑘) ≤ 𝑁

1
.

For any 𝜀 > 0, there exists an integer 𝑚
0

∈ Z+ such that
𝑦
1
(𝑘) ≤ 𝑀

1
+𝜀 for all 𝑘 ≥ 𝑚

0
.We have from the third equation

of system (2) that

V
1
(𝑘) =

𝑘−1

∏

𝑖=0

(1 − 𝑓
1
(𝑖)) [

[

V
1
(0) +

𝑘−1

∑

𝑖=0

ℎ
1
(𝑖) + 𝑔

1
(𝑖) 𝑦
1
(𝑖)

∏
𝑖

𝑗=0
(1 − 𝑓

1
(𝑗))

]

]

≤ (1 − 𝑓
𝐿

1
)
𝑘

(V
1
(0) + 𝜇

1
)

+ [ℎ
𝑈

1
+ 𝑔
𝑈

1
(𝑀
1
+ 𝜀)]

𝑘−1

∑

𝑖=𝑚
0

𝑘−1

∏

𝑗=𝑖+1

(1 − 𝑓
1
(𝑗))

≤ (1 − 𝑓
𝐿

1
)
𝑘

(V
1
(0) + 𝜇

1
)

+ [ℎ
𝑈

1
+ 𝑔
𝑈

1
(𝑀
1
+ 𝜀)]

𝑘−1

∑

𝑖=𝑚
0

(1 − 𝑓
𝐿

1
)
𝑘−𝑖−1

,

(A.7)

where 𝜇
1

= ∑
𝑚
0
−1

𝑖=0
((ℎ
1
(𝑖) + 𝑔

1
(𝑖)𝑦
1
(𝑖))/(∏

𝑖

𝑗=0
(1 − 𝑓

1
(𝑗)))).

Since 0 < 𝑓
𝐿

1
< 1, we can choose a constant 𝜃 > 0 such

that 1 − 𝑓
𝐿

1
= 𝑒
−𝜃. By using the Stolz theorem, one has, as

𝑘 → +∞,

𝑘−1

∑

𝑖=𝑚
0

(1 − 𝑓
𝐿

1
)
𝑘−𝑖−1

=
∑
𝑘−1

𝑖=𝑚
0

𝑒
𝜃(𝑖+1)

𝑒𝜃𝑘
󳨀→

1

1 − 𝑒−𝜃
=

1

𝑓𝐿
1

. (A.8)

So lim sup
𝑘→+∞

V
1
(𝑘) ≤ (ℎ

𝑈

1
+ 𝑔
𝑈

1
(𝑀
1
+ 𝜀))/𝑓

𝐿

1
. Since 𝜀 is

arbitrary, we obtain that lim sup
𝑘→+∞

V
1
(𝑘) ≤ 𝑁

1
.

Repeating a similar argument, we can prove that
lim sup

𝑘→+∞
V
2
(𝑘) ≤ 𝑁

2
. The proof of Lemma 1 is complete.

B. Proof of Lemma 2

In view of Lemma 1, we obtain that there exist 𝜀 > 0 and 𝑘
∗
∈

Z+ such that, for 𝑘 ≥ 𝑘
∗,

𝑦
𝑖
(𝑘) ≤ 𝑀

𝑖
+ 𝜀, V

𝑖
(𝑘) ≤ 𝑁

𝑖
+ 𝜀, 𝑖 = 1, 2. (B.1)

The first inequality of (4) implies that

𝑎
𝐿

1
− 𝑐
𝑈

1
(𝑀
2
+ 𝜀) − 𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀) > 0. (B.2)

Similar to Lemma 1, we consider the following Cases I and II
to show that

lim inf
𝑘→+∞

𝑦
1
(𝑘) ≥ 𝑚

1
. (B.3)



6 Journal of Applied Mathematics

0 20 40 60 80 100

k

y
∗

1
(k)

