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Let (H𝑛, 𝑔) be the hyperbolic space of dimension 𝑛. By our previous work (Theorem 2.3 of (Yang (2012))), for any 0 < 𝛼 < 𝛼
𝑛
, there

exists a constant 𝜏 > 0 depending only on 𝑛 and 𝛼 such that sup
𝑢∈𝑊
1,𝑛
(H𝑛),‖𝑢‖1,𝜏≤1

∫
H𝑛
(𝑒𝛼|𝑢|

𝑛/(𝑛−1)

−∑
𝑛−2

𝑘=0
𝛼𝑘|𝑢|

𝑛𝑘/(𝑛−1)

/𝑘!)𝑑V
𝑔
< ∞,where

𝛼
𝑛
= 𝑛𝜔

1/(𝑛−1)

𝑛−1
, 𝜔
𝑛−1

is the measure of the unit sphere in R𝑛, and ‖𝑢‖
1,𝜏
= ‖∇

𝑔
𝑢‖
𝐿
𝑛
(H𝑛)

+ 𝜏‖𝑢‖
𝐿
𝑛
(H𝑛). In this note we shall improve the

above mentioned inequality. Particularly, we show that, for any 0 < 𝛼 < 𝛼
𝑛
and any 𝜏 > 0, the above mentioned inequality holds

with the definition of ‖𝑢‖
1,𝜏

replaced by (∫
H𝑛
(|∇
𝑔
𝑢|𝑛 + 𝜏|𝑢|𝑛)𝑑V

𝑔
)
1/𝑛. We solve this problem by gluing local uniform estimates.

1. Introduction

Let Ω be a bounded smooth domain in R𝑛. The classical
Trudinger-Moser inequality [1–3] says

sup
𝑢∈𝑊
1,𝑛

0
(Ω),‖𝑢‖

𝑊
1,𝑛

0
(Ω)
≤1

∫
Ω

𝑒
𝛼
𝑛
|𝑢|
𝑛/(𝑛−1)

𝑑𝑥 ≤ 𝐶 |Ω| (1)

for some constant 𝐶 depending only on 𝑛, where 𝑊1,𝑛
0
(Ω)

is the usual Sobolev space and |Ω| denotes the Lebesgue
measure of Ω. In the case where Ω is an unbounded domain
of R𝑛, the above integral is infinite, but it was shown by Cao
[4], Panda [5], and do Ó [6] that for any 𝜏 > 0 and any 𝛼 < 𝛼

𝑛

there holds

sup
𝑢∈𝑊
1,𝑛
(R𝑛), ∫

R𝑛(|∇𝑢|
𝑛
+𝜏|𝑢|
𝑛)𝑑𝑥≤1

∫
R𝑛
(𝑒
𝛼|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
)𝑑𝑥<∞.

(2)

Later Ruf [7], Li and Ruf [8], and Adimurthi and Yang [9]
obtained (2) in the critical case 𝛼 = 𝛼

𝑛
.

The study of Trudinger-Moser inequalities on compact
Riemannian manifolds can be traced back to Aubin [10],

Cherrier [11, 12], and Fontana [13]. A particular case is as fol-
lows. Let (𝑀, 𝑔) be an 𝑛-dimensional compact Riemannian
manifold without boundary. Then there holds

sup
∫
𝑀
|∇𝑔𝑢|

𝑛

𝑑V
𝑔
≤1,∫
𝑀
𝑢 𝑑V
𝑔
=0

∫
𝑀

𝑒
𝛼
𝑛
|𝑢|
𝑛/(𝑛−1)

𝑑V
𝑔
< ∞. (3)

In view of (2), it is natural to consider extension of
(3) on complete noncompact Riemannian manifolds. In [14]
we obtained the following results. Let (𝑀, 𝑔) be a complete
noncompact Riemannian manifold. If the Trudinger-Moser
inequality holds on it, then there holds inf

𝑥∈𝑀
vol
𝑔
(𝐵
1
(𝑥)) >

0. If the Ricci curvature has lower bound, say Ric
𝑔
(𝑀) ≥ −𝐾,

the injectivity radius has a positive lower bound 𝑖
0
then for

any 𝛼 < 𝛼
𝑛
there exists a constant 𝜏 > 0 depending only on

𝛼, 𝑛,𝐾, and 𝑖
0
such that

sup
(∫
𝑀
|∇𝑢|
𝑛
𝑑V
𝑔)
1/𝑛

+𝜏(∫
𝑀
|𝑢|
𝑛
𝑑V
𝑔)
1/𝑛

≤1

∫
𝑀

(𝑒
𝛼|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V
𝑔
<∞.

