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Let𝑀 be a maximal subgroup of finite group𝐺. For each chief factor𝐻/𝐾 of𝐺 such that𝐾 ≤ 𝑀 and𝐺 = 𝑀𝐻, we called the order
of𝐻/𝐾 the normal index of𝑀 and (𝑀 ∩ 𝐻) /𝐾 a section of𝑀 in 𝐺. Using the concepts of normal index and c-section, we obtain
some new characterizations of p-solvable, 2-supersolvable, and p-nilpotent.

1. Introduction

In this paper, all groups considered are finite. Let 𝜋(𝐺) denote
the set of prime divisors of |𝐺|, and for 𝑝 ∈ 𝜋(𝐺) let Syl𝑝(𝐺)
denote the set of Sylow 𝑝-subgroups of 𝐺. Write𝑀 ⋖ 𝐺 to
indicate that𝑀 is amaximal subgroup of𝐺. For convenience,
we cite the following relative definitions. For a fixed prime
𝑝 ∈ 𝜋(𝐺),

(1) F𝑐(𝐺) = {𝑀 | 𝑀 ⋖ 𝐺 and |𝐺 : 𝑀| is composite},
(2) F𝑝(𝐺) = {𝑀 | 𝑀 ⋖ 𝐺 and |𝐺 : 𝑀|𝑝 = 1},
(3) F𝑝𝑐(𝐺) = F𝑝(𝐺) ∩F𝑐(𝐺)},

(4) F𝑝(𝐺) = {𝑀 | 𝑀 ⋖ 𝐺 and 𝑁𝐺(𝑃) ≤ 𝑀}, where
𝑃 ∈ Syl𝑝(𝐺),

(5) F𝑝𝑐(𝐺) = F𝑝(𝐺) ∩F𝑐(𝐺).

The remaining notation and terminology in this paper are
standard, as in Huppert [1].

In 1959, Deskins [2] introduced the concept of normal
index. For a maximal subgroup 𝑀 of a group 𝐺, the order
of a chief factor 𝐻/𝐾 of 𝐺, where 𝐻 is minimal in the set
of normal supplements of 𝑀 in 𝐺, is known as the normal
index of 𝑀 of 𝐺, denoted by 𝜂(𝐺 : 𝑀). If 𝐻/𝐾 is such
a chief factor, then 𝐺 = 𝑀𝐻, 𝐾 ≤ 𝑀, and |𝐺 : 𝑀| =
|𝐻/𝐾 : (𝐻/𝐾) ∩ (𝑀/𝐾)|, so |𝐻/𝐾| = |(𝐻 ∩ 𝑀)/𝐾‖𝐺 : 𝑀|.

The intersection (𝑀 ∩ 𝐻)/𝐾 is called a 𝑐-section of 𝑀. Li
and Wang in [3] proved that every maximal subgroup 𝑀
of 𝐺 has a unique 𝑐-section up to isomorphism. Let Sec(𝑀)
denote a group which is isomorphic to a 𝑐-section of𝑀.Then
𝜂(𝐺 : 𝑀) = |Sec(𝑀)| ⋅ |𝐺 : 𝑀|. Deskins [2] showed that 𝐺 is
solvable if and only if 𝜂(𝐺 : 𝑀) = |𝐺 : 𝑀| for every maximal
subgroup 𝑀 of 𝐺. The investigations on the normal index
have been developed by many scholars; see [3–7]. But the
earlier results concern the cases where 𝑝 is either the largest
prime dividing |𝐺| or an odd prime. In 2010, Zhang and Li
analyzed the case when 𝑝 = 2 and obtained some interesting
results. In particular we note the following theorems.

Theorem 1 (see [8,Theorem 3.1]). A group𝐺 is solvable if and
only if 𝜂(𝐺 : 𝑀)2 = 1 for every𝑀 ∈ F2(𝐺).

