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Conditional Lie-Bécklund symmetry approach is used to study the invariant subspace of the nonlinear diffusion equations
with source u, = efq"(epxP(u)uT)x + Q(x,u), m+ 1. We obtain a complete list of canonical forms for such equations admit
multidimensional invariant subspaces determined by higher order conditional Lie-Bicklund symmetries. The resulting equations
are either solved exactly or reduced to some finite-dimensional dynamic systems.

1. Introduction

The classical symmetry theory for studying differential equa-
tions is presented firstly by Lie, which has been universally
used and proved to be very effective in similarity reductions
and group classifications [1-7]. However, there exist some
important equations with very small Lie point symmetry
groups. For example, the Fisher equation and Fitzhugh-
Nagumo equation, which are widely used in mathematical
biology, are invariant only under the time and space trans-
lations. This means that the classical symmetry reduction
method is not a proper tool for dealing with these equations.
To overcome this difficulty, several generalized methods have
been developed and established, including the nonclassical
symmetry method (or referred to as the conditional symme-
try method) [8], the weak symmetry method [9, 10], iteration
of the nonclassical method [11], the Clarkson-Kruskal direct
method [12, 13], and the conditional Lie-Bidklund symmetry
(CLBS) method (or referred to as the generalized conditional
symmetry method) [14-16].

CLBS can be regarded as a natural generalization of the
nonclassical symmetry. Therefore, the procedure for com-
puting the CLBSs is about the same as for the nonclassical
method. Furthermore, Galaktionov and Svirshchevski have
shown that the CLBS method is closely related to the invariant
subspace (IS) method; namely, exact solutions defined on ISs
for differential equations or their variant forms can be

obtained by using the CLBS method [17-19]. For nonlinear
diffusion equations (NLDEs), symmetry-related methods,
especially the CLBS method, have been proved to be very
powerful to classify and reduce the considered equations [20-
34]. For example, NLDEs

f ), = (gwwu), o

can be used to describe not only the process by which matter
is transported from one part of a system to another, as a result
of random molecular motion, but they can also represent
many other apparently unrelated phenomena such as heat
conduction in solids or even the stationary notion of a
boundary layer of fluid over a flat plate [35]. In [36], the Lie
point symmetry method has been used to obtain the similar-
ity solutions of the inhomogeneous NLDEs

u, = x 1(xPu"u,) (2)

belonging to the above equations, where nonzero constants p
and g have several applications such as propagation of a ther-
mal wave in an exponential atmosphere. A complete classi-
fication of the symmetry reductions of these equations using
the nonclassical method is given by Saied in [37]. The second-
order CLBSs of these equations have also been studied in [33].
Furthermore, the generalized porous medium equations

u, = (Pwu), +Qu), m#l, (3)
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are considered by using the CLBS method in [34]. Some exact

solutions, defined on the polynomial, trigonometric, and

exponential ISs determined by the CLBSs, are constructed.
In this paper, we mainly discuss the following NLDEs:

u, = e TP Pw)), +Qxu), m#l,  (4)

by means of the CLBS method. Here, P(u) and Q(x, u) are,
respectively, referred to as the diffusion and source terms.
Equation (4) has a wide range of applications in physics, diffu-
sion process, and engineering sciences and has been applied
to describe several situations such as heat conduction by
electrons in a plasma, heat conduction by radiation in a fully
ionized gas, axisymmetric flow of a very viscous fluid, and
turbulent diffusion [38, 39].

The remainder of this paper is organized as follows. In the
following section, we review some necessary notations, def-
initions, and fundamental theorems on the CLBS method.
Equations of the form (4) admitting CLBSs and the corre-
sponding ISs are classified in Section 3. Exact solutions and
reductions of some examples in the resulting equations are
obtained in Section 4. The last section is devoted to conclu-
sions and discussions.

