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This paper establishes a criterion on integral 𝜑
0
-stability in terms of two measures for impulsive differential equations with

“supremum” by using the cone-valued piecewise continuous Lyapunov functions, Razumikhin method, and comparative method.
Meantime, an example is given to illustrate our result.

1. Introduction

In this paper, we discuss the integral 𝜑
0
-stability in terms

of two measures for impulsive differential equations with
“supremum”:

𝑥
󸀠
= 𝐹(𝑡, 𝑥 (𝑡) , sup

𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠)) for 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑘
,

𝑥 (𝜏
𝑘
+ 0) = 𝐼

𝑘
(𝑥 (𝜏
𝑘
− 0)) for 𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝑟, 𝑡
0
] ,

(1)

and its perturbed impulsive differential equations with
“supremum”

𝑥
󸀠
= 𝐹(𝑡, 𝑥 (𝑡) , sup

𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠)) + 𝐺(𝑡, 𝑥 (𝑡) , sup
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠))

for 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑘
,

𝑥 (𝜏
𝑘
+ 0) = 𝐼

𝑘
(𝑥 (𝜏
𝑘
− 0)) + 𝐽

𝑘
(𝑥 (𝜏
𝑘
− 0))

for 𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝑟, 𝑡
0
] ,

(2)

where 𝑥 ∈ 𝑅
𝑛, 𝐹, 𝐺 : 𝑅

+
× 𝑅
𝑛
× 𝑅
𝑛
→ 𝑅

𝑛, 𝐹(𝑡, 0, 0) =
𝐺(𝑡, 0, 0) ≡ 0, 𝐼

𝑘
, 𝐽
𝑘
: 𝑅
𝑛
→ 𝑅

𝑛, 𝐼
𝑘
(0) = 𝐽

𝑘
(0) ≡ 0, 𝑘 =

1, 2, . . ., 𝑟 > 0, 𝑡
0
∈ 𝑅
+, and 𝜙 ∈ (𝑃𝐶[𝑡

0
− 𝑟, 𝑡
0
], 𝑅
𝑛
). Let 𝑅𝑛 be

𝑛-dimensional Euclidean space with norm ‖𝑥‖, 𝑅+ = [0,∞),
and {𝜏

𝑘
}
∞

1
a sequence of fixed points in 𝑅+ such that 𝜏

𝑘+1
> 𝜏
𝑘

and lim
𝑘→∞

𝜏
𝑘
= ∞. We denote by 𝑥(𝑡; 𝑡

0
, 𝜙) the solution of

(1). In our further investigation we will assume that solution
𝑥(𝑡; 𝑡
0
, 𝜙) is defined on [𝑡

0
− 𝑟,∞) for any initial function

𝜙 ∈ 𝑃𝐶([𝑡
0
− 𝑟, 𝑡
0
], 𝑅
𝑛
).

The research on impulsive differential equations with
“supremum” problem, Bainov et al. [1] justified the partial
averaging for impulsive differential equations, He et al. [2]
discussed the periodic boundary value problem for first order
impulsive differential equations, Agarwal and Hristova [3]
studied the strict stability in terms of two measures for
impulsive differential equations, Stamova and Stamov [4]
investigated the global stability of models based on impulsive
differential equations and variable impulsive perturbations,
and Hristova [5, 6] obtained the 𝜑

0
-stability in terms of two

measures for impulsive differential equations.
In recent years, the integral stability theory has been rapid

development (see [7–12]). For example, Soliman and Abdalla
[10] introduced integral 𝜑

0
-stability of perturbed system of

ordinary differential equations. Hristova [12] studied the
integral stability in terms of two measures for impulsive
differential equations with “supremum.” However, the cor-
responding theory of impulsive differential equations with
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“supremum” is still at an initial stage of its development,
especially for integral 𝜑

0
-stability in terms of two measures.

Motivated by the idea of [5, 6, 10, 12], in this work, by
employing the cone-valued piecewise continuous Lyapunov
functions, Razumikhin method, and comparative method,
we extend the notions of𝜑

0
-stability in terms of twomeasures

to integral 𝜑
0
-stability in terms of twomeasures for impulsive

differential equations with “supremum.”

2. Preliminaries

Denote by 𝑃𝐶(𝑋, 𝑌) (𝑋 ⊂ 𝑅, 𝑌 ⊂ 𝑅
𝑛
) the set of all functions

𝑢 : 𝑋 → 𝑌 which are piecewise continuous in 𝑋 with
points of discontinuity of the first kind at the points 𝜏

𝑘
∈ 𝑋

and which are continuous from the left at the points 𝜏
𝑘
∈

𝑋, 𝑢(𝜏
𝑘
) = 𝑢(𝜏

𝑘
− 0).

We denote by 𝑃𝐶1(𝑋, 𝑌) the set of all function 𝑢 ∈

𝑃𝐶(𝑋, 𝑌)which are continuously differentiable for 𝑡 ∈ 𝑋, 𝑡 ̸=

𝜏
𝑘
.
Let 𝑥, 𝑦 ∈ 𝑅𝑛. Denote by (𝑥 ⋅ 𝑦) the dot product of both

vectors 𝑥 and 𝑦.
Let K ⊂ 𝑅

𝑛 be a cone, and K∗ = {𝜑 ∈ 𝑅
𝑛
: (𝜑 ⋅ 𝑥) ≥

0 for any 𝑥 ∈K} is adjoint cone.
We give the following notations for convenience:

𝐾 = {𝑎 ∈ 𝐶 (𝑅
+
, 𝑅
+
) :

𝑎 (𝑠) is strictly increasing, 𝑎 (0) = 0} ;

𝐶𝐾 = {𝑏 ∈ 𝐶 [𝑅
+
× 𝑅
+
, 𝑅
+
] :

𝑏 (𝑡, ⋅) ∈ 𝐾 for any fixed 𝑡 ∈ [0,∞)} ;

Γ = {ℎ ∈ 𝐶 [[−𝑟,∞) × 𝑅
𝑛
,K] :

inf
𝑥∈𝑅
𝑛

ℎ (𝑡, 𝑥) = 0 for each 𝑡 ∈ [−𝑟,∞)} .

(3)

Let ℎ
0
, ℎ ∈ Γ, 𝜑

0
∈ K∗, 𝑡 ∈ 𝑅

+, and 𝜙 ∈ 𝑃𝐶([𝑡
0
−

𝑟, 𝑡
0
], 𝑅
𝑛
). Define

𝐻
0
(𝑡, 𝜙, 𝜑

0
) = sup {(𝜑

0
⋅ ℎ
0
(𝑡 + 𝑠, 𝜙 (𝑡 + 𝑠))) : 𝑠 ∈ [−𝑟, 0]} ,

(4)

𝐻(𝑡, 𝜙, 𝜑
0
) = sup {(𝜑

0
⋅ ℎ
0
(𝑡 + 𝑠, 𝜙 (𝑡 + 𝑠))) : 𝑠 ∈ [−𝑟, 0]} .