Theorem2 (see [8,Theorem 3.4]). A group𝐺 is solvable if and
only if Sec (𝑀) is either a 2󸀠-group or an abelian 2-group for
every𝑀 ∈ F2(𝐺).

We observe that Theorems 1 and 2 still hold by replacing
2 with another prime 𝑝. For example, let 𝐺 = 𝑆4 and let𝑀 ∈
F3(𝐺). Since the order of𝑀 is 6 or 12, 𝜂(𝐺 : 𝑀)3 = 1. So 𝐺
satisfies the hypotheses of Theorem 1. But 𝐺 is 3-solvable. It
is natural to ask that the theorems above hold or not for any
prime𝑝. In part 3, we give positive answer and relative results.
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2. Preliminary Results

Lemma 3 (see [8, Lemma 2.2]). Let𝐺 be a group,𝑁 a normal
subgroup of 𝐺, and 𝑝 ∈ 𝜋(𝐺). Let𝑀 be a maximal subgroup
of 𝐺 and𝑁 ≤ 𝑀.

(1) We have 𝜂(𝐺/𝑁 : 𝑀/𝑁) = 𝜂(𝐺 : 𝑀) and
Sec (𝑀/𝑁) ≅ Sec (𝑀).

(2) If𝑀/𝑁 ∈ F𝑝(𝐺/𝑁), then𝑀 ∈ F𝑝(𝐺).

(3) If𝑀/𝑁 ∈ F𝑝(𝐺/𝑁), then𝑀 ∈ F𝑝(𝐺).

(4) If 𝑝 = max𝜋(𝐺), thenF𝑝(𝐺) = F𝑝𝑐(𝐺).

Lemma 4 (see [6, Theorem 7]). 𝐺 is 𝑝-supersolvable if and
only if, for each maximal subgroup𝑀 of 𝐺, 𝜂(𝐺 : 𝑀)𝑝 = |𝐺 :
𝑀|𝑝 = 1 or 𝑝.

3. Main Results

Theorem 5. 𝐺 is 𝑝-solvable if and only if 𝜂(𝐺 : 𝑀)𝑝 = 1 for
every𝑀 ∈ F𝑝(𝐺).

Proof. ⇒: Suppose that 𝐺 is 𝑝-solvable and let 𝑁 be a
minimal normal subgroup. If a maximal subgroup 𝑀 ∈
F𝑝(𝐺) containing 𝑁, then, by induction, it follows that
𝜂(𝐺/𝑁 : 𝑀/𝑁)𝑝 = 𝜂(𝐺 : 𝑀)𝑝 = 1. If 𝑁 ̸⊆ 𝑀, then we
must have |𝑁|𝑝 = 1, since𝑁 is a 𝑝󸀠-group.
⇐: Conversely, let 𝜂(𝐺 : 𝑀)𝑝 = 1 hold for each maximal

subgroup 𝑀 ∈ F2(𝐺). Only we need to consider that 𝐺 is
not simple. Otherwise, |𝐺|𝑝 = 𝜂(𝐺 : 𝑀)𝑝 = 1. Certainly, 𝐺 is
𝑝-solvable.

Now let𝑁 be a minimal normal subgroup of 𝐺. Observe
the quotient group 𝐺/𝑁. For every maximal subgroup
𝑀/𝑁 ∈ F𝑝(𝐺/𝑁), it is easy to see𝑀 ∈ F𝑝(𝐺). By Lemma 3
and hypothesis, 𝜂(𝐺/𝑁 : 𝑀/𝑁)𝑝 = 𝜂(𝐺 : 𝑀)𝑝 = 1.
Hence𝐺/𝑁 is𝑝-solvable by induction. Since the class of all𝑝-
solvable groups is a saturated formation, wemay suppose that
𝑁 is the unique minimal normal subgroup of 𝐺. If |𝑁|𝑝 = 1,
then 𝑁 is a 𝑝󸀠-group. Moreover, 𝐺/𝑁 is 𝑝-solvable, and so
is 𝐺. Now consider |𝑁|𝑝 ̸= 1. Let 𝑃 be a Sylow 𝑝-subgroup
of 𝐺 and 𝐾 = 𝑃 ∩ 𝑁. Then 𝐾 is a Sylow 𝑝-subgroup of
𝑁. Clearly, 𝑁𝐺(𝑃) ≤ 𝑁𝐺(𝐾) < 𝐺. So 𝑁𝐺(𝐾) is contained
in some maximal subgroup 𝑇 of 𝐺. Hence 𝑇 ∈ F𝑝(𝐺). By
Frattini argument, 𝐺 = 𝑁𝑁𝐺(𝐾) = 𝑁𝑇. It follows that
|𝑁|𝑝 = 𝜂(𝐺 : 𝑇)𝑝 = 1, a contradiction, and we are done.