1.165

1.16

1.155

1.15

1.145

1.14

1.135

1.13

y
∗ 1
(k
),
y
1
(k
)

y1(k)

(a)

0 20 40 60 80 100

k

y
∗

2
(k)

1.09

1.088

1.086

1.084

1.082

1.08

1.078

1.076

1.074

1.072

1.07

y
∗ 2
(k
),
y
2
(k
)

y2(k)

(b)

�
∗ 1
(k
),
�
1
(k
)

�1(k)

0 20 40 60 80 100

k

�
∗

1
(k)

129

128

127

126

125

124

123

122

×10
−4

(c)

0 20 40 60 80 100

k

�
∗

2
(k)

�
∗ 2
(k
),
�
2
(k
)

�2(k)

8

7.8

7.6

7.4

7.2

7

6.8

×10
−3

(d)

Figure 3: Global asymptotic stability. (a)–(d) Time-series of 𝑦∗
1
(𝑘), 𝑦∗

2
(𝑘), V∗
1
(𝑘), and V∗

2
(𝑘)with initial values 𝑦∗

1
(0) = 1.1560, 𝑦∗

2
(0) = 1.0720,

V∗
1
(0) = 0.0128, and V∗

2
(0) = 0.0078 and 𝑦

1
(𝑘), 𝑦

2
(𝑘), V
1
(𝑘), and V

2
(𝑘) with initial values 𝑦

1
(0) = 1.1300, 𝑦

2
(0) = 1.0850, V

1
(0) = 0.0123, and

V
2
(0) = 0.0071 for 𝑘 ∈ [0, 100], respectively.

Case I. Suppose that there is a nonnegative integer 𝑘
0
≥ 𝑘
∗

such that 𝑦
1
(𝑘
0
+ 1) ≤ 𝑦

1
(𝑘
0
); we have from the first equation

of system (2) that

𝑦
1
(𝑘
0
+ 1) = 𝑦

1
(𝑘
0
) exp [𝑎

1
(𝑘
0
) − 𝑏
1
(𝑘
0
) 𝑦
1
(𝑘
0
)

− 𝑐
1
(𝑘
0
) 𝑦
2
(𝑘
0
) − 𝑑
1
(𝑘
0
) 𝑦
2

1
(𝑘
0
)

− 𝑒
1
(𝑘
0
) V
1
(𝑘
0
)]

≥ 𝑦
1
(𝑘
0
) exp [𝑎

L
1
− 𝑏
𝑈

1
𝑦
1
(𝑘
0
) − 𝑐
𝑈

1
(𝑀
2
+ 𝜀)

−𝑑
𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀)] ,

(B.4)

and hence

𝑎
𝐿

1
− 𝑏
𝑈

1
𝑦
1
(𝑘
0
) − 𝑐
𝑈

1
(𝑀
2
+ 𝜀) − 𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀)

≤ 0.

(B.5)

Note that (B.2) and 𝜀 is sufficiently small; one has from (B.5)
that

𝑦
1
(𝑘
0
) ≥

𝑎
𝐿

1
− 𝑐

U
1
(𝑀
2
+ 𝜀) − 𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀)

𝑏
𝑈

1

> 0.

(B.6)
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Figure 4: Two-dimensional phase portrait. (a) Phase portrait of 𝑦∗
1
(𝑘) and 𝑦

∗

2
(𝑘) with initial values 𝑦∗

1
(0) = 1.1560 and 𝑦

∗

2
(0) = 1.0720 and

𝑦
1
(𝑘) and 𝑦

2
(𝑘) with initial values 𝑦

1
(0) = 1.1300 and 𝑦

2
(0) = 1.0850 for 𝑘 ∈ [0, 100], respectively. (b) Phase portrait of V∗

1
(𝑘) and V∗

2
(𝑘) with

initial values V∗
1
(0) = 0.0128 and V∗

2
(0) = 0.0078 and V

1
(𝑘) and V

2
(𝑘) with initial values V

1
(0) = 0.0123 and V

2
(0) = 0.0071 for 𝑘 ∈ [0, 100],

respectively.