(5)

Let 𝜌, 𝑡 and 𝑇 > 0 be constants, 𝜑
0
∈ K∗, ℎ ∈ Γ. Define

sets:

𝑆 (ℎ, 𝜌, 𝜑
0
) = {(𝑡, 𝑥) ∈ 𝑅

+
× 𝑅
𝑛
: (𝜑
0
⋅ ℎ (𝑡, 𝑥)) < 𝜌} ;

𝑆
𝑐
(ℎ, 𝜌, 𝜑

0
) = {(𝑡, 𝑥) ∈ 𝑅

+
× 𝑅
𝑛
: (𝜑
0
⋅ ℎ (𝑡, 𝑥)) ≥ 𝜌} ;

Ω (𝑡, 𝑇, 𝜌) = { (𝑥, 𝑦) ∈ 𝑅
𝑛
× 𝑅
𝑛
:

(𝜑
0
⋅ ℎ (𝑡, 𝑥)) < 𝜌 for 𝑠 ∈ [𝑡, 𝑡 + 𝑇] ,

(𝜑
0
⋅ ℎ (𝑡, 𝑦)) < 𝜌 for 𝑠 ∈ [𝑡 − 𝑟, 𝑡 + 𝑇]} .

(6)

In our further investigations we use the following com-
parison scalar impulsive ordinary differential equation:

𝑢
󸀠
= 𝑔
1
(𝑡, 𝑢) , 𝑡 ̸= 𝜏

𝑘
,

𝑢 (𝜏
𝑘
+ 0) = 𝜉

𝑘
(𝑢 (𝜏
𝑘
)) ,

𝑢 (𝑡
0
) = 𝑢
0
,

𝑘 = 1, 2, . . . ,

(7)

the scalar impulsive ordinary differential equation:

𝑤
󸀠
= 𝑔
2 (𝑡, 𝑤) , 𝑡 ̸= 𝜏

𝑘
,

𝑤 (𝜏
𝑘
+ 0) = 𝜂

𝑘
(𝑤 (𝜏
𝑘
)) ,

𝑤 (𝑡
0
) = 𝑤
0
,

𝑘 = 1, 2, . . . ,

(8)

and its perturbed scalar impulsive ordinary differential equa-
tion:

𝑤
󸀠
= 𝑔
2 (𝑡, 𝑤) + 𝑞 (𝑡) , 𝑡 ̸= 𝜏

𝑘
,

𝑤 (𝜏
𝑘
+ 0) = 𝜂

𝑘
(𝑤 (𝜏
𝑘
)) + 𝛾
𝑘
(𝑤 (𝜏
𝑘
)) ,

𝑤 (𝑡
0
) = 𝑤
0
,

𝑘 = 1, 2, . . . ,

(9)

where 𝑢, 𝑤 ∈ 𝑅, 𝑔
1
(𝑡, 0) = 𝑔

2
(𝑡, 0) ≡ 0, 𝜉

𝑘
(0) = 0, 𝜂

𝑘
(0) =

0, 𝑘 = 1, 2, . . ..
Assume that solutions of the scalar impulsive equations

(7), (8), and (9) exist on [𝑡
0
,∞) for any initial values.

Meanwhile, we give some definitions and lemmas.The details
can be found in [5].

Definition 1 (see [5]). We say that function𝑉(𝑡, 𝑥) : [−𝑟,∞)×

𝑅
𝑛
→ K, 𝑉 = (𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑛
), belongs to the class Λ if

(𝐴1) 𝑉(𝑡, 𝑥) ∈ 𝑃𝐶
1
([−𝑟,∞) × 𝑅

𝑛
,K);

(𝐴2) for each 𝑘 = 1, 2, . . . and 𝑥 ∈ 𝑅𝑛 there exist the finite
limits

𝑉 (𝜏
𝑘
− 0, 𝑥) = lim

𝑡↑𝜏
𝑘

𝑉 (𝑡, 𝑥) , 𝑉 (𝜏
𝑘
+ 0, 𝑥) = lim

𝑡↓𝜏
𝑘

𝑉 (𝑡, 𝑥) ;

(10)

(𝐴3) there exist constants𝑀
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

|𝑉
𝑖
(𝑡, 𝑥) − 𝑉

𝑖
(𝑡, 𝑦)| ≤ 𝑀

𝑖
‖𝑥 − 𝑦‖ for any 𝑡 ∈ 𝑅+, 𝑥, 𝑦 ∈

𝑅
𝑛.

Definition 2 (see [5]). Let 𝜑
0
∈ K∗, ℎ ∈ Γ be given. The

function 𝑉(𝑡, 𝑥) ∈ Λ is said to be 𝜑
0
-strongly ℎ-decrescent

if there exist a constant 𝛿 > 0 and a function 𝑎 ∈ 𝐾 such
that (𝑡, 𝑥) ∈ [−𝑟,∞) × 𝑅

𝑛
: (𝜑
0
⋅ ℎ(𝑡, 𝑥)) < 𝛿 implies that

(𝜑
0
⋅ 𝑉(𝑡, 𝑥)) ≤ 𝑎(𝜑

0
⋅ ℎ(𝑡, 𝑥)).
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Let 𝑉(𝑡, 𝑥) ∈ Λ, 𝑡 ∈ Ω, 𝑡 ̸= 𝜏
𝑘
, 𝑥 ∈ 𝑅

𝑛, and 𝜙 ∈ 𝑃𝐶([𝑡 −
𝑟, 𝑡], 𝑅

𝑛
). We define a derivative of the function 𝑉(𝑡, 𝑥) along

the trajectory of solution of (1) as follows:

𝐷
(1)
𝑉 (𝑡, 𝜙 (𝑡))

= lim
𝜖→0

sup 1
𝜖
{𝑉(𝑡 + 𝜖, 𝜙 (𝑡)

+ 𝜖𝐹 (𝑡, 𝜙 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜙 (𝑡 + 𝑠)))

−𝑉 (𝑡, 𝜙 (𝑡)) } .

(11)

Similarly we define a derivative of the function 𝑉(𝑡, 𝑥) ∈
Λ along the trajectory of solution of the perturbed system (2)
for 𝑡 ∈ Ω, 𝑡 ̸= 𝜏

𝑘
, 𝑥 ∈ 𝑅

𝑛, and 𝜙 ∈ 𝑃𝐶([𝑡−𝑟, 𝑡], 𝑅𝑛) as follows:

𝐷
(2)
𝑉 (𝑡, 𝜙 (𝑡))

= lim
𝜖→0

sup 1
𝜖
{𝑉(𝑡 + 𝜖, 𝜙 (𝑡)

+ 𝜖(𝐹(𝑡, 𝜙 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜙 (𝑡 + 𝑠))

+𝐺(𝑡, 𝜙 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜙 (𝑡 + 𝑠))))

− 𝑉 (𝑡, 𝜙 (𝑡)) } .