2. Preliminaries

Let us give a brief discussion on the CLBS method. For the
mth-order equation

u, =E(t,x,u,uy,...,u,), (5)
we set
Y
V=)»Dn— (6)
k=0 "oy

as an evolutionary vector field with characteristic 7. Here, we
use the following notations:

D" =D, (D)),
(7)

Q
Eal
<

U= —-.

ox

Definition 1. The evolutionary vector field (6) is said to be a
Lie-Bécklund symmetry of (5) if and only if

V (u, - E)|, =0, (8)

>~

where L is the set of all differential consequences of the
equation; that is,

DIDF(u,—~E)=0, jk=0,1,2,....
9)

Definition 2. 'The evolutionary vector field (6) is said to be a
CLBS of (5) if and only if

V (u; = E)|;ops = 05 (10)

u,—-E=0,

where M denotes the set of all differential consequences of
equation # = 0 with respect to x; that is, Dly = 0,
i=0,1,2,....
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Proposition 3 (Zhdanov [14] and Fokas and Liu [15, 16]).

Equation (5) admits the CLBS (6) if there exists a function

W(t, x,u,n) such that
o

= = [En] + W (t,x,un),

> W (t,x,u,0) =0, (1)

where [E,n] = E'n—n'E, the prime denotes the Fréchet deriva-
tive, and W is an analytic function of t, x, u, u,, and i, D 1,
D211, -

X

An obvious conclusion of this proposition is that (5)
admits the CLBS with the characteristic # if

Dyn|; o0 = O (12)

Here, L and M are given as in Definitions 1 and 2.
For (4), we set the characteristic

o =[gW)], +a, () [g )]y, +-+a(x)g@), (13)

where [g(u)],, = 0'[g(w)]/0x’,i = 1,2,...,],and ] € N.Itis
important to note that if (4) admits CLBS (13), then equation

v, = P 9* [A (vt (vxx + va) +B(v) VL"H]
m

(14)
+C(x,v)
admits CLBS
0=V ta;(X) Vgt +a(x)v. (15)
In fact, (4) and (14) are related as
AW =mP[f o). f W]",
1w )
B(V) = ; WA(V) + A (V) 5 (16)
_Qxf)
o=

where u = f(v) denotes the inverse function of v = g(u).
From (12), we can see that (14) admitting of the CLBS with
the characteristic (15) is equivalent to 11'E[v] [,y = 0; namely,

(E VD +ay () (EWVDgoyye + -+ (%) (E[VDIy =0,
17)

where

El =er [A W <Vxx + ﬁ*’»:) +B(v) VT“] (18)

+C(x,v)

and M is given as in Definition 2. Thus, the linear solution
space

"Vl:W{f1(x)>f2(x)a-~-’fl(x)} (19)
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of linear ordinary differential equation (ODE) # = 0 is invar-
iant with respect to the above operator E[v]; that is,

E

1 1
Zcifi (x)] = Z\Pi (Cl’ Cy .. >Cl) fi(x). (20)
i=1

i=1

It follows that if (14) admits CLBS (15), then (14) has an exact
solution of the generalized separation of variables form

!
v(x,t) = Y C; (1) f; (x), (21)
i=1
where the coeflicients C;(¢) satisfy the [-dimensional dynamic
system

Ci(t) =Y (C, (1),Cy(t),....C, (1), i=1,2,...,1

(22)

Thus, we will determine the forms of (14) so that (14)
admits the CLBS (15), which is equivalent to classify (14) in
terms of the IS (19), or it is equivalent to study the CLBS (13) of
(4).

The following theorem provides us with the estimate to
the maximal dimension of the IS admitted by an mth-order
nonlinear differential operator.

Theorem 4 (Galaktionov and Svirshchevski [19]). If a linear
space W, is invariant with respect to the nonlinear differential
operator E of order m, then there exists an inequality

l<2m+1. (23)

It follows that the order of linear ODE # = 0 is not
greater than five if (14) admits the CLBS (15). This allows us to
classify (14) based on the existence of the generalized variable
separation solutions (GVSSs) (21), which are generated by the
solution space (19) determined by the linear ODE # = 0, or it
is equivalent to study the GVSSs u = f(v) of (4) generated by
o=0.