Corollary 6. 𝐺 is solvable if and only if, for every𝑀 ∈ F𝑝(𝐺),
𝜂(𝐺 : 𝑀) = 1, where 𝑝 is an arbitrary divisor of |𝐺|.

It was announced by Zhang and Li in [8, Theorem 5] that
a group 𝐺 is solvable if and only if Sec(𝑀) is a 2󸀠-group or an
abelian 2-group for𝑀 ∈ F2(𝐺). We extend this theorem by
proving the following.

Theorem 7. 𝐺 is 𝑝-solvable if and only if, for any𝑀 ∈ F𝑝(𝐺),
Sec (𝑀) is an abelian 𝑝-group or a 𝑝󸀠-group, where 𝑝 is a
prime divisor of |𝐺|.

Proof. ⇒: Suppose that 𝐺 is 𝑝-solvable and let 𝑁 be a
minimal normal subgroup. If a maximal subgroup 𝑀 ∈
F𝑝(𝐺) containing 𝑁, then, by induction, it follows that
Sec(𝑀/𝑁) ≅ Sec(𝑀) is an abelian 𝑝-group or a 𝑝󸀠-group in
view of Lemma 3. If 𝑁 ̸⊆ 𝑀, then 𝐺 = 𝑀𝑁. If |𝑁|𝑝 = 1,
then 𝜂(𝐺 : 𝑀)𝑝 = |𝑁|𝑝 = 1, and so Sec(𝑀) is a 𝑝󸀠-
group. Now consider |𝑁|𝑝 = 1. By the 𝑝-solvability of 𝐺, it
implies that 𝑁 is an elementary abelian 𝑝-group. It follows
that Sec (𝑀) ≅ 𝑀 ∩𝑁 is an abelian 𝑝-group.
⇐: Conversely, suppose Sec(𝑀) is an abelian 𝑝-group or

a 𝑝󸀠-group. Let 𝑁 be a minimal normal subgroup of 𝐺. By
Lemma 3, 𝐺/𝑁 satisfies the hypotheses of the theorem.Then
by induction, 𝐺/𝑁 is 𝑝-solvability. If |𝑁|𝑝 = 1, then 𝐺 is 𝑝-
solvable. Now assume that |𝑁|𝑝 ̸= 1, then𝐺 is 𝑝-solvable. Let
𝑃 be a Sylow 𝑝-solvable of 𝐺 and 𝐾 = 𝑃 ∩ 𝑁. Then, 𝐾 is a
Sylow 𝑝-subgroup of 𝑁. Obviously, 𝑁𝐺(𝑃) ≤ 𝑁𝐺(𝐾) < 𝐺.
So 𝑁𝐺(𝐾) is contained in some maximal subgroup 𝑇 of 𝐺,
and consequently, 𝑇 ∈ F𝑝(𝐺). By Frattini argument, 𝐺 =
𝑁𝑁𝐺(𝐾) = 𝑁𝑇. Then the minimal normality of 𝑁 shows
Sec(𝑀) ≅ 𝑀∩𝑁. On the other hand,𝐾 ≤ 𝑁𝑁(𝐾) ≤ 𝑀∩𝑁.
Combining the hypothesis, Sec(𝑀) is an abelian𝑝-group, and
so is𝑀 ∩ 𝑁. It follows that 𝑁𝑁(𝐾) = 𝐶𝑁(𝐾). By Burnside
Theorem, 𝑁 is 𝑝-nilpotent, which contradicts the minimal
normality of𝑁. Therefore, the conclusion holds.