(12)

Definition 3 (see [5]). Let 𝜑
0
∈ K∗, ℎ, ℎ

0
∈ Γ be given.

The function ℎ
0
is 𝜑
0
-uniformly finer than ℎ if there exist

a constant 𝛿 > 0 and a function 𝑎 ∈ 𝐾, such that for any
point (𝑡, 𝑥) ∈ [0,∞) × 𝑅

𝑛
: (𝜑
0
⋅ ℎ
0
(𝑡, 𝑥)) < 𝛿 the inequality

(𝜑
0
⋅ ℎ(𝑡, 𝑥)) ≤ 𝑎(𝜑

0
⋅ ℎ
0
(𝑡, 𝑥)) holds.

Lemma 4 (see [5]). Let ℎ, ℎ
0
∈ Γ, 𝜑

0
∈ K∗ be given, and

ℎ
0
(𝑡, 𝑥) is 𝜑

0
-uniformly finer than ℎ(𝑡, 𝑥)with a constant 𝛿 and

a function 𝑎 ∈ 𝐾. Then for any 𝑡 ∈ 𝑅
+ and 𝜙 ∈ 𝑃𝐶([𝑡 −

𝑟, 𝑡], 𝑅
𝑛
) inequality 𝐻

0
(𝑡, 𝜙, 𝜑

0
) < 𝛿 implies 𝐻(𝑡, 𝜙, 𝜑

0
) ≤

𝑎(𝐻
0
(𝑡, 𝜙, 𝜑

0
)), where functions 𝐻 and 𝐻

0
are defined by (4),

(5).

In our further investigations we use the following com-
parison result.

Lemma 5 (see [5]). Let the following conditions be fulfilled.

(𝐵1) The vector 𝜑
0
∈K∗ and function 𝑉 ∈ Λ are such that

(i) for any number 𝑡 ≥ 0 : 𝑡 ̸= 𝜏
𝑘
and any function

𝜓 ∈ 𝑃𝐶([𝑡−𝑟, 𝑡], 𝑅
𝑛
) such that (𝜑

0
⋅𝑉(𝑡, 𝜓(𝑡))) ≥

(𝜑
0
⋅𝑉(𝑡+𝑠, 𝜓(𝑡+𝑠))) for 𝑠 ∈ [−𝑟, 0) the inequality

(𝜑
0
⋅ 𝐷
(1)
𝑉 (𝑡, 𝜓 (𝑡))) ≤ 𝑔

1
(𝑡, (𝜑
0
⋅ 𝑉 (𝑡, 𝜓 (𝑡)))) (13)

holds, where 𝑔
1
∈ 𝑃𝐶(𝑅

+
× 𝑅
+
, 𝑅
+
).

(ii) (𝜑
0
⋅ 𝑉(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥))) ≤ 𝜉

𝑘
(𝜑
0
⋅ 𝑉(𝜏
𝑘
, 𝑥)), 𝑘 =

1, 2, . . ., 𝑥 ∈ 𝑅𝑛, and 𝜏
𝑘
∈ [𝑡
0
, 𝑇], where functions

𝜉
𝑘
∈ 𝐾.

(𝐵2) Function 𝑥(𝑡; 𝑡
0
, 𝜙) is a solution of (1) that is defined

for 𝑡 ∈ [𝑡
0
− 𝑟, 𝑇], where 𝜙 ∈ 𝑃𝐶([𝑡

0
− 𝑟, 𝑡
0
], 𝑅
𝑛
).

(𝐵3) Function 𝑢∗(𝑡) = 𝑢∗(𝑡; 𝑡
0
, 𝑢
0
) is the maximal solution

of (7) with initial condition 𝑢∗(𝑡
0
) = 𝑢
0
that is defined

for 𝑡 ∈ [𝑡
0
, 𝑇].

Then the inequality sup
𝑠∈[−𝑟,0]

(𝜑
0
⋅ 𝑉(𝑡
0
+ 𝑠, 𝜙(𝑡

0
+ 𝑠))) ≤ 𝑢

0

implies the validity of the inequality (𝜑
0
⋅ 𝑉(𝑡, 𝑥(𝑡))) ≤ 𝑢

∗
(𝑡)

for 𝑡 ∈ [𝑡
0
, 𝑇].

Definition 6. Let ℎ
0
, ℎ ∈ Γ. System of impulsive differential

equations with “supremum” (1) is said to be

(𝑆1) (𝐻
0
, ℎ)-equi-integral 𝜑

0
-stable if for every 𝛼 ≥ 0 and

for any 𝑡
0
≥ 0 there exists a positive function 𝛽 =

𝛽(𝑡
0
, 𝛼) ∈ 𝐶𝐾 which is continuous in 𝑡

0
for each 𝛼

and such that for maximal solution 𝑦∗(𝑡; 𝑡
0
, 𝜙) of the

perturbed system of impulsive differential equations
with “supremum” (2) the inequality

(𝜑
0
⋅ ℎ (𝑡, 𝑦

∗
(𝑡; 𝑡
0
, 𝜙))) < 𝛽, 𝑡 ≥ 𝑡

0 (14)

holds, provided that

𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
) ≤ 𝛼, (15)

and for every 𝑇 > 0,

∫

𝑡
0
+𝑇

𝑡
0

sup
(𝑥,𝑦)∈Ω(𝑡0,𝑇,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑠, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∑

𝑡
0
≤𝜏
𝑘
≤𝑡
0
+𝑇

sup
𝑥:ℎ(𝜏
𝑘
,𝑥)<𝛽

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛼,

(16)

where𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
) is defined by (4) and 𝜙 ∈ 𝑃𝐶([𝑡

0
−

𝑟, 𝑡
0
], 𝑅
𝑛
);

(𝑆2) (𝐻
0
, ℎ)-uniform-integrally 𝜑

0
-stable if (𝑆1) is satis-

fied, where 𝛿 is independent on 𝑡
0
.

Remark 7. We note that in the case when ℎ
0
(𝑡, 𝑥) ≡ ‖𝑥‖ and

ℎ(𝑡, 𝑥) ≡ ‖𝑥‖ the (𝐻
0
, ℎ)-equi-integral (uniform-integral) 𝜑

0
-

stability reduces to equi-integral (uniform-integral) 𝜑
0
-

stability.

3. Main Result

Theorem 8. Let the following conditions be fulfilled.

(𝐻1) Functions ℎ
0
, ℎ ∈ Γ; ℎ

0
is 𝜑
0
-uniformly finer than ℎ.