(4)

Since 𝜏 depends on 𝛼, (4) is weaker than (2) when (𝑀, 𝑔)

is replaced by R𝑛. Moreover, the condition that Ric
𝑔
(𝑀) has
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lower bound is not necessary for the validity of the Trudinger-
Moser inequality.

In this note, we will continue to study (4) in whole H𝑛

by gluing local uniform estimates. Particularly, we have the
following.

Theorem 1. Let (H𝑛, 𝑔) be an 𝑛-dimensional hyperbolic space,
𝛼
𝑛
= 𝑛𝜔

1/(𝑛−1)

𝑛−1
, where 𝜔

𝑛−1
is the measure of the unit sphere in

R𝑛. Then for any 𝛼 < 𝛼
𝑛
, any 𝜏 > 0, and any 𝑢 ∈ 𝑊1,𝑛(H𝑛)

satisfying∫
H𝑛
(|∇
𝑔
𝑢|𝑛+𝜏|𝑢|𝑛)𝑑V

𝑔
≤ 1, there exists some constant

𝛽 depending only on 𝑛 and 𝜏 such that

∫
H𝑛
(𝑒
𝛼|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔
≤ 𝛽. (5)

The proof of Theorem 1 is based on local uniform
estimates (Lemma 2 below). This idea comes from [14] and
can also be used in other cases [15, 16].

We remark that critical case of (5) was studied by
Adimurthi and Tintarev [17], Mancini and Sandeep [18], and
Mancini et al. ([19]) via different methods.

The remaining part of this note is organized as follows. In
Section 2 we derive local uniform Trudinger-Moser inequal-
ities; in Section 3, Theorem 1 is proved.

2. Local Estimates

To get (5), we need the following uniform local estimates
which is an analogy of ([15], Lemma 4.1) or ([16], Lemma 1),
and it is of its own interest.

Lemma 2. For any 𝑝 ∈ H𝑛, any 𝑅 > 0, and any 𝑢 ∈

𝑊1,𝑛
0
(𝐵
𝑅
(𝑝)) with ∫

𝐵
𝑅
(𝑝)

|∇
𝑔
𝑢|𝑛𝑑V

𝑔
≤ 1, there exists some

constant 𝐶
𝑛
depending only on 𝑛 such that

∫
𝐵
𝑅
(𝑝)

(𝑒
𝛼
𝑛
|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝑛
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
) 𝑑V

𝑔

≤ 𝐶
𝑛
(sinh𝑅)𝑛 ∫

𝐵
𝑅
(𝑝)


∇
𝑔
𝑢


𝑛

𝑑V
𝑔
,

(6)

where 𝐵
𝑅
(𝑝) denotes the geodesic ball of (H𝑛, 𝑔) which is

centered at 𝑝 with radius 𝑅.

Proof. It is well known (see, e.g., [20], II.5, Theorem 1) that
there exists a homomorphism 𝜑 : H𝑛 → 𝐷 = {𝑥 ∈ R𝑛 :

|𝑥| < 1} such that 𝜑(𝑝) = 0, that in these coordinates the
Riemannian metric 𝑔 can be represented by

𝑔 (𝑥) =
4

(1 − |𝑥|
2

)
2
𝑔
0
(𝑥) , (7)

where 𝑔
0
(𝑥) = ∑

𝑛

𝑖=1
(𝑑𝑥𝑖)

2 is the standard Euclidean metric
on R𝑛, and that

𝜑 (𝐵
𝑅
(𝑝)) = Btanh𝑅/2 (0) , (8)

where B
𝑟
(0) ⊂ R𝑛 denotes a ball centered at 0 with radius

𝑟. Moreover, the corresponding polar coordinates (𝑟, 𝜃) ∈

[0,∞) × S𝑛−1 read

𝑔 = 𝑑𝑟
2

+ (sinh 𝑟)2𝑑𝜃2, (9)

where 𝑑𝜃2 is the standard metric on S𝑛−1.
Denote 𝑓 = 2/(1 − |𝑥|2); then 𝑔 = 𝑓2𝑔

0
, |∇
𝑔
𝑢| =

𝑓−1|∇
𝑔
0

(𝑢 ∘ 𝜑−1)|, and 𝑑V
𝑔
= 𝑓𝑛𝑑V

𝑔
0

. Calculating directly, we
have

∫
𝐵
𝑅
(0)