In view of Theorem 7 it is natural to ask if a group 𝐺
is 𝑝-solvable when |Sec(𝑀)|𝑝 = 𝑝

𝛼 or 1, for 𝑀 ∈ F𝑝(𝐺),
where 𝑝 is a prime divisor of |𝐺|. The answer of the question
is negative. For example, set 𝐺 = 𝑃𝑆𝐿(2, 7) and 𝑝 = 3; every
maximal subgroup 𝑀 satisfies that |Sec(𝑀)|3 = 3, but 𝐺 is
not 3-solvable. For 𝑝-solvable, the condition that Sec(𝑀) is
an abelian 𝑝-group is crucial.

It is proved in [6, Theorem 7] that a group 𝐺 is 𝑝-
supersolvable if and only if, for each maximal subgroup 𝑀
of 𝐺, 𝜂(𝐺 : 𝑀)𝑝 = |𝐺 : 𝑀|𝑝 = 1 or 𝑝. It is natural to ask if
a group 𝐺 is 𝑝-supersolvable when 𝜂(𝐺 : 𝑀)𝑝 = 1 or 𝑝 for
any maximal subgroup𝑀 of 𝐺. The answer of the question
is negative. For example, set 𝐺 = 𝑃𝑆𝐿(2, 7) and 𝑝 = 3; every
maximal subgroup𝑀 satisfies that 𝜂(𝐺 : 𝑀)3 = 3, but 𝐺 is
not 3-supersolvable. But assuming that 𝑝 = 2, the result holds
or not. For the question, we give the positive answer. Next, we
prove the result.

Theorem 8. 𝐺 is 2-supersolvable if and only if, for any
maximal subgroup𝑀 of 𝐺, 𝜂(𝐺 : 𝑀)2 = 1 or 2.

Proof. ⇒: Suppose that 𝐺 is 2-supersolvable. Certainly, 𝐺 is
solvable. By Lemma 4, the necessity holds.
⇐: Conversely, assume the result is not true and let 𝐺 be

a counterexample of minimal order. Now, we assert 𝐺 is not
simple. If not, then 𝜂(𝐺 : 𝑀)2 = |𝐺|2 = 1 or 2. For |𝐺|2 = 1,
it is clear that 𝐺 is 2-supersolvable, a contradiction. Assume
that |𝐺|2 = 2. Then 𝐺 is a cyclic group of order 2, and so 𝐺
is 2-supersolvable, a contradiction. This contradiction shows
𝐺 is not simple. Let 𝑁 be the minimal normal subgroup of
𝐺. By Lemma 3,𝐺/𝑁 satisfies the hypotheses of the theorem.
Theminimal choice of𝐺 implies that𝐺/𝑁 is 2-supersolvable.
If 𝑁 is contained in each maximal subgroup 𝑀 of 𝐺, then
𝑁 ⊆ Φ(𝐺), and consequently,𝐺/Φ(𝐺) is 2-supersolvable, and
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so is 𝐺, a contradiction. Hence there is a maximal subgroup
𝑀 of 𝐺, such that 𝐺 = 𝑀𝑁. Suppose that |𝑁|2 = 1. It
follows that𝐺 is 2-supersolvable, a contradiction. So |𝑁|2 ̸= 1.
By hypothesis, 𝜂(𝐺 : 𝑀)2 = |𝑁|2 = 2. Moreover, 𝑁 is
solvable. Therefore, |𝑁| = 2, and so 𝐺 is 2-supersolvable,
which contradicts the assumption. Now the proof of theorem
is completed.