(𝐻2) There exists a function 𝑉
1
∈ Λ that is 𝜑

0
-strongly ℎ

0
-

decrescent and

(i) for any number 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑘
, and any function

𝜓 ∈ 𝑃𝐶([𝑡−𝑟, 𝑡], 𝑅
𝑛
), such that (𝜑

0
⋅𝑉
1
(𝑡, 𝜓(𝑡))) >

(𝜑
0
⋅ 𝑉
1
(𝑡 + 𝑠, 𝜓(𝑡 + 𝑠))) for 𝑠 ∈ [−𝑟, 0) and

(𝑡, 𝜓(𝑡)) ∈ 𝑆(ℎ, 𝜌, 𝜑
0
) the inequality
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(𝜑
0
⋅ 𝐷
(1)
𝑉
1
(𝑡, 𝜓 (𝑡))) ≤ 𝑔1 (𝑡, (𝜑0 ⋅ 𝑉1 (𝑡, 𝜓 (𝑡)))) (17)

holds, where 𝜌 > 0 is a constant.
(ii) (𝜑

0
⋅ 𝑉
1
(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥))) ≤ 𝜉

𝑘
(𝜑
0
⋅ 𝑉
1
(𝜏
𝑘
, 𝑥)), for

(𝜏
𝑘
, 𝑥) ∈ 𝑆(ℎ, 𝜌, 𝜑

0
), 𝑘 = 1, 2, . . ..

(𝐻3) For any number 𝜇 > 0 there exists a function 𝑉(𝜇)
2

∈ Λ

such that

(iii) 𝑏(𝜑
0
⋅ ℎ(𝑡, 𝑥)) ≤ (𝜑

0
⋅ 𝑉
(𝜇)

2
(𝑡, 𝑥)) ≤ 𝑎(𝜑

0
⋅ ℎ
0
(𝑡, 𝑥))

for (𝑡, 𝑥) ∈ [−𝑟,∞) × 𝑅
𝑛, where 𝑎, 𝑏 ∈ 𝐾 and

lim
𝑢→∞

𝑏(𝑢) = ∞.
(iv) For any number 𝑡 ≥ 0, 𝑡 ̸= 𝜏

𝑘
, and any function

𝜓 ∈ 𝑃𝐶([𝑡 − 𝑟, 𝑡], 𝑅
𝑛
), such that (𝑡, 𝜓(𝑡)) ∈

𝑆(ℎ, 𝜌, 𝜑
0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝜇, 𝜑
0
) and (𝜑

0
⋅ (𝑉
1
(𝑡, 𝜓(𝑡)) +

𝑉
(𝜇)

2
(𝑡, 𝜓(𝑡)))) > (𝜑

0
⋅ (𝑉
1
(𝑡+𝑠, 𝜓(𝑡+𝑠))+𝑉

(𝜇)

2
(𝑡+

𝑠, 𝜓(𝑡 + 𝑠)))) for 𝑠 ∈ [−𝑟, 0) the inequality

(𝜑
0
⋅ (𝐷
(1)
𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝐷

(2)
𝑉
(𝜇)

2
(𝑡, 𝜓 (𝑡))))

≤ 𝑔
2
(𝑡, 𝜑
0
⋅ (𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝑉

(𝜇)

2
(𝑡, 𝜓 (𝑡))))

(18)

holds.
(v) (𝜑

0
⋅ (𝑉
1
(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥)) + 𝑉

(𝜇)

2
(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥)))) ≤

𝜂
𝑘
(𝜑
0
⋅ (𝑉
1
(𝜏
𝑘
, 𝑥) + 𝑉

(𝜇)

2
(𝜏
𝑘
, 𝑥))) for (𝜏

𝑘
, 𝑥) ∈

𝑆(ℎ, 𝜌, 𝜑
0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝜇, 𝜑
0
), 𝑘 = 1, 2, . . ..

(𝐻4) Zero solution of the scalar impulsive differential equa-
tion (7) is equi-stable.

(𝐻5) Zero solution of the scalar impulsive differential equa-
tion (8) is uniform-integrally stable.

Then system of impulsive differential equations with
“supremum” (1) is (𝐻

0
, ℎ)-uniform-integrally 𝜑

0
-stable.

Proof. Since function 𝑉
1
(𝑡, 𝑥) is 𝜑

0
-strongly ℎ

0
-decrescent,

there exist a constant 𝜌
1
∈ (0, 𝜌) and a function 𝜓

1
∈ 𝐾 such

that (𝜑
0
⋅ ℎ
0
(𝑡, 𝑥)) < 𝜌

1
implies that

(𝜑
0
⋅ 𝑉
1
(𝑡, 𝑥)) ≤ 𝜓

1
((𝜑
0
⋅ ℎ
0
(𝑡, 𝑥))) . (19)

Since ℎ
0
(𝑡, 𝑥) is 𝜑

0
-uniformly finer than ℎ(𝑡, 𝑥), there exist a

constant 𝜌
0
∈ (0, 𝜌

1
) and a function 𝜓

2
∈ 𝐾 such that (𝜑

0
⋅

ℎ
0
(𝑡, 𝑥)) < 𝜌

0
implies that

(𝜑
0
⋅ ℎ (𝑡, 𝑥)) ≤ 𝜓

2
(𝜑
0
⋅ ℎ
0
(𝑡, 𝑥)) , (20)

where 𝜓
2
(𝜌
0
) < 𝜌
1
.

According to Lemma 4, the inequality 𝐻
0
(𝑡, 𝜙, 𝜑

0
) < 𝜌

0

implies

𝐻(𝑡, 𝜙, 𝜑
0
) ≤ 𝜓
2
(𝐻
0
(𝑡, 𝜙, 𝜑

0
)) , 𝜙 ∈ 𝑃𝐶 ([𝑡 − 𝑟, 𝑡] , 𝑅

𝑛
) .

(21)

Let 𝑡
0
≥ 0 be a fixed point. Choose a number 𝛼 > 0 such

that 𝛼 < 𝜌
0
.

According to condition (𝐻3) ofTheorem 8, there exists a
function𝑉(𝛼)

2
(𝑡, 𝑥) that is Lipshitz with a constant𝑀

2
. Let𝑀

1

be the Lipshitz constant of function 𝑉(𝑡, 𝑥).

Denote (𝑀
1
+ 𝑀
2
)𝛼 = 𝛼

1
. Without loss of generality we

assume 𝛼
1
< 𝑏(𝜌).

Since the zero solution of the scalar impulsive differential
equation (7) is equi-stable, there exists a function 𝛿

1
=

𝛿
1
(𝑡
0
, 𝛼
1
) > 0 such that the inequality |𝑢

0
| < 𝛿
1
implies

󵄨󵄨󵄨󵄨𝑢 (𝑡; 𝑡0, 𝑢0)
󵄨󵄨󵄨󵄨 <

𝛼
1

2
, 𝑡 ≥ 𝑡

0
, (22)

where 𝑢(𝑡; 𝑡
0
, 𝑢
0
) is a solution of (7).