Furthermore, it follows from (B.4) and (B.6) that

𝑦
1
(𝑘
0
+ 1)

= 𝑦
1
(𝑘
0
) exp [𝑎

1
(𝑘
0
) − 𝑏
1
(𝑘
0
) 𝑦
1
(𝑘
0
) − 𝑐
1
(𝑘
0
) 𝑦
2
(𝑘
0
)

−𝑑
1
(𝑘
0
) 𝑦
2

1
(𝑘
0
) − 𝑒
1
(𝑘
0
) V
1
(𝑘
0
)]

≥
𝑎
𝐿

1
− 𝑐
𝑈

1
(𝑀
2
+ 𝜀) − 𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀)

𝑏
𝑈

1

× exp [𝑎
𝐿

1
− 𝑏
𝑈

1
(𝑀
1
+ 𝜀) − 𝑐

𝑈

1
(𝑀
2
+ 𝜀)

−𝑑
𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀)]

> 0.

(B.7)

Hence 𝑦
1
(𝑘
0
) ≥ 𝑦
1
(𝑘
0
+ 1) ≥ 𝑦

𝜀

1
, where

𝑦
𝜀

1
=

𝑎
𝐿

1
− 𝑐
𝑈

1
(𝑀
2
+ 𝜀) − 𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2

− e𝑈
1
(𝑁
1
+ 𝜀)

𝑏
𝑈

1

× exp [𝑎
𝐿

1
− 𝑏
𝑈

1
(𝑀
1
+ 𝜀) − 𝑐

𝑈

1
(𝑀
2
+ 𝜀)

−𝑑
𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀)] .

(B.8)

Now, we claim that 𝑦
1
(𝑘) ≥ 𝑦

𝜀

1
for all 𝑘 ≥ 𝑘

0
. Otherwise, if

there exists a 𝑞
0
> 𝑘
0
such that 𝑦

1
(𝑞
0
) < 𝑦
𝜀

1
, then 𝑞

0
≥ 𝑘
0
+ 2.

Set

𝑞
0
= min {𝑞

0
: 𝑞
0
≥ 𝑘
0
+ 2, 𝑦
1
(𝑞
0
) < 𝑦
𝜀

1
} ; (B.9)

then 𝑦
1
(𝑞
0
− 1) > 𝑦

1
(𝑞
0
). The above argument produces that

𝑦
1
(𝑞
0
) ≥ 𝑦
𝜀

1
, which is a contradiction. Thus 𝑦

1
(𝑘) ≥ 𝑦

𝜀

1
for all

𝑘 ≥ 𝑘
0
. Since 𝜀 is sufficiently small, this reduces to

𝑦
1
(𝑘) ≥

𝑎
𝐿

1
− 𝑐
𝑈

1
𝑀
2
− d𝑈
1
𝑀
2

1
− 𝑒
𝑈

1
𝑁
1

𝑏
𝑈

1

× exp [𝑎
𝐿

1
− 𝑏
𝑈

1
𝑀
1
− 𝑐
𝑈

1
𝑀
2
− 𝑑
𝑈

1
𝑀
2

1
− 𝑒
𝑈

1
𝑁
1
] = 𝑚

1
.

(B.10)

Hence, lim inf
𝑘→+∞

𝑦
1
(𝑘) ≥ 𝑚

1
. This verifies Case I.