3. CLBSs and Corresponding ISs of (14)

In view of Theorem 4, it suffices to consider CLBSs (15) of (14)
with 2 < < 5. We first consider the case ] = 2. It implies from
(17) that (14) admits the CLBS (15) if there holds

E W,

— e(p—q)xBHv;n+3 + e(p—q)x

2

+e? P Im (2A" + (m + 1) B) a; - [(m + 1) B+ 2A"] a]

X

A'+2[p-g-(m+ 1)(11]3'}1/"”r2

- [A"v +2A" + 2m + 3) Bv+ mB] a;

A'+(p-q)

2
+p[;(p—q)—2a1

X [B (p-@m+1)ay)- ZalA’] + qu} S

X

4 el { _ (mz _ m) Aaf +[Bm=-2)p-(2m-1)q]

anf + [(4m— DA'v+2m(@m+1)By

+3 (m - I)A] a,a,

+ [—(p—q)(m_ 1p—q)+(3m— l)a{]Aa1

m

+[_(2m+1)A'v+(m—1)Ap
m

_2(‘1)—(,1)(A+A'v+(2m+l)Bv)]a2

A} v

- (2A’v +2A+(m+1) Bv) a;

" !
-a; +(2q-3
n a, +(2q9-3p)a

. [p(p—qf

+eP P~ (3m - 2) (m - 1) Aaja,v
+[(6m —5) p - (4m - 3) q] Ava,a,
+ [(m2 +m)Bv+ (Bm-3)A+(2m-— l)A'v]
xav+ [(3m-1)a, - (3p-q) (p-q)] aAv
+[2q-3p+(Bm=-3)a,] Avay} v
+(m-1)e? P [~ (3m - 4) aya, + 3, +a, (3p - 2q)]
X @ AV — (m = 1) (m - 2) AV VI +vAC

x vy

+2C,, v, +Cy +a, (C—2C,) +a,C, =0,
(24)

where the primes and subscripts denote the derivatives and
the partial derivatives with respect to the indicated variables,
respectively. To vanish all the coefficients of (24), we will have
the following overdetermined system:

[%—al]A"+2[p—q—(m+l)a1]B'=0,
m(2A'+(m+1)B)af—[(m+1)B+2A']a{

- [A"v+2A' +(2m+3)B'v+mB] aé

+p[%(p—q)—2a1]A’

+(p-q)[B(p-Cm+1)a))-2a/A'| + Bg* =0,



[(Bm—2)p—-(2m—1)q| Aa; — (m2 - m) Aa

+ [(4m— DAy +2m(m + 1)Bv+3(m-— 1)A] a,a,

+ [_(p—q)(%p—q>+(3m—l)ai]Aa1

. [_(2m+ DAy + (m-— 1)Ap
m

_z(p—q)(A+A'v+(2m+I)BV)]a2

- (ZA,V +2A+ (m+ 1)Bv) aé

A=0,

2
[P a3

m

[(6m = 5) p — (4m - 3) q] Avaya, — (3m - 2) (m - 1)
X Aafazv + [(m2 + m) Bv+(3m-3)A+(2m-1) A'v]
xayv+[3m-1)a - (3p-q) (p-q)] a,Av
+[2q-3p+(3m—3)a,] Ava, = 0,
[- Bm—4)aya, +3a; + a, 3p - 29)| a,* A = 0,
(m—1)(m-2) Aa)v’ = 0,
C,, =0,

C,, =0,
Cy+a,(C—vC,)) +a,C, =0.
(25)

For general m, it is apparent that B(u) = au + band a, = 0.
Substituting B(u) into the second of the above system, we
arrive at

%A"+2(p—q)a—a1[A"+2(m+1)a]=0. (26)

To solve (26), we can derive three possibilities: a, (x) = s # p/m,
a,(x) = p/m, and a, (x) # constant.

Assume that the diffusion coeflicient P(u) takes power or
exponential forms. From (16), without loss of generality, it is
reasonable to consider the following four cases: (i) A(v) =
klvz, B(v) = k,v; (ii) A(v) = kv, B(v) = ky; (iil) A(v) = ky,
B(v) = ky; and (iv) A(v) = v* (k#0,1), B(v) = 0, where k,
and k, are arbitrary constants.