Since the function 𝜓
1
∈ 𝐾 there exists a 𝛿

2
= 𝛿
2
(𝛿
1
) >

0, 𝛿
2
< 𝜌
1
, such that for |𝑢| < 𝛿

2
the inequality

𝜓
1
(𝑢) < 𝛿

1 (23)

holds.
Since the zero solution of the scalar impulsive differen-

tial equation (8) is uniform-integrally stable, there exists a
function 𝛽

1
= 𝛽
1
(𝛼
1
) ∈ 𝐶𝐾, 𝑏(𝜌) > 𝛽

1
≥ 𝛼
1
, such that for

every solution of the perturbed impulsive equation (9) the
inequality

󵄨󵄨󵄨󵄨𝑤 (𝑡; 𝑡0, 𝑤0)
󵄨󵄨󵄨󵄨 < 𝛽1, 𝑡 ≥ 𝑡

0
, (24)

holds, provided that

󵄨󵄨󵄨󵄨𝑤0
󵄨󵄨󵄨󵄨 < 𝛼1 (25)

and for every 𝑇 > 0,

∫

𝑡
0
+𝑇

𝑡
0

󵄨󵄨󵄨󵄨𝑞 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠 + ∑

𝑡
0
≤𝜏
𝑘
≤𝑡
0
+𝑇

󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨 ≤ 𝛼1. (26)

Since the function 𝑏 ∈ 𝐾, lim
𝑠→∞

𝑏(𝑠) = ∞, and 𝜓
2
(𝛼) <

𝜓
2
(𝜌
0
) < 𝜌

1
< 𝜌, we could choose a constant 𝛽 = 𝛽(𝛽

1
) >

0, 𝜌 > 𝛽 > 𝛼, 𝛽 > 𝜓
2
(𝛼), such that

𝑏 (𝛽) ≥ 𝛽
1
. (27)

Since the function 𝑎, 𝜓
2
∈ 𝐾, and 𝛽 > 𝜓

2
(𝛼), we can find

a 𝛿
3
= 𝛿
3
(𝛼
1
, 𝛽) > 0, 𝛼 < 𝛿

3
< min(𝛿

2
, 𝜌
0
), such that the

inequalities

𝑎 (𝛿
3
) <

𝛼
1

2
, 𝜓

2
(𝛿
3
) < 𝛽 (28)

hold.
From (21) and (28) it follows that𝐻

0
(𝑡
0
, 𝜙, 𝜑
0
) < 𝛼 implies

𝐻(𝑡
0
, 𝜙, 𝜑
0
) ≤ 𝜓
2
(𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
)) < 𝜓

2
(𝛼) < 𝜓

2
(𝛿
3
) < 𝛽;

(29)

that is, ℎ(𝑡, 𝜙, 𝜑
0
) < 𝛽 for 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡
0
].

Now let the initial functions 𝜙 ∈ 𝑃𝐶([𝑡
0
− 𝑟, 𝑡
0
], 𝑅
𝑛
) be

such that

𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
) < 𝛼 (30)

and let the perturbed functions in impulsive equation with
“supremum” (2) be such that
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∫

𝑡
0
+𝑇

𝑡
0

sup
𝑥,𝑦∈Ω(𝑡0 ,𝑇,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑠, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∑

𝑡
0
≤𝜏
𝑘
≤𝑡
0
+𝑇

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛼

(31)

for every 𝑇 > 0.
Let 𝑦∗(𝑡) = 𝑦

∗
(𝑡; 𝑡
0
, 𝜙) be a solution of (2), where the

initial function and the perturbed functions satisfy (30) and
(31); then

(𝜑
0
⋅ ℎ (𝑡, 𝑦

∗
(𝑡; 𝑡
0
, 𝜙))) < 𝛽, 𝑡 ≥ 𝑡

0
. (32)

Suppose it is not true. There exists a point 𝑡∗ > 𝑡
0
such

that

(𝜑
0
⋅ ℎ (𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) = 𝛽,

(𝜑
0
⋅ ℎ (𝑡, 𝑦

∗
(𝑡; 𝑡
0
, 𝜙))) < 𝛽,

𝑡 ∈ [𝑡
0
, 𝑡
∗
) .

(33)

Case 1. Let 𝑡∗ ̸= 𝜏
𝑘
, 𝑘 = 1, 2, . . .. Then from the continuity

of the maximal solution 𝑦∗(𝑡; 𝑡
0
, 𝜙) at point 𝑡∗ follows that

(𝜑
0
⋅ ℎ(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) = 𝛽.

If we assume that (𝜑
0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
))) ≤ 𝛿

3
then

from the choice of 𝛿
3
and inequality (28) it follows (𝜑

0
⋅

ℎ(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) ≤ (𝜑

0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) ≤ 𝜓

2
(𝛿
3
) < 𝛽

that contradicts (33).
Therefore

(𝜑
0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
))) ≤ 𝛿

3
, 𝐻

0
(𝑡
0
, 𝜙, 𝜑
0
) < 𝛼 < 𝛿

1
.

(34)

Case 1.1. Let there exist a point 𝑡∗
0
∈ (𝑡
0
, 𝑡
∗
), 𝑡∗
0

̸= 𝜏
𝑘
, 𝑘 =

1, 2, . . ., such that 𝛿
3
= (𝜑
0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
))) and (𝑡, 𝑦∗(𝑡)) ∈

𝑆(ℎ, 𝛽, 𝜑
0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝛿
3
, 𝜑
0
). Since 𝛽 < 𝜌 and 𝛿

3
> 𝛼 it follows

that

(𝑡, 𝑦
∗
(𝑡)) ∈ 𝑆 (ℎ, 𝜌, 𝜑0) ∩ 𝑆

𝑐
(ℎ
0
, 𝛼, 𝜑
0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
) .

(35)

Define a function 𝜙
∗
(𝑡) = 𝑦

∗
(𝑡) for 𝑡 ∈ [𝑡

∗

0
− 𝑟, 𝑡
∗

0
]

and let 𝑟
1
(𝑡; 𝑡
∗

0
, 𝑢
0
) be the maximal solution of impulsive

scalar differential equation (7) where 𝑢
0
= sup

𝑠∈[−𝑟,0]
(𝜑
0
⋅

𝑉
1
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
))). Let 𝑥∗(𝑡) ≡ 𝑥∗(𝑡; 𝑡∗

0
, 𝜙
∗
) be the solution of the

impulsive equations (1), 𝑡 ∈ [𝑡∗
0
− 𝑟, 𝑡
∗

0
]. From conditions (i),

(ii) of Theorem 8, according to Lemma 5, it follows that

(𝜑
0
⋅ 𝑉
1
(𝑡, 𝑥
∗
(𝑡))) ≤ 𝑟

1
(𝑡; 𝑡
∗

0
, 𝑢
0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
] . (36)

From the choice of the point 𝑡∗
0
it follows that (𝜑

0
⋅

ℎ
0
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
))) = (𝜑

0
⋅ ℎ
0
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
))) = 𝛿

3
< 𝛿
2
.