Case II. We assume that 𝑦
1
(𝑘 + 1) ≥ 𝑦

1
(𝑘) for all large 𝑘 ≥ 𝑘

∗.
In this case, lim

𝑘→+∞
𝑦
1
(𝑘) exists, denoted by𝑦

1∗
. One claims

that 𝑦
1∗

≥ (𝑎
𝐿

1
− 𝑐
𝑈

1
(𝑀
2
+ 𝜀) − 𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2
− 𝑒
𝑈

1
(𝑁
1
+ 𝜀))/𝑏

𝑈

1
;

otherwise, assume that 𝑦
1∗

< (𝑎
𝐿

1
−𝑐
𝑈

1
(𝑀
2
+𝜀)−𝑑

𝑈

1
(𝑀
1
+𝜀)
2
−

𝑒
𝑈

1
(𝑁
1
+𝜀))/𝑏

𝑈

1
. It follows from the first equation of system (2)

that

lim
𝑘→+∞

[𝑎
1
(𝑘) − 𝑏

1
(𝑘) 𝑦
1
(𝑘) − 𝑐

1
(𝑘) 𝑦
2
(𝑘)

−𝑑
1
(𝑘) 𝑦
2

1
(𝑘) − 𝑒

1
(𝑘) V
1
(𝑘)] = 0;

(B.11)

however,

lim
𝑘→+∞

[𝑎
1
(𝑘) − 𝑏

1
(𝑘) 𝑦
1
(𝑘) − 𝑐

1
(𝑘) 𝑦
2
(𝑘)

−𝑑
1
(𝑘) 𝑦
2

1
(𝑘) − 𝑒

1
(𝑘) V
1
(𝑘)]

≥ lim
𝑘→+∞

[𝑎
1
(𝑘) − 𝑏

1
(𝑘) 𝑦
1
(𝑘) − 𝑐

1
(𝑘) (𝑀

2
+ 𝜀)

−𝑑
1
(𝑘) (𝑀

1
+ 𝜀)
2

− 𝑒
1
(𝑘) (𝑁

1
+ 𝜀)]
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≥ 𝑎
𝐿

1
− 𝑏
𝑈

1
𝑦
1∗

− 𝑐
𝑈

1
(𝑀
2
+ 𝜀) − 𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2

− 𝑒
𝑈

1
(𝑁
1
+ 𝜀)

> 0,

(B.12)

which is a contradiction. This fact implies that
lim inf

𝑘→+∞
𝑦
1
(𝑘) ≥ 𝑦

𝜀

1
. Since 𝜀 can be sufficiently small,

one yields lim inf
𝑘→+∞

𝑦
1
(𝑘) ≥ 𝑚

1
, where 𝑚

1
is defined as

(B.10).
Similarly, one can derive that lim inf

𝑘→+∞
𝑦
2
(𝑘) ≥ 𝑚

2
.

In the following, we prove that lim inf
𝑘→+∞

V
1
(𝑘) ≥ 𝑛

1
.

For any 𝜀 > 0, there exists an integer 𝑝
0

∈ Z+ such that
𝑦
1
(𝑘) ≥ 𝑚

1
− 𝜀 for 𝑘 ≥ 𝑝

0
. We have from the third equation

of system (2) that

V
1
(𝑘) =

𝑘−1

∏

𝑖=0

(1 − 𝑓
1
(𝑖)) [

[

V
1
(0) +

𝑘−1

∑

𝑖=0

ℎ
1
(𝑖) + 𝑔

1
(𝑖) 𝑦
1
(𝑖)

∏
𝑖

𝑗=0
(1 − 𝑓

1
(𝑗))

]

]

≥ (1 − 𝑓
𝑈

1
)
𝑘

(V
1
(0) + 𝜇

2
)

+ [ℎ
𝐿

1
+ 𝑔
𝐿

1
(𝑚
1
− 𝜀)]

𝑘−1

∑

𝑖=𝑝
0

𝑘−1

∏

𝑗=𝑖+1

(1 − 𝑓
1
(𝑗))

≥ (1 − 𝑓
𝑈

1
)
𝑘

(V
1
(0) + 𝜇

2
)

+ [ℎ
L
1
+ 𝑔
𝐿

1
(𝑚
1
− 𝜀)]