Theorem 9. Suppose 𝐺 is a group and 𝑝 is the smallest prime
divisor of |𝐺|. Then 𝐺 is 𝑝-nilpotent if and only if the following
conditions are satisfied:

(1) 𝜂(𝐺 : 𝑀)𝑝 = 1 or 𝑝 for every maximal subgroup𝑀 of
𝐺;

(2) if 𝜂(𝐺 : 𝑀)𝑝 = 𝑝 for some maximal subgroup𝑀, then
𝑀 ⊴ 𝐺.

Proof. ⇒: Assume that 𝐺 is 𝑝-nilpotent. Then 𝐺 is 𝑝-
supersolvable and (1) holds by Lemma 4. Now let 𝑀 be a
maximal subgroup of 𝐺 with 𝜂(𝐺 : 𝑀)𝑝 = 𝑝 and 𝐺 = 𝑃𝑇,
where 𝑃 is a Sylow 𝑝-subgroup and 𝑇 is a normal Hall 𝑝󸀠-
subgroup of 𝐺. Suppose 𝑇 ̸⊆ 𝑀 and let 1 ⊴ ⋅ ⋅ ⋅ ⊴ 𝑇2 ⊴ 𝑇1 ⊴
⋅ ⋅ ⋅ ⊴ 𝑇 ⊴ 𝐺 be a chief group series, where 𝑇1 ≰ 𝑀 and
𝑇2 ≤ 𝑀. Then 𝜂(𝐺 : 𝑀)𝑝 = |𝑇1/𝑇2|𝑝 = 1, a contradiction.
Hence 𝑇 ⊆ 𝑀. Since 𝜂(𝐺 : 𝑀)𝑝 = 𝑝, |𝐺 : 𝑀|𝑝 = 1 or
𝑝. If |𝐺 : 𝑀|𝑝 = 1, then some Sylow 𝑝-subgroup of 𝐺, say
𝑃1, is contained in 𝑀, and it follows that 𝐺 = 𝑃1𝑇 ⊆ 𝑀, a
contradiction.Therefore, |𝐺 : 𝑀|𝑝 = 𝑝. Since𝑀 = 𝑇(𝑀∩𝑃),
|𝑃|/|𝑀∩𝑃| = |𝐺 : 𝑀|𝑝 = 𝑝, which leads to𝑃∩𝑀 ⊴ 𝑃. Hence
𝑀 ⊴ 𝑃𝑀 = 𝐺.
⇐: Now suppose (1) and (2) hold. If, for each maximal

subgroup 𝑀 of 𝐺, 𝜂(𝐺 : 𝑀)𝑝 = 1, then by Theorem 8, 𝐺
is 𝑝-solvable. Combining condition (2), we have that 𝐺 is
not simple. Let 𝑁 be a minimal normal subgroup of 𝐺. By
Lemma 3, 𝐺/𝑁 satisfies the hypotheses. By induction, 𝐺/𝑁
is 𝑝-nilpotent. Since the class of all 𝑝-nilpotent groups is a
saturated formation, wemay regard𝑁 as the uniqueminimal
normal subgroup of 𝐺 and Φ(𝐺) = 1. So there exists a
maximal subgroup 𝑀 of 𝐺 such that 𝐺 = 𝑁𝑀 and 𝜂(𝐺 :
𝑀)𝑝 = |𝑁|𝑝 = 1 or 𝑝.

Suppose |𝑁|𝑝 = 1. Then 𝑁 is a 𝑝󸀠-group. Since 𝐺/𝑁 is
𝑝-nilpotent, 𝐺 is 𝑝-nilpotent.