According to inequalities (19) and (23) we obtain

𝑢
0
= (𝜑
0
⋅ 𝑉
1
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
)))

≤ 𝜓
1
(𝜑
0
⋅ ℎ
0
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
))) < 𝛿

1
.

(37)

From inequalities (22) and (36) it follows that (𝜑
0
⋅

𝑉
1
(𝑡, 𝑥
∗
(𝑡))) ≤ 𝑟

1
(𝑡; 𝑡
∗

0
, 𝑢
0
) < 𝛼
1
/2 for 𝑡 ∈ [𝑡∗

0
, 𝑡
∗
], or

(𝜑
0
⋅ 𝑉
1
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
))) < (𝜑

0
⋅ 𝑉
1
(𝑡
∗

0
, 𝑥 (𝑡
∗

0
))) <

𝛼
1

2
. (38)

From inequality (28) and condition (iii) of Theorem 8, it
follows that

(𝜑
0
⋅ 𝑉
(𝛼)

2
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
))) < 𝑎 (𝜑

0
⋅ ℎ
0
(𝑡
∗

0
+ 𝑠, 𝑦
∗
(𝑡
∗

0
+ 𝑠)))

= 𝑎 (𝛿
3
) <

𝛼
1

2
.

(39)

Consider function 𝑉(𝛼)
2
(𝑡, 𝑥) that is defined in condition

(𝐻7) of Theorem 8, and define the function

𝑉 (𝑡, 𝑥) = 𝑉1 (𝑡, 𝑥) + 𝑉
(𝛼)

2
(𝑡, 𝑥) , (40)

the function 𝑉(𝑡, 𝑥) satisfies the conditions of Lemma 5. Let
point 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
], 𝑡 ̸= 𝑡

𝑘
, and function 𝜓 ∈ 𝑃𝐶([𝑡 −

𝑟, 𝑡], 𝑅
𝑛
) be such that (𝑡, 𝜓(𝑡)) ∈ 𝑆(ℎ, 𝛽, 𝜑

0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝛼, 𝜑
0
),

(𝜓(𝑡), sup
𝑠∈[−𝑟,0]

𝜓(𝑡 + 𝑠)) ∈ Ω(𝑡
∗

0
, 𝑇
∗
, 𝛽), and 𝑉(𝑡, 𝜓(𝑡)) >

𝑉(𝑡 + 𝑠, 𝜓(𝑡 + 𝑠)) for 𝑠 ∈ [−𝑟, 0). Then using the Lipshitz
conditions for functions𝑉

1
(𝑡, 𝑥) and𝑉(𝛼)

2
(𝑡, 𝑥), and condition

(iv) of Theorem 8, we obtain

(𝜑
0
⋅ 𝐷
(2)
𝑉 (𝑡, 𝜓 (𝑡)))

= (𝜑
0
⋅ (𝐷
(2)
𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝐷

(2)
𝑉
(𝛼)

2
(𝑡, 𝜓 (𝑡))))

≤ (𝜑
0
⋅ 𝐷
(1)
𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝐷

(1)
𝑉
(𝛼)

2
(𝑡, 𝜓 (𝑡)))

+ (𝑀
1
+𝑀
2
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐺(𝑡, 𝜓 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜓 (𝑡 + 𝑠))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑔
2
(𝑡, (𝜑
0
⋅ 𝑉 (𝑡, 𝜓 (𝑡)))) + (𝑀

1
+𝑀
2
)

× sup
(𝑥,𝑦)∈Ω(𝑡

∗

0
,𝑇
∗
,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 ,

(41)

where 𝑇∗ = 𝑡∗ − 𝑡∗
0
.

Let 𝜏
𝑘
∈ (𝑡
∗

0
, 𝑡
∗
), 𝑥 ∈ 𝑅

𝑛 be such that (𝜏
𝑘
, 𝑥) ∈ 𝑆(ℎ, 𝛽, 𝜑

0
)∩

𝑆
𝑐
(ℎ
0
, 𝛼, 𝜑
0
). According to condition (v) of Theorem 8, we

have

(𝜑
0
⋅ 𝑉 (𝑡
𝑘
+ 0, 𝐼
𝑘 (𝑥) + 𝐽𝑘 (𝑥)))

= (𝜑
0
⋅ 𝑉 (𝑡
𝑘
+ 0, 𝐼
𝑘
(𝑥)))

+ (𝜑
0
⋅ (𝑉 (𝑡

𝑘
+ 0, 𝐼
𝑘
(𝑥) + 𝐽

𝑘
(𝑥)) − 𝑉 (𝑡

𝑘
+ 0, 𝐼
𝑘
(𝑥))))

≤ 𝜂
𝑘
(𝜑
0
⋅ 𝑉 (𝑡
𝑘
, 𝑥)) + (𝑀

1
+𝑀
2
)
󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)

󵄩󵄩󵄩󵄩

≤ 𝜂
𝑘
(𝜑
0
⋅ 𝑉 (𝑡
𝑘
, 𝑥)) + (𝑀

1
+𝑀
2
)

× sup
𝑥:ℎ(𝜏
𝑘
,𝑥)<𝛽

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 .

(42)

According to inequalities (41), (42) and Lemma 5, the
inequality

(𝜑
0
⋅ 𝑉 (𝑡, 𝑦

∗
(𝑡))) ≤ 𝑟

∗
(𝑡; 𝑡
∗

0
, 𝑤
∗

0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
] (43)

holds.
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Consider the scalar impulsive differential equation (9),
where

𝑞 (𝑡) = (𝑀
1
+𝑀
2
) sup
(𝑥,𝑦)∈Ω(𝑡

∗

0
,𝑇
∗
,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 ,

𝛾
𝑘
= (𝑀
1
+𝑀
2
) sup
𝑥:ℎ(𝜏
𝑘
,𝑥)<𝛽

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 .