∇
𝑔
𝑢


𝑛

𝑑V
𝑔
= ∫

Btanh𝑅/2(0)


∇
𝑔
0

(𝑢 ∘ 𝜑
−1

)


𝑛

𝑑V
𝑔
0

. (10)

Since 𝑢 ∈ 𝑊1,𝑛
0
(𝐵
𝑅
(𝑝)), we have 𝑢 ∘ 𝜑−1 ∈ 𝑊1,𝑛

0
(Btanh𝑅/2(0)).

Noting that ∫
𝐵
𝑅
(𝑝)

|∇
𝑔
𝑢|𝑛𝑑V

𝑔
≤ 1, we have by (10)

∫
Btanh𝑅/2(0)


∇
𝑔
0

(𝑢 ∘ 𝜑
−1

)


𝑛

𝑑V
𝑔
0

≤ 1. (11)

The standard Trudinger-Moser inequality (1) implies

∫
Btanh𝑅/2(0)

(𝑒
𝛼
𝑛
|𝑢∘𝜑
−1
|

𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝑛


𝑢 ∘ 𝜑−1



𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔
0

= ∫
Btanh𝑅/2(0)

∞

∑
𝑘=𝑛−1

𝛼𝑘
𝑛


𝑢 ∘ 𝜑−1



𝑛𝑘/(𝑛−1)

𝑘!
𝑑V
𝑔
0

≤∫
Btanh𝑅/2(0)

∞

∑
𝑘=𝑛−1

𝛼𝑘
𝑛


(𝑢 ∘ 𝜑−1) /


∇
𝑔
0

(𝑢 ∘ 𝜑−1)
𝐿𝑛


𝑛𝑘/(𝑛−1)

𝑘!
𝑑V
𝑔
0

× ∫
Btanh𝑅/2(0)


∇
𝑔
0

(𝑢 ∘ 𝜑
−1

)


𝑛

𝑑V
𝑔
0

≤ 𝐶
𝑛
(tanh 𝑅

2
)
𝑛

∫
Btanh𝑅/2(0)


∇
𝑔
0

(𝑢 ∘ 𝜑
−1

)


𝑛

𝑑V
𝑔
0

,

(12)

where 𝐶
𝑛
is a constant depending only on 𝑛. This together

with (10) immediately leads to

∫
𝐵
𝑅
(𝑝)

(𝑒
𝛼
𝑛
|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝑛
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔

= ∫
Btanh𝑅/2(0)

(𝑒
𝛼
𝑛
|𝑢∘𝜑
−1
|

𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝑛


𝑢 ∘ 𝜑−1



𝑛𝑘/(𝑛−1)

𝑘!
)𝑓
𝑛

𝑑V
𝑔
0

≤ 𝐶
𝑛
(

2 tanh𝑅/2
1 − (tanh𝑅/2)2

)

𝑛

∫
Btanh𝑅/2(0)


∇
𝑔
0

(𝑢 ∘ 𝜑
−1

)


𝑛

𝑑V
𝑔
0

= 𝐶
𝑛
(sinh𝑅)𝑛 ∫

𝐵
𝑅
(𝑝)


∇
𝑔
𝑢


𝑛

𝑑V
𝑔
.

(13)

This is exactly (6) and thus ends the proof of the lemma.
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As a corollary of Lemma 2, the following estimates can be
compared with (1).