𝑘−1

∑

𝑖=𝑝
0

(1 − 𝑓
𝑈

1
)
𝑘−𝑖−1

,

(B.13)

where𝜇
2
= ∑
𝑝
0
−1

𝑖=0
((ℎ
1
(𝑖)+𝑔
1
(𝑖)𝑦
1
(𝑖))/(∏

𝑖

𝑗=0
(1−𝑓
1
(𝑗)))). Since

0 < 𝑓
𝑈

1
< 1, we can choose a constant 𝜂 > 0 such that 1−𝑓𝑈

1
=

𝑒
−𝜂; then by Stolz’s theorem one yields

𝑘−1

∑

𝑖=𝑝
0

(1 − 𝑓
𝑈

1
)
𝑘−𝑖−1

=

∑
𝑘−1

𝑖=𝑝
0

𝑒
𝜂(𝑖+1)

𝑒𝜂𝑘
󳨀→

1

1 − 𝑒−𝜂
=

1

𝑓
𝑈

1

as 𝑘 󳨀→ +∞.

(B.14)

Then lim inf
𝑘→+∞

V
1
(𝑘) ≥ (ℎ

𝐿

1
+ 𝑔
𝐿

1
(𝑚
1
− 𝜀))/𝑓

𝑈

1
. Since 𝜀 can

be sufficiently small, we have

lim inf
𝑘→+∞

V
1
(𝑘) ≥ 𝑛

1
=

(ℎ
𝐿

1
+ 𝑔
𝐿

1
𝑚
1
)

𝑓
𝑈

1

. (B.15)

Analogously,

lim inf
𝑘→+∞

V
2
(𝑘) ≥ 𝑛

2
=

(ℎ
𝐿

2
+ 𝑔
𝐿

2
𝑚
2
)

𝑓
𝑈

2

. (B.16)

The proof of Lemma 2 is complete.

C. Proof of Theorem 3

It follows from Lemmas 1 and 2 that

Θ = [𝑚
1
,𝑀
1
] × [𝑚

2
,𝑀
2
] × [𝑛

1
, 𝑁
1
] × [𝑛

2
, 𝑁
2
] (C.1)

is an invariant set of system (2). Define the continuous
mapping Π on Θ by

Π{𝑦
∗

1
(0) , 𝑦

∗

2
(0) , V∗
1
(0) , V∗
2
(0)}

= Π {𝑦
∗

1
(𝑇) , 𝑦

∗

2
(𝑇) , V∗

1
(𝑇) , V∗

2
(𝑇)} ,

(C.2)

for {𝑦
∗

1
(0), 𝑦
∗

2
(0), V∗
1
(0), V∗
2
(0)} ∈ Θ. Clearly, Π depends

continuously on {𝑦
∗

1
(0), 𝑦
∗

2
(0), V∗
1
(0), V∗
2
(0)}; then Π is con-

tinuous and maps the compact set Θ into itself. Hence, Π
has a fixed point {𝑦

1
, 𝑦
2
, Ṽ
1
, Ṽ
2
}. It is easy to see that the

solution {𝑦
∗

1
(𝑘), 𝑦
∗

2
(𝑘), V∗
1
(𝑘), V∗
2
(𝑘)} which passes through

{𝑦
1
, 𝑦
2
, Ṽ
1
, Ṽ
2
} is a𝑇-periodic solution of system (2).Theproof

of Theorem 3 is complete.

D. Proof of Theorem 4

Let {𝑦∗
1
(𝑘), 𝑦
∗

2
(𝑘), V∗
1
(𝑘), V∗
2
(𝑘)} be positive periodic solution

and let {𝑦
1
(𝑘), 𝑦
2
(𝑘), V
1
(𝑘), V
2
(𝑘)} be any positive solution of

system (2), respectively. Let us make the change of variables
as follows:

𝑥
1
(𝑘) = ln𝑦

1
(𝑘) − ln𝑦

∗

1
(𝑘) ,

𝑥
2
(𝑘) = ln𝑦

2
(𝑘) − ln𝑦

∗

2
(𝑘) ,

𝑢
1
(𝑘) = V

1
(𝑘) − V∗

1
(𝑘) , 𝑢

2
(𝑘) = V

2
(𝑘) − V∗

2
(𝑘) .