(44)

According to above notations and inequality (31) for𝑇∗ =
𝑡
∗
− 𝑡
∗

0
, we obtain

∫

𝑡
∗

𝑡
∗

0

𝑞 (𝑠) 𝑑𝑠 + ∑

𝑡
∗

0
≤𝜏
𝑘
≤𝑡
∗

𝛾
𝑘
≤ (𝑀
1
+𝑀
2
) 𝛼 = 𝛼

1
. (45)

Let 𝑟∗(𝑡; 𝑡∗
0
, 𝑤
∗

0
) be the maximal solution of (9) through

the point (𝑡∗
0
, 𝑤
∗

0
), where 𝑤∗

0
= 𝑉(𝑡

∗

0
+ 𝑠, 𝑦

∗
(𝑡
∗

0
+ 𝑠)),

and perturbations 𝑞(𝑡) and 𝛾
𝑘
are defined above and satisfy

inequality (45).
Choose a point 𝑇∗ > 𝑡∗ such that

∫

𝑡
∗

𝑡
∗

0

𝑞 (𝑠) 𝑑𝑠 +
1

2
(𝑇
∗
− 𝑡
∗
) 𝑞 (𝑡
∗
) < 𝛼
1
. (46)

Now define the continuous function 𝑞∗(𝑡) : [𝑡∗
0
,∞) →

𝑅:

𝑞
∗
(𝑡) =

{{{

{{{

{

𝑞 (𝑡) for 𝑡 ∈ [𝑡∗
0
, 𝑡
∗
]

𝑞 (𝑡
∗
)

𝑡∗ − 𝑇∗
(𝑡 − 𝑇

∗
) for 𝑡 ∈ [𝑡∗, 𝑇∗]

0 for 𝑡 ≥ 𝑇∗,

(47)

and the sequence of numbers {𝛾∗
𝑘
}
∞

1
:

𝛾
∗

𝑘
= {

𝛾
𝑘

for 𝑘 :𝜏
𝑘
∈ (𝑡
∗

0
, 𝑡
∗
]

0 for 𝑘 :𝜏
𝑘
> 𝑡
∗
.

(48)

From (45), it follows that for every 𝑇 > 0

∫

𝑡
∗

0
+𝑇

𝑡
∗

0

𝑞
∗
(𝑠) 𝑑𝑠 + ∑

𝑡
∗

0
≤𝜏
𝑘
≤𝑡
∗

0
+𝑇

𝛾
∗

𝑘

≤ ∫

𝑡
∗

0
+𝑇

𝑡
∗

0

𝑞 (𝑠) 𝑑𝑠 + ∑

𝑡
∗

0
≤𝜏
𝑘
≤𝑡
∗

0
+𝑇

𝛾
𝑘
≤ 𝛼
1
.

(49)

Let 𝑅(𝑡; 𝑡∗
0
, 𝑤
∗

0
) be the maximal solution of the scalar

impulsive differential equation (9) through the point (𝑡∗
0
, 𝑤
∗

0
),

where perturbations of the right parts are defined above
function 𝑞∗(𝑡) and numbers 𝛾∗

𝑘
. We note that

𝑅 (𝑡; 𝑡
∗

0
, 𝑤
∗

0
) = 𝑟
∗
(𝑡; 𝑡
∗

0
, 𝑤
∗

0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
) . (50)

From inequalities (38) and (39), the definition of point
𝑤
∗

0
, and inequality (49) follows the validity of (24) for the

solution 𝑅(𝑡; 𝑡∗
0
, 𝑤
∗

0
); that is,

𝑅 (𝑡; 𝑡
∗

0
, 𝑤
∗

0
) < 𝛽
1
, 𝑡 ≥ 𝑡

∗

0
. (51)

From inequalities (43) and (51), equality (50), the choice
of point 𝑡∗, and condition (iii) of Theorem 8, we obtain

𝑏 (𝛽) ≥ 𝛽
1
> 𝑅 (𝑡

∗
; 𝑡
∗

0
, 𝑤
∗

0
)

≥ (𝜑
0
⋅ 𝑉 (𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙)))

≥ (𝜑
0
⋅ 𝑉
(𝛼)

2
(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙)))

≥ 𝑏 ((𝜑
0
⋅ ℎ (𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))))

= 𝑏 (𝛽) .

(52)

The obtained contradiction proves the validity of the
inequality (32) for 𝑡 ≥ 𝑡

0
.

Case 1.2. Let there exist a point 𝜏
𝑘
∈ (𝑡
0
, 𝑡
∗
) such that 𝛿

3
< (𝜑
0
⋅

ℎ
0
(𝜏
𝑘
+ 0, 𝑦

∗
(𝜏
𝑘
+ 0; 𝑡
0
, 𝑥
0
))), 𝛿
3
> (𝜑
0
⋅ ℎ
0
(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
; 𝑡
0
, 𝑥
0
))),

and (35) is true.
We choose a number 𝛿

3
: 𝛿
3
< 𝛿
3
< 𝛽 such that 𝛿

3
= (𝜑
0
⋅

ℎ
0
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
; 𝑡
0
, 𝑥
0
))) and 𝑡∗

0
∈ (𝑡
0
, 𝑡
∗
), 𝑡
∗

0
̸= 𝜏
𝑘
, 𝑘 = 1, 2, . . ..

We repeat the proof of Case 1.1, where instead of 𝛿
3
we use 𝛿

3

and obtain a contradiction.

Case 2. Let there exist a natural number 𝑘 such that (𝜑
0
⋅

ℎ(𝑡, 𝑦
∗
(𝑡))) < 𝛽 for 𝑡 ∈ [𝑡

0
, 𝜏
𝑘
] and (𝜑

0
⋅ ℎ(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
+ 0))) =

(𝜑
0
⋅ ℎ(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
)))) > 𝛽.

We repeat the proof of Case 1 as in this case we choose the
constant 𝛽 = 𝛽(𝛽

1
) > 0, such that 𝑏(𝛽) ≥ sup

𝑘
{𝜂
𝑘
(𝛽
1
)}.

As in the proof of Case 1.1, we obtain the validity of
inequalities (51) and (43). We apply conditions (iii) and (v)
of Theorem 8 and obtain

𝑏 (𝛽) ≥ 𝜂
𝑘
(𝑟
∗
(𝜏
𝑘
; 𝑡
∗

0
, 𝑤
∗

0
))

≥ 𝜂
𝑘
(𝜑
0
⋅ 𝑉 (𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
)))

= 𝜂
𝑘
((𝜑
0
⋅ (𝑉
1
(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
)) + 𝑉

(𝛼)

2
(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
)))))

≥ (𝜑
0
⋅ 𝑉
1
(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
)))

+𝑉
(𝛼)

2
(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
))))

≥ (𝜑
0
⋅ 𝑉
(𝛼)

2
(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
))))

≥ 𝑏 (𝜑
0
⋅ ℎ ((𝜏

𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
)))))

> 𝑏 (𝛽) ,

(53)

and the obtained contradiction proves the validity of inequal-
ity (32) in this case. Inequality (32) proves (𝐻

0
, ℎ)-uniform-

integral 𝜑
0
-stabilities of the considered system of the impul-

sive differential equations with “supremum.”