Case 1 (a,(x) = s+ p/m). In this case, we can derive A =
2mal p—gq-s(m+1)]/(ms—p). Correspondingly, there exist the
following cases: (a) A(v) = (mal[p—q—s(m+1)]/(ms— p))vz,
B(v) = av; (b) A(v) = kv, B(v) = ky; and (c) A(v) = ki,
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B(v) =k, If A(v) = (mal[p—q—s(m+ 1)]/(ms—p))v2, B(v) =
av, the third and fourth equations are simplified as

(m2+m)sz—(p—q)(2m+1)5+(P_61)2:0’
[(mz—m)sz—(p—q) 2m - 1)5+(P_‘1)2] (27)

x(p-qg-s(m+1))=0.

Then, we derive s = (p —gq)/mors = (p — q)/(m + 1).
However, if s = (p — q)/(m + 1), function A(v) turns to zero,
which should be omitted. By the similar calculation, we
obtain a,(x) = (p—q)/mor a,(x) = (p—q)/(m—1) with case
(b), while we derive a, (x) = (p—q)/m with case (c). Therefore,
we have results listed as the 1-6th entries in Table 1 with Case
1.

Case 2 (a,(x) = p/m). In this case, (26) becomes 2a(p — g -
(m + 1)p/m)) = 0, which implies a = 0 or ¢ = —p/m. When
q# — p/m, we have a = 0; the corresponding solution is listed
as the seventh entry in Table 1 with arbitrary A(v). And results
in the case of g = —p/m are presented as the 8-11th entries in
Table 1.

Case 3 (a; (x) # constant). In this case, we can derive

2A”+2(p—q)a:0,
" (28)
A" +2(m+1)a=0,

which arrivesata = 0 ora#0,q = —p/m. When a = 0, it is
easy to solve out A(v) = cv + e. Without loss of generality, we
consider two cases (a) A(v) = k,v, B(v) = k,, and (b) A(v) =
ki, B(v) = k,. If A(v) = k;v, B(v) = k,, we can formulate
a, (x) according to the third equation of (25). Then, substi-
tuting a, (x) into the fourth equation, we have the following
condition:

@m+1)p* +(2m* —=m-1) pg - @m+1)mq’ =0,
(29)
(m+1)p+(m+1)mg=0.

Therefore, for general m, we have g = —p/m. So, we derive
the corresponding result as the 12-13th entries in the Table 1.
By similar calculation, we obtain solution listed as 14-15th
entries in Table 1 with the case of A(v) = k;, B(v) = k,. When
a+0,q = —p/m,itisapparent that A(v) = —(m+1)av" +cv+e;
we assume A(v) = —(m + Dav?, B(v) = av (m# - 1)
without loss of generality. Then, we substitute A(v) and B(v)
into the third equation of (25), acquiring a,(x) = plc(m +
De /™ _1]/m[cme P*™ — 1]. After translation transforma-
tion of x, we have a, (x) = p[(m + 1)e /™ = 1] /m[me P*/™ —
1], which can be seen as the same case with the former one.
Substituting a, (x) into the fourth equation, we find it iden-
tical spontaneously. The corresponding result is listed as the
16th entry in Table 1.

Finally, we have all the solutions listed in the Table 1 with
case of [ = 2 for general m including the special relation
between p and g, where the unknown functions are given as
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w w
T ME\&\&, M x\_N +a =l xg\ﬁ\m\ﬁ +d+av+ Tt&ﬁ&lv - AQN + xx;V T§Ax>lv~>§g wduf(usuy)® = a 01
w
" "
A cw Aﬁs\&‘u +n+§v~|x+§+
T is\e\m“f\s ‘gt a=h -y +uw w w [—-y+uw 6
ﬁ Ax; v + Ax\.\ + xx;v Ax\e‘v\:tu_ wd(uf(rauy)? = a
1+ w ~|v~+§ mw - w )
w x x w xx x
.T VEE\& M x>N + =l gy b+ g + a0+ Tt% + A “g+ >v Ts\s:_ e (ay? = 8
w w .
T RREET&, M x\_N +¥a=U cuydy 2+ g + a0 + ASN + xﬁv b (V) V gy =2 /
w bw - d
. N R 7 9#b (o 24+ +a0) -
{1 mio-ay-2} m e . b-d \bw-d g w . b-d ) 9
A 4+ (*a= + ¥ R I a="4
:EA bui—d VNTQ +A a’ VQA bui—d v *-d)
x T—W x, Wy x
1@ ot m ag—g * = b () o+ g + a0+ A g >v M, g2 =4 S
T+uw . b(1+uw)-d . b-d
w 7 d+b T@>T&Tm>+&+§ov S d A >‘®Q+EV|QIV> x
¢ x xx, _ T+
{1 v wso-ap-2} M S b rw) -dbuw o w . b-d ) 4
wod? g * A g+ ;v A >§|v~;§§ém =
1-w
13 T x u XX N\_ ﬁxﬁ x u xx x 1
T Axvah\s g+ = () +Q+\§+A ag >v Ml 2 =4 ¢
w w .
{1@)f m g 7+ o=l () (i + g + a0 + AQN + §>v LA, g3 =1 z
w
T
u () (fd + ¢ +av) ‘~|x+§+
T«Axvlh,\s *a + %=l -y +w w w I-y+uw I
! b-d ﬁ AQ o v~ T + AQN + §>v Af%v;:; xp-d? = 4
T+ut - -
(61) SI (sD) S4T1O (¥1) uonenby ToqunN