Corollary 3. For any 𝑝 ∈ H𝑛, any 𝑅 > 0, and any 𝑢 ∈

𝑊1,𝑛
0
(𝐵
𝑅
(𝑝)) with ∫

𝐵
𝑅
(𝑝)

|∇
𝑔
𝑢|𝑛𝑑V

𝑔
≤ 1, there exists some

constant 𝐶 depending only on 𝑛 such that

1

Vol
𝑔
(𝐵
𝑅
(𝑝))

∫
𝐵
𝑅
(𝑝)

𝑒
𝛼
𝑛
|𝑢|
𝑛/(𝑛−1)

𝑑V
𝑔
≤ 𝐶

sinh𝑅
𝑅

. (14)

Proof. Since

lim
𝑅→0+

Vol
𝑔
(𝐵
𝑅
(𝑝))

𝑅(sinh𝑅)𝑛−1
= lim
𝑅→∞

Vol
𝑔
(𝐵
𝑅
(𝑝))

𝑅(sinh𝑅)𝑛−1
= 1, (15)

it follows from (13) that there exists some constant𝐶 depend-
ing only on 𝑛 such that

1

Vol
𝑔
(𝐵
𝑅
(𝑝))

∫
𝐵
𝑅
(𝑝)

(𝑒
𝛼
𝑛
|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝑛
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔

≤ 𝐶
sinh𝑅
𝑅

.

(16)

In particular,

∫
𝐵
𝑅
(𝑝)

|𝑢|
𝑛

𝑑V
𝑔
≤ 𝐶

sinh𝑅
𝑅

Vol
𝑔
(𝐵
𝑅
(𝑝)) . (17)

Here and in the sequel we often denote various constants by
the same 𝐶; the reader can easily distinguish them from the
context. Noting that for any 𝑞, 0 ≤ 𝑞 ≤ 𝑛,

∫
𝐵
𝑅
(𝑝)

|𝑢|
𝑞

𝑑V
𝑔
≤ Vol

𝑔
(𝐵
𝑅
(𝑝)) + ∫

𝐵
𝑅
(𝑝)

|𝑢|
𝑛

𝑑V
𝑔
, (18)

we conclude

∫
𝐵
𝑅
(𝑝)

𝑛−2

∑
𝑘=0

𝛼𝑘
𝑛
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
𝑑V
𝑔
≤ 𝐶

sinh𝑅
𝑅

Vol
𝑔
(𝐵
𝑅
(𝑝)) . (19)

Combining (16) and (19), we obtain (14).

3. Proof of Theorem 1

In this section, we will prove Theorem 1 by gluing local
estimates (6).

Proof of Theorem 1. Let 𝑅 be a positive real number which
will be determined later. By ([21], Lemma 1.6) we can find a
sequence of points {𝑥

𝑖
}
∞

𝑖=1
⊂ H𝑛 such that ∪∞

𝑖=1
𝐵
𝑅/2
(𝑥
𝑖
) = H𝑛,

that 𝐵
𝑅/4
(𝑥
𝑖
) ∩ 𝐵

𝑅/4
(𝑥
𝑗
) = ⌀ for any 𝑖 ̸= 𝑗, and that for any

𝑥 ∈ H𝑛, 𝑥 belongs to atmost𝑁 balls𝐵
𝑅
(𝑥
𝑖
), where𝑁 depends

only on 𝑛. Let 𝜙
𝑖
be the cut-off function satisfies the following

conditions: (i) 𝜙
𝑖
∈ 𝐶∞
0
(𝐵
𝑅
(𝑥
𝑖
)); (ii) 0 ≤ 𝜙

𝑖
≤ 1 on 𝐵

𝑅
(𝑥
𝑖
) and

𝜙
𝑖
≡ 1 on 𝐵

𝑅/2
(𝑥
𝑖
); (iii) |∇

𝑔
𝜙
𝑖
(𝑥)| ≤ 4/𝑅. Let 𝜏 > 0 be fixed.

For any 𝑢 ∈ 𝑊1,𝑛(H𝑛) satisfying

∫
H𝑛
(

∇
𝑔
𝑢


𝑛

+ 𝜏|𝑢|
𝑛

) 𝑑V
𝑔
≤ 1, (20)

we have 𝜙
𝑖
𝑢 ∈ 𝑊1,𝑛

0
(𝐵
𝑅
(𝑥
𝑖
)). For any 𝜖 > 0, using an

elementary inequality 𝑎𝑏 ≤ 𝜖𝑎2 + (1/(4𝜖))𝑏2, we find some
constant 𝐶 depending only on 𝑛 and 𝜖 such that

∫
𝐵
𝑅
(𝑥
𝑖
)


∇
𝑔
(𝜙
𝑖
𝑢)


𝑛

𝑑V
𝑔

≤ (1 + 𝜖) ∫
𝐵
𝑅
(𝑥
𝑖
)