(D.1)

By the mean-value theorem, we have from the first equation
of system (2) that

𝑥
1
(𝑘 + 1) = ln𝑦

1
(𝑘 + 1) − ln𝑦

∗

1
(𝑘 + 1)

= ln𝑦
1
(𝑘) − ln𝑦

∗

1
(𝑘) − 𝑏

1
(𝑘) (𝑦

1
(𝑘) − 𝑦

∗

1
(𝑘))

− 𝑐
1
(𝑘) (𝑦

2
(𝑘) − 𝑦

∗

2
(𝑘))

− 𝑑
1
(𝑘) (𝑦

2

1
(𝑘) − 𝑦

∗2

1
(𝑘))

− 𝑒
1
(𝑘) (V
1
(𝑘) − V∗

1
(𝑘))

= ln𝑦
1
(𝑘) − ln𝑦

∗

1
(𝑘) − 𝑏

1
(𝑘) exp (𝜃

1
(𝑘))

× (ln𝑦
1
(𝑘) − ln𝑦

∗

1
(𝑘)) − 𝑐

1
(𝑘) exp (𝜃

2
(𝑘))

⋅ (ln𝑦
2
(𝑘) − ln𝑦

∗

2
(𝑘)) − 2𝑑

1
(𝑘) exp (2𝜃

3
(𝑘))

× (ln𝑦
1
(𝑘) − ln𝑦

∗

1
(𝑘))

− 𝑒
1
(𝑘) (V
1
(𝑘) − V∗

1
(𝑘))

= [1 − 𝑏
1
(𝑘) exp (𝜃

1
(𝑘))

−2𝑑
1
(𝑘) exp (2𝜃

3
(𝑘))] 𝑥

1
(𝑘)

− 𝑐
1
(𝑘) exp (𝜃

2
(𝑘)) 𝑥

2
(𝑘) − 𝑒

1
(𝑘) 𝑢
1
(𝑘) .

(D.2)
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Similarly, we can arrive at the following desired results:

𝑥
2
(𝑘 + 1) = [1 − 𝑏

2
(𝑘) exp (𝜃

4
(𝑘))

−2𝑑
2
(𝑘) exp (2𝜃

6
(𝑘))] 𝑥

2
(𝑘)

− 𝑐
2
(𝑘) exp (𝜃

5
(𝑘)) 𝑥

1
(𝑘) − 𝑒

2
(𝑘) 𝑢
2
(𝑘) ,

𝑢
1
(𝑘 + 1) = (1 − 𝑓

1
(𝑘)) 𝑢

1
(𝑘) + 𝑔

1
(𝑘) exp (𝜃

7
(𝑘)) 𝑥

1
(𝑘) ,

𝑢
2
(𝑘 + 1) = (1 − 𝑓

2
(𝑘)) 𝑢

2
(𝑘) + 𝑔

2
(𝑘) exp (𝜃

8
(𝑘)) 𝑥

2
(𝑘) ,

(D.3)

where 𝜃
1
(𝑘), 𝜃

3
(𝑘), 𝜃

5
(𝑘), and 𝜃

7
(𝑘) lie between ln𝑦

∗

1
(𝑘) and

ln𝑦
1
(𝑘) and 𝜃

2
(𝑘), 𝜃
4
(𝑘), 𝜃
6
(𝑘), and 𝜃

8
(𝑘) lie between ln𝑦

∗

2
(𝑘)

and ln𝑦
2
(𝑘).