“wi [exauad 10§ (F1) Jo ¢ = 1 M (61) SI pue (S1) SA'TD T 414V],
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b(r +uw)-d b-d
- Fw ¢ - auwt|d ) ————— — L P —
,T ‘ Tl mEZ.ﬁ “a (1~ ey 2] s +*a =l -7 AE\:tET - _ e v b-d T:&A b(1+w)-d v> - 91
wf(rruyl )= [1= g2 (1 +u)]d (T +wig) w 1+
(wi/xd) QN‘IAX>‘+XX>V AR>‘V A 2=
xd /(040 (T3 ) s d By LG
x —~ B AS\RQJ\NS\L w xx u x

.T ,0365 M ' [ 1- a2 (1 +w)|d sk (N fit + + a0+ ASM * §>v o o) = o

w/xd)—
. x : B ﬁ_&\x&lmt\h_ w xx x x WM x

.T Axvavﬂ\s >T|A i QC+ELQ +a=h (X) ofd+d +av+ T+§>+A Azt ;vT:\:t_ Gy = A ¥l

w/xd)—
x —~ B T&ERD\NEH w xXx w
e/ m ! [T = a2 (1 + )] d Hresh () g fd +d +av+ ASM + §>v T Mgy g = ' €l
T \ﬁ u
—~ - T&}R&IQE_E AAXVAMY\. +M%+\§Qv~ |v~+§+
{1 ff m 4 +a=b -y +wy W u -+ a
(1= 2 - 0]d P MO I PREC X
Lt w 1—-yY+w d L w
E77)
" Aﬁs\&\m&+m+>av o H«+§+
T,ﬁs\&‘i\s x>N+§>u: X 1Y+ A1 +u) LW LIy +uw , I
A a v; +A A— + >v A ;‘v AU gy = 4
—_ 1+w (1 = + w)(yf + wiy) d o [+uw )¢ xd(
(61) SI (S1) s41O (1) uonenbyg ToquinN

‘ponunuo) ;[ 41dV],
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fP(x) = e @ D/mx for g+ p,and f(x) = x, for q = p;
FP(x) = e P /m=D)x for g4 p,and f7(x) = x, forq = p;
f1(3)(x) = [me P*Im - 1](m+1)/m, form+ — 1 and ff”(x) =
In(1 + ), form = —1.

For special m, it is noted that we can combine some terms
in (24). This leads to new overdetermined system which is
different from (25). Therefore, there exist new forms of (14)
admitting CLBS (15) and IS (19) with [ = 2, which are not
included in Table 1.