Assume |𝑁|𝑝 = 𝑝. Since 𝑝 is the smallest prime divisor
of |𝐺|, 𝑁 is 𝑝-nilpotent, and so |𝑁| = 𝑝. It now follows that
𝑀∩𝑁 = 1 and𝑀 ≅ 𝐺/𝑁 is 𝑝-nilpotent. Note𝑀 = 𝑀𝑝𝑀𝑝󸀠 ,
where 𝑀𝑝 is a Sylow 𝑝-subgroup and 𝑀𝑝󸀠 is a normal Hall
𝑝
󸀠-subgroup of 𝑀. Then by (2), 𝑀𝑝󸀠 char 𝑀 ⊴ 𝐺, and so
𝑀𝑝󸀠 ⊴ 𝐺. Consequently, 𝐺 = 𝑀𝑁 = (𝑀𝑝𝑁)𝑀𝑝󸀠 and𝑀𝑝󸀠 is
a normal Hall 𝑝󸀠-subgroup of 𝐺.

The proof of the theorem has been done.
Obviously, in Theorem 9, removing the condition “𝑝 is

the smallest prime divisor of |𝐺|”, and the result does not hold.

Theorem 10. 𝐺 has a 𝑝-nilpotent maximal subgroup𝑀 with
prime power normal index; then 𝐺 is 𝑝-solvable.

Proof. Assume that the theorem is false and let 𝐺 be a
minimal counterexample. Let 𝑀 be a 𝑝-solvable maximal

subgroup of 𝐺 with 𝜂(𝐺 : 𝑀) = 𝑞𝛼, where 𝑞 is a prime. Now
we assert that 𝐺 is not simple. Otherwise, 𝜂(𝐺 : 𝑀) = |𝐺| =
𝑞
𝛼, a contradiction. Let𝑁 be a minimal normal subgroup of
𝐺. Next, we consider the following two cases.

Case 1 (𝑁 ⊆ 𝑀). Then by Lemma 3, 𝜂(𝐺/𝑁 : 𝑀/𝑁) = 𝜂(𝐺 :
𝑀) = 𝑞

𝛼. Since𝑀 is 𝑝-solvable,𝑀/𝑁 and𝑁 are 𝑝-solvable.
By the minimal choice of𝐺, it implies that𝐺/𝑁 is 𝑝-solvable,
so is 𝐺, a contradiction.

Case 2 (𝑁 ̸⊆ 𝑀). Then 𝐺 = 𝑀𝑁 and 𝐺/𝑁 ≅ 𝑀/(𝑀 ∩ 𝑁) is
𝑝-solvable. On the other hand, 𝜂(𝐺 : 𝑀) = |𝑁| is a 𝑞-group.
Thus𝐺 is 𝑝-solvable, a final contradiction.This contradiction
completes the proof of the theorem.

Theorem 11. If 𝐺 has a 𝑝-supersolvable maximal subgroup𝑀
such that 𝜂(𝐺 : 𝑀) is a prime and 𝑀𝐺 = 1, then 𝐺 is 𝑝-
supersolvable.

Proof. Assume the result is not true and let 𝐺 be a coun-
terexample of minimal order. ByTheorem 10,𝐺 is 𝑝-solvable.
Let 𝑁 be an arbitrary minimal normal subgroup of 𝐺. Then
𝑁 is an abelian 𝑝-group or a 𝑝󸀠-group. Moreover, since
𝑀𝐺 = 1, 𝐺 = 𝑀𝑁. Suppose every minimal normal subgroup
𝑁 of 𝐺 is a 𝑝󸀠-group. But 𝐺/𝑁 = 𝑀𝑁/𝑁 ≅ 𝑀/𝑀 ∩
𝑁 is 𝑝-supersolvable; it follows that 𝐺 is 𝑝-supersolvable,
a contradiction. This contradiction shows that there exists
some minimal normal subgroup 𝐾 of 𝐺 which is an abelian
𝑝-group. Then 𝐺 = 𝑀𝐾 and𝑀∩𝐾 = 1. From this it follows
that 𝜂(𝐺 : 𝑀) = |𝐾| is a prime. Since 𝐺/𝐾 ≅ 𝑀 is 𝑝-
supersolvable, 𝐺 is 𝑝-supersolvable, a contradiction. Hence
the result holds.
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