By the inequalities in (5), we will now select a constant 𝜀
small enough such that

𝜌
𝜀

1
= max {󵄨󵄨󵄨󵄨󵄨1 − 𝑏

𝐿

1
(𝑚
1
− 𝜀) − 2𝑑

𝐿

1
(𝑚
1
− 𝜀)
2󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑈

1
(𝑀
1
+ 𝜀) − 2𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2󵄨󵄨󵄨󵄨󵄨
}

+𝑐
𝑈

1
(𝑀
2
+ 𝜀) + 𝑒

𝑈

1
< 1,

𝜌
𝜀

2
= max {󵄨󵄨󵄨󵄨󵄨1 − 𝑏

𝐿

2
(𝑚
2
− 𝜀) − 2𝑑

𝐿

2
(𝑚
2
− 𝜀)
2󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑈

2
(𝑀
2
+ 𝜀) − 2𝑑

𝑈

2
(𝑀
2
+ 𝜀)
2󵄨󵄨󵄨󵄨󵄨
}

+𝑐
𝑈

2
(𝑀
1
+ 𝜀) + 𝑒

𝑈

2
< 1,

𝜌
𝜀

3
= 1 − 𝑓

𝐿

1
+ 𝑔
𝑈

1
(𝑀
1
+ 𝜀) < 1,

𝜌
𝜀

4
= 1 − 𝑓

𝐿

2
+ 𝑔
𝑈

2
(𝑀
2
+ 𝜀) < 1.

(D.4)

From Lemmas 1 and 2, we know that there exists a 𝑘̂ ∈ Z+

such that, for 𝑘 ≥ 𝑘̂,

0 < 𝑚
1
− 𝜀 ≤ 𝑦

∗

1
(𝑘) ≤ 𝑀

1
+ 𝜀,

0 < 𝑚
1
− 𝜀 ≤ 𝑦

1
(𝑘) ≤ 𝑀

1
+ 𝜀,

0 < 𝑚
2
− 𝜀 ≤ 𝑦

∗

2
(𝑘) ≤ 𝑀

2
+ 𝜀,

0 < 𝑚
2
− 𝜀 ≤ 𝑦

2
(𝑘) ≤ 𝑀

2
+ 𝜀,

0 < 𝑛
1
− 𝜀 ≤ V∗

1
(𝑘) ≤ 𝑁

1
+ 𝜀,

0 < 𝑛
1
− 𝜀 ≤ V

1
(𝑘) ≤ 𝑁

1
+ 𝜀,

0 < 𝑛
2
− 𝜀 ≤ V∗

2
(𝑘) ≤ 𝑁

2
+ 𝜀,

0 < 𝑛
2
− 𝜀 ≤ V

2
(𝑘) ≤ 𝑁

2
+ 𝜀.

(D.5)

It is easy to see that exp(𝜃
1
(𝑘)), exp(𝜃

3
(𝑘)), exp(𝜃

5
(𝑘)),

and exp(𝜃
7
(𝑘)) are between 𝑦

∗

1
(𝑘) and 𝑦

1
(𝑘). Meanwhile,

exp(𝜃
2
(𝑘)), exp(𝜃

4
(𝑘)), exp(𝜃

6
(𝑘)), and exp(𝜃

8
(𝑘)) are

between 𝑦
∗

2
(𝑘) and 𝑦

2
(𝑘). It follows from the equation of

(D.2) that
󵄨󵄨󵄨󵄨𝑥1 (𝑘 + 1)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨1 − 𝑏
1
(𝑘) exp (𝜃

1
(𝑘)) − 2𝑑

1
(𝑘) exp (2𝜃

3
(𝑘))

󵄨󵄨󵄨󵄨

⋅
󵄨󵄨󵄨󵄨𝑥1 (𝑘)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑐1 (𝑘) exp (𝜃

2
(𝑘))

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑥2 (𝑘)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑒1 (𝑘)

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑢1 (𝑘)