For m = 3, it follows from (24) that the coeflicients in (14)
and (15) satisty

"

B =0,
p " "
3@ A" +2(p-q-4a;)B =0,
3(2A" +4B)a; - (4B+24") a,
—(A"v+2A'+9B'v+3B)a;+p[§(p—q)—2al]A'
+(p-9q) [B (p-7ay) - 2“1A’] +Bq’ =0,
(7p - 5q) Aa; — 6Aa; + (11A"v +24Bv + 6A) aya,

[ 8
+|-(p-a)(5p-a) + 4] Aa,
r !
+ —%p—2(p—q)(A+A'v+7Bv)]a2
—(2A'v+2A +4Bv)a,
P(P_CI)Z " i
+ T—al+(2q—3p)a1 A=0,

(13p - 9q) Ava,a, — 14Aa’a,v + (IZBV +6A + 5A'v)

x av+ [8a; - (3p - q) (p— )] e, Av
+(2q-3p +6a,) Ava, + C,e P™9* = 0,
2609 [—5(11(12 +3a, +a,(3p - 2q)] a, A

+2C,, =

Cyor — 24av + a, (C—vC,) +a,C, = 0.
(30)
Solving the above system by the same approach, we can obtain
new results which are presented in Table 2. Similarly, we also
list new results in Table 2 for other special m.

The unknown functions in Table2 are given in the
following:

1

4 2 4 ~(p/2

fl( ) (x) = e PIP¥) fz( ) (x) = xe P12, forq=—5P,
FO () = G0 () -0l

1
f ~Zp;
or q# 2p

7
_ _ 1
O = 9 ) = xe P forq = 2p,
fl(S) (x) = eMDE1H=3(p=29)/5p=69)) (p-9)x
f2(5) (x) = e—(1/2)(1+\/—3(P—Zq)/(5p-6q))(p-q)x,
for (p - Zq) (Sp - 6q) <0,
3(p—2 -
fl(S) (x) = e V2P gipy \/—(p 9) P-4, ,
5p—-6gq 2
3(p—2 -
19 (x) = e WP o Mux ’
5p—-6q 2
for (p - Zq) (Sp - 6q) > 0;
_ _ 1
FO) = A9 () = xe P forg = 2p,
—((p— 1
f1(6) (x)=e ((p q)/2)x, f(6) (x) = P+‘1)/6)x for q# Ep’
_ _ 5
FD(x) = e @ £ (%) = xe PO, for q = P
f1(7) (x) = —(p— q)x f2(7) (x) = e((zp—3q)/3)x’
5
for - D;
a%p
_ _ 1
8 (x) = e P12, f2(8) (x) = xe PP* for q= _EP’
_ —((p— 1
1(3) (x)=e (p/2)x’ f(8> (x)=e ((p q>/3)x) for q+ - EP’

9 - )2 9 -((p—-9)/2
fl( )(X) ((P q)/2)x ) f2( )(x) = xe ((p—q)/ )X’

for pk —3gk +4p — 69 =0,

f(9) (x) = e(1/2)(*P+q+\/(*(P*q)(Pk*3qk+4pf6q))/(k+2))x
1 b

f2(9) (x) = 67(1/2)(p*q+\/(*(p*q)(pk*3qk+4p*6q))/(k+2))x
for (pk —3gk+4p—6q)(p—-q)(k+2) <0,

AC))
P SmGJ(P—q) (pk—sqk+4p—6q>x>,

k+2

£ @)
e WUD(p-)x o (l\/(l’ - q) (pk - 3gk + 4p — 69) >
2 bl

k+2

for (pk—3gk+4p—-6q)(p—q)(k+2)>0;

00) (o) = o -0/2x (10) () (-l

for p - q—



8
fl(lo) (x) e—((p—q)/z)x, f(lo) (x) = —((k+1) (p+q)/(4k+10))x
for p-q# <L (p+);
2k+5
_ - 1
fl(n) (x) = e P12 fz(“) (x) = xe PP* for q= E‘D’
. 1
AP =5 100 =T for g o ps
- 2
(12 (x) = e PP f2(12) (x) = xe P% for q= 51),
(12 (x) = P+q)/5)x f2(12) (x) = e—((3P—2q)/5)x’

2
for q:#;p;

@) (x) = e P70, 1 (x) = xe P,

for s =2p - 2g,
(13 (x) (p q)x f2(13) (x) _ e(p—q—s)x)
for s#2p - 2g;
f1(14) (X) _ e\/(s/2p)x) f1(14) (X) _ e—x/(s/Zp)x’
for sp < 0,
f1(14) (X)=sin<\j—%x>, 1(14) (x)=cos<\/—%x>,
for sp > 0;
pPx
(15) _ €
p )= j se?* — ldx