Next, we will provide an example which satisfies all the
hypotheses of Theorem 8.
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Example 9. Consider the system of impulsive differential
equations with “supremum”

𝑥
󸀠
= −𝑒
−𝑡
𝑥 (𝑡) + 2𝑦 (𝑡) + 𝑒

−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠) , 𝑡 ̸= 𝑘,

𝑦
󸀠
= −𝑥 (𝑡) − 𝑒

−𝑡
𝑦 (𝑡) +

1

2
𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠) , 𝑡 ̸= 𝑘,

𝑥 (𝑘 + 0) =
1

2𝑘/2
𝑥 (𝑘) ,

𝑦 (𝑘 + 0) =
1

2𝑘/2
𝑦 (𝑘) ,

𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙
1
(𝑡 − 𝑡
0
) ,

𝑦 (𝑡) = 𝜙
2
(𝑡 − 𝑡
0
)

𝑡 ∈ [𝑡
0
− 𝑟, 𝑡
0
] ,

(54)

and its perturbed impulsive differential equations with
“supremum”

𝑥
󸀠
= −𝑒
−𝑡
𝑥 (𝑡) + 2𝑦 (𝑡) + 𝑒

−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠) + 𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑥
2
(𝑠) ,

𝑡 ̸= 𝑘,

𝑦
󸀠
= −𝑥 (𝑡) − 𝑒

−𝑡
𝑦 (𝑡) +

1

2
𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠) + 𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑦
2
(𝑠) ,

𝑡 ̸= 𝑘,

𝑥 (𝑘 + 0) =
1

2𝑘/2
𝑥 (𝑘) ,

𝑦 (𝑘 + 0) =
1

2𝑘/2
𝑦 (𝑘) ,

𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙
1
(𝑡 − 𝑡
0
) , 𝑦 (𝑡) = 𝜙

2
(𝑡 − 𝑡
0
) 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡
0
] ,

(55)

where 𝑥, 𝑦 ∈ 𝑅, 𝑟 > 0 is enough small constant, 𝑡 ≥ 𝑡
0
≥ 0.

Without loss of generality we will assume further that 1 ≥

𝑡
0
≥ 0.
Let ℎ
0
(𝑡, 𝑥, 𝑦) = (‖𝑥‖, ‖𝑦‖), ℎ(𝑡, 𝑥, 𝑦) = (𝑥

2
, 𝑦
2
).

Consider function 𝑉 : 𝑅
2

→ K, 𝑉 =

(𝑉
1
, 𝑉
2
), 𝑉
1
(𝑥, 𝑦) = (1/2)𝑥

2
, 𝑉
2
(𝑥, 𝑦) = (1/2)𝑦

2, where
K = {(𝑥, 𝑦) : 𝑥 ≥ 0, 𝑦 ≥ 0} ⊂ 𝑅

2 is a cone.
Now, let us consider the vector 𝜑

0
= (1, 2). It is easy to

check that the function 𝑉
1
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦) is 𝜑

0
-strongly

ℎ
0
-decrescent with a function 𝜓

2
= 𝑥 ∈ 𝐾 and the condition

(iii) is satisfied for the function 𝑉(𝜇)
2

= 𝑉(𝑥, 𝑦), where 𝑏(𝑢) =
(1/2)𝑢 and 𝑎(𝑢) = 𝑢2.

Let 𝑡 ≥ 0, 𝑡 ̸= 𝑘, 𝑘 = 1, 2 . . . 𝜓 ∈ 𝑃𝐶([𝑡 − 𝑟, 𝑡], 𝑅
2
), 𝜓 =

(𝜓
1
, 𝜓
2
) be such that the inequality

(𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡)))

≥ (𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡 + 𝑠) , 𝜓

2
(𝑡 + 𝑠))) , 𝑠 ∈ [−𝑟, 0]

(56)

or

1

2
𝜓
2

1
(𝑡) + 𝜓

2

2
(𝑡) ≥

1

2
𝜓
2

1
(𝑡 + 𝑠) + 𝜓

2

2
(𝑡 + 𝑠) , 𝑠 ∈ [−𝑟, 0] ;

(57)

then

𝜓
1
(𝑡) max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
1
(𝑠) ≤ 2 (𝜑

0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) ,

𝜓
2
(𝑡) max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
2
(𝑠) ≤ (𝜑

0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) .

(58)

Therefore if inequality (57) is satisfied then

(𝜑
0
⋅ 𝐷
(54)
𝑉 (𝜓
1 (𝑡) , 𝜓2 (𝑡)))

= 𝑒
−𝑡
(− (𝜓

1
(𝑡))
2
− 2(𝜓

2
(𝑡))
2

+𝜓
1 (𝑡) max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
1 (𝑠) + 𝜓2 (𝑡) max

𝑠∈[𝑡−𝑟,𝑡]

𝜓
2 (𝑠))

≤ 𝑒
−𝑡
(−(𝜓
1
(𝑡))
2
− 2(𝜓

2
(𝑡))
2
+ 2 (𝜑

0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡)))

+ (𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) )

= 𝑒
−𝑡
(𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡)))

(59)

or

(𝜑
0
⋅ 𝐷
(54)
𝑉 (𝜓
1
(𝑡) , 𝜓
2
(𝑡)))

≤ 𝑒
−𝑡
(𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) .

(60)

Inequality (60) proves the validity of condition (i) of
Theorem 8 for the function 𝑉

1
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦), where

𝑔
1
(𝑡, 𝑢) = 𝑢𝑒

−𝑡.Meanwhile, inequality (60) proves the validity
of condition (iv) of Theorem 8 for the function 𝑉𝜇

2
(𝑡, 𝑥, 𝑦) =

𝑉(𝑥, 𝑦), where 𝑔
2
(𝑡, 𝑢) = 2𝑢𝑒

−𝑡.
From jump conditions (54) and the choice of vector 𝜑

0

and function 𝑉 we obtain the validity of conditions (ii) and
(v) of Theorem 8 for the functions 𝑉

1
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦) and

𝑉
𝜇

2
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦), where 𝜉

𝑘
(𝑢) = (1/2

𝑘
)𝑢 and 𝜂

𝑘
(𝑢) =

(1/2
𝑘
)𝑢.

Consider following comparison scalar impulsive differen-
tial equation:

𝑢
󸀠
= 𝑢𝑒
−𝑡
, 𝑡 ̸= 𝑘, 𝑢 (𝑘 + 0) =

1

2𝑘
𝑢 (𝑘) , (61)

𝑤
󸀠
= 2𝑤𝑒

−𝑡
, 𝑡 ̸= 𝑘, 𝑤 (𝑘 + 0) =

1

2𝑘
𝑤 (𝑘) . (62)

The solutions of the impulsive differential equation (61)
and (62), correspondingly, are equi-stable and uniform-
integrally stable. Thus, according to Theorem 8 the system
of impulsive differential equations with “supremum” (54) is
(𝐻
0
, ℎ)-uniform-integrally 𝜑

0
-stable.
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4. Conclusion

This paper extends the notions of 𝜑
0
-stability in terms of two

measures to integral 𝜑
0
-stability in terms of two measures

for impulsive differential equations with “supremum” and
establishes a criterion on integral 𝜑

0
-stability in terms of two

measures for such system by using the cone-valued piecewise
continuous Lyapunov functions, Razumikhin method, and
comparative method. Finally, an example is given to illustrate
our result.
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