𝜙
𝑛

𝑖


∇
𝑔
𝑢


𝑛

𝑑V
𝑔
+ 𝐶∫

𝐵
𝑅
(𝑥
𝑖
)


∇
𝑔
𝜙
𝑖



𝑛

|𝑢|
𝑛

𝑑V
𝑔

≤ (1 + 𝜖) ∫
𝐵
𝑅
(𝑥
𝑖
)


∇
𝑔
𝑢


𝑛

𝑑V
𝑔
+
4𝑛𝐶

𝑅𝑛
∫
𝐵
𝑅
(𝑥
𝑖
)

|𝑢|
𝑛

𝑑V
𝑔

≤ (1 + 𝜖) ∫
𝐵
𝑅
(𝑥
𝑖
)

(

∇
𝑔
𝑢


𝑛

+ 𝜏|𝑢|
𝑛

) 𝑑V
𝑔
,

(21)

where in the last inequality we choose a sufficiently large 𝑅 to
make sure 4𝑛𝐶/𝑅𝑛 ≤ (1 + 𝜖)𝜏. Let 𝛼

𝜖
= 𝛼
𝑛
/(1 + 𝜖)

1/(𝑛−1) and
𝜙
𝑖
𝑢 = 𝜙

𝑖
𝑢/(1 + 𝜖)

1/𝑛. Noting that 𝜙
𝑖
𝑢 ∈ 𝑊1,𝑛

0
(𝐵
𝑅
(𝑥
𝑖
)), we have

by (21) and Lemma 2

∫
𝐵
𝑅/2
(𝑥
𝑖
)

(𝑒
𝛼
𝜖
|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝜖
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
) 𝑑V

𝑔

≤ ∫
𝐵
𝑅
(𝑥
𝑖
)

(𝑒
𝛼
𝜖
|𝜙
𝑖
𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝜖

𝜙𝑖𝑢

𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔

= ∫
𝐵
𝑅
(𝑥
𝑖
)

(𝑒
𝛼
𝑛
|
̃
𝜙
𝑖
𝑢|

𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝑛


𝜙
𝑖
𝑢


𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔

≤ 𝐶
𝑛
(sinh𝑅)𝑛 ∫

𝐵
𝑅
(𝑥
𝑖
)


∇
𝑔
(𝜙
𝑖
𝑢)


𝑛

𝑑V
𝑔

≤ 𝐶(sinh𝑅)𝑛 ∫
𝐵
𝑅
(𝑥
𝑖
)

(

∇
𝑔
𝑢


𝑛

+ 𝜏|𝑢|
𝑛

) 𝑑V
𝑔
,

(22)

where 𝐶 is a constant depending only on 𝑛 and 𝜏. By the
choice of {𝑥

𝑖
}
∞

𝑖=1
and (22), we have

∫
H𝑛
(𝑒
𝛼
𝜖
|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝜖
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
) 𝑑V

𝑔

≤ ∫
∪
∞

𝑖=1
𝐵
𝑅/2
(𝑥
𝑖
)

(𝑒
𝛼
𝜖
|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝜖
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔

≤

∞

∑
𝑖=1

∫
𝐵
𝑅/2
(𝑥
𝑖
)

(𝑒
𝛼
𝜖
|𝑢|
𝑛/(𝑛−1)

−

𝑛−2

∑
𝑘=0

𝛼𝑘
𝜖
|𝑢|
𝑛𝑘/(𝑛−1)

𝑘!
)𝑑V

𝑔

≤

∞

∑
𝑖=1

𝐶(sinh𝑅)𝑛 ∫
𝐵
𝑅
(𝑥
𝑖
)

(

∇
𝑔
𝑢


𝑛

+ 𝜏|𝑢|
𝑛

) 𝑑V
𝑔

≤ 𝐶𝑁(sinh𝑅)𝑛 ∫
H𝑛
(

∇
𝑔
𝑢


𝑛

+ 𝜏|𝑢|
𝑛

) 𝑑V
𝑔

≤ 𝐶𝑁(sinh𝑅)𝑛

(23)
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for some constant 𝐶 depending only on 𝑛 and 𝜏. For any 𝛼 <
𝛼
𝑛
, we can choose 𝜖 > 0 sufficiently small such that 𝛼 < 𝛼

𝜖
.

This ends the proof of Theorem 1.
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