31

When | = 3,4, by similar calculation, we can
derive the classification result listed in Table 3, where
FI9(x) = e @D for g4 p,and £ (x) = x, for q = p;
f217 (x) = xe PP* f(ls)(x) x%e” P for (2p — 3q)
(p q) =0, and f2(17)(x) _ e( p+q++—-(2p— 3q)(p q)x, f317(x) —
eCPrN=RP=3aP=a)x for (2p — 3g)(p - q) < 0,and £I7(x) =

e P D% sin(\J2p - 39)(p — )x), 7 (x) e e

cos( 2p-39)(p- q)x) for 2p-3q)(p— q)>0f(18)(x)
—(p/3)x f(lg)(x) — —(p/3)x f(18) (P/3)x) forq _

(2/3)]7, and f1(18)(x) (P q)x f2(13)( ) *((3P*2q)/5)x’
F¥(x) = e PP for g (2/3)p.

For I = 5, we find that the overdetermining system is
inconsistent. So, there are no CLBSs (15) and ISs (19) for (14).

4. CLBS (13) and Reductions of (4)

For (16), we can transfer the CLBS (15) of (14) into CLBS (13)

of (4); that is,
B B 1 B(v)
u=fWw = J o) exp HmA(v)dV ] dv,

Abstract and Applied Analysis

P(u) =

>

AW 1 (g )

Q(X,I/l) = f, (g (u))c(r»g(”)) >

(32)

where v = g(u) is the inverse function of u = f(v) as referred
above. Hence, the GVSS of (4) can be derived from the GVSS
(21) with the transformation u = f(v). Here, the GVSS
(21) is defined on IS (19) determined by the linear ODE
n = 0, where 77 is given by CLBS (15). The coeflicient functions
C;(t) (i = 1,2,...,1) are determined by a finite-dimensional
dynamic system. For simplification, we just give some exam-
ples to illustrate our approach. Here, we pointed out that the
selection of examples is random.

Example 5. Equation

utzefpx( P utu ) +oln(u)u

(33)
+[B+yln(1+eP)]u
admits the CLBS
0 = [In(u)],, - —L—[In(w)],. (34)
eP* +1
The corresponding GVSS is given by
u (x t) _ ecl(t)+C2(t)ln(1+eP") (35)

where C,(t) and C,(t) satisfy the 2-dimensional dynamic
system

1
Ci=c—+1+ocC1+ﬁ,

2 (36)
C; =aC, +y.
When « = 0, we have
In (pt +
= ([3+1)t+M+CI,
Y (37)
C, =yt +oc,
with arbitrary constants ¢; and ¢,. If a # 0, we have
1 1 —ype ™
C, :—ﬁL+—+GZ“ n(czo; re )+C1s
o Y 14
(38)

ot

:Cle —_ N

RI=

with arbitrary constants ¢; and c,.
Example 6. Equation

ut=e7px( Py ) - 2s+au

—~ —~ )
+ [ﬁsin<\j—2—px> + )/cos<\]—5x>] u?
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with s # 0 admits the CLBS

o= (ufl/z) _ iuq/z'

XX 2p

The corresponding GVSS is given by

S — -2
u(x,t) = [Cl(t) sin<\/—$x> + C,(1) cos(J—ix)] ,

(41)

where C,(¢t) and C,(t) satisty the 2-dimensional dynamic
system

3/2
Ci=(c2+) [—4(32(—2—;) + scl] - % («C, + ),

s 32 1
c;=(cf+c§)[4cl<—2—p> +sC2] - (G +y).
(42)

Example 7. Equation

u, = e_qx(epxu3u;2)x .4 2ue(‘D_q)x +au
(p+9) (43)
+ (B + e 0Dm) Crrrpro)

with p # g, —q admits the CLBS

—((p-q)/2 P—4q/ —p-912
o= (u ((p-q)/ (p+q))) _ —(u ((p-)/ (p+q)))x. (44)

XX 2

The corresponding GVSS is given by

(45)

>

- -2(p+9)/(p-q))
U (x,1) = [Cy(8) + Cy(p)e b /2| IR

where C,(t) and C,(t) satisty the 2-dimensional dynamic
system

P9
20p+q)yc: 2(p+a)

CI Z_Q(p_CI)C?