󵄨󵄨󵄨󵄨

≤ max {󵄨󵄨󵄨󵄨󵄨1 − 𝑏
𝐿

1
(𝑚
1
− 𝜀) − 2𝑑

𝐿

1
(𝑚
1
− 𝜀)
2󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑈

1
(𝑀
1
+ 𝜀) − 2𝑑

𝑈

1
(𝑀
1
+ 𝜀)
2󵄨󵄨󵄨󵄨󵄨
}

×
󵄨󵄨󵄨󵄨𝑥1 (𝑘)

󵄨󵄨󵄨󵄨 + 𝑐
𝑈

1
(𝑀
2
+ 𝜀)

󵄨󵄨󵄨󵄨𝑥2 (𝑘)
󵄨󵄨󵄨󵄨 + 𝑒
𝑈

1

󵄨󵄨󵄨󵄨𝑢1 (𝑘)
󵄨󵄨󵄨󵄨

≤ 𝜌
𝜀

1
max {󵄨󵄨󵄨󵄨𝑥1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢2 (𝑘)

󵄨󵄨󵄨󵄨} .

(D.6)

Analogously,
󵄨󵄨󵄨󵄨𝑥2 (𝑘 + 1)

󵄨󵄨󵄨󵄨 ≤ 𝜌
𝜀

2
max {󵄨󵄨󵄨󵄨𝑥1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢2 (𝑘)

󵄨󵄨󵄨󵄨} ,

󵄨󵄨󵄨󵄨𝑢1 (𝑘 + 1)
󵄨󵄨󵄨󵄨 ≤ 𝜌
𝜀

3
max {󵄨󵄨󵄨󵄨𝑥1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢2 (𝑘)

󵄨󵄨󵄨󵄨} ,

󵄨󵄨󵄨󵄨𝑢2 (𝑘 + 1)
󵄨󵄨󵄨󵄨 ≤ 𝜌
𝜀

4
max {󵄨󵄨󵄨󵄨𝑥1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢2 (𝑘)

󵄨󵄨󵄨󵄨} .

(D.7)

Let 𝜌𝜀 = max{𝜌𝜀
1
, 𝜌
𝜀

2
, 𝜌
𝜀

3
, 𝜌
𝜀

4
}; then 𝜌

𝜀
< 1. Hence, when 𝑘 ≥ 𝑘̂

we have

max {󵄨󵄨󵄨󵄨𝑥1 (𝑘 + 1)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 (𝑘 + 1)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢1 (𝑘 + 1)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢2 (𝑘 + 1)

󵄨󵄨󵄨󵄨}

≤ 𝜌
𝜀max {󵄨󵄨󵄨󵄨𝑥1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢1 (𝑘)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢2 (𝑘)

󵄨󵄨󵄨󵄨}

≤ (𝜌
𝜀
)
𝑘−𝑘̂max {󵄨󵄨󵄨󵄨󵄨𝑥1 (𝑘̂)

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝑥
2
(𝑘̂)

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝑢
1
(𝑘̂)

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝑢
2
(𝑘̂)

󵄨󵄨󵄨󵄨󵄨
} ,

(D.8)

which implies

lim
𝑘→+∞

󵄨󵄨󵄨󵄨𝑦1 (𝑘) − 𝑦
∗

1
(𝑘)

󵄨󵄨󵄨󵄨 = 0, lim
𝑘→+∞

󵄨󵄨󵄨󵄨𝑦2 (𝑘) − 𝑦
∗

2
(𝑘)

󵄨󵄨󵄨󵄨 = 0,

lim
𝑘→+∞

󵄨󵄨󵄨󵄨V1 (𝑘) − V∗
1
(𝑘)

󵄨󵄨󵄨󵄨 = 0, lim
𝑘→+∞

󵄨󵄨󵄨󵄨V2 (𝑘) − V∗
2
(𝑘)

󵄨󵄨󵄨󵄨 = 0.

(D.9)

So the positive periodic solution {𝑦
∗

1
(𝑘), 𝑦
∗

2
(𝑘), V∗
1
(𝑘), V∗
2
(𝑘)}

of system (2) is globally asymptotically stable. The proof of
Theorem 4 is complete.
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