(aCy +B),

(46)
o _q(P-q)3C? _ P ey,
20p+q)°c, 2(p+q)
Example 8. Equation
u, = 67(21’/3)’6(epxufc))C - éiie(pmxu2 (47)
admits the CLBS
2 »
O = Uy + Plh + Tty + ot (48)

The corresponding GVSS is given by

u(t) = [C, (O +C, (M) x+Cy (7] e DY, (49)

15

where C,(t), C,(t), and Cs(t) satisty the 3-dimensional
dynamic system

1
C = -3 (4pC,C; + pC; - 12C,C5)

1
C; =73 (8pC2C3 - 24C§) ) (50)
380G
=2

This system has the following exact solution:

1 G p +12¢ p°\[8pt+c,+(6561+18c, p) In [8pt+c,]
12 p* (8pt+c;)
_ po, +9In [8pt + 6]

p(8pt+c)

B 3
S 8pttc

C

>

2

3

(5)
Example 9. Equation

u, = e(P/z)x(epxu_3ui)x + o+ (ﬁ +ye Px )Le_Px) u’

(52)
admits the CLBS
2
g=(1> +%<l> +P_<l) . (53)
U/ xxx 2 \u/xx 2 \u/x
The corresponding GVSS is given by
1
u(x,t) (54)

TG+ C, (e PP C, (e X

where C,(t), C,(t), and C,(t) satisfy the 3-dimensional
dynamic system

P, P
!
C = _ECZ + 7C1C2C3 —(aC; + p),
3
55
G =-Lac,+ pec-(acy+y), P
Cy=—(aCs+1).
Example 10. Equation
u, = e(p/3)x(epxu_4ui)x +oau
(56)

+ (ﬁ + ye—(P/3)x N Ae—(Zp/S)x) S

admits the CLBS

2
o= () p( )+ () @)
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The corresponding GVSS is given by

u(x,t) = [Cl(t) + Cz(t)e—(P/3)x N CS(t)e—(zp/3)x]*3/2,

(58)

where C, (1), C,(t), and C;(¢) satisfy the 3-dimensional dyna-
mic system

1 2
Cl = ﬁp‘*cg (4c,Cy-C3) - 3 (aC, + ),
1 2
C, = < p'C,C, (4C,Cy - C3) - 3 (aCy +7), (59)

T P 2y 2
Cy=p'Cs (4C,Cy - C3) - S (aCs +2).
Example 11. Equation

u, = e(p/z)x(epxui)x + o+ f+ye P¥ 4 N P

(60)
4 pe P12
admits the CLBS
The corresponding GVSS is given by
u(xt)=Cy (1) +C,y () e P+ Cy (1) e /P> .

+Cy (£) e PP,
where C,(t), C,(t), C5(t), and C,(t) satisty the following 4-
dimensional dynamic system:

p3
C, = —7C2C3 +aC, + B,

9 3
cl = —%CZQ taC, +y,
(63)
' 50 3P
C3 =-p C2 - TC3C4 + 06C3 + /\,
9 3
C, = —%Cﬁ L aC, +

5. Conclusions and Discussions

In this paper, we have applied the CLBS method with ISs to
study (4). The transformed equations (14) admitting CLBSs
(15) are listed in Tables 1, 2, and 3. The corresponding reduced
equations of the resulting equations are finite-dimensional
dynamic systems defined on W,. Some concrete examples are
illustrated in Section 4. Generally speaking, these reductions
cannot be obtained in the frameworks within the Lie point
symmetry method and the nonclassical symmetry method.
Of course, we mention that the asymptotical behavior, blow-
up, extinction, and geometric properties for these finite-
dimensional dynamic systems are worthy of further study.

Abstract and Applied Analysis

For NLDEs, we find that the CLBS method plays a key
role in the study of their asymptotical behavior, blow-up,
extinction, and geometric properties because of the diversity
of solutions obtained by this method. Although this is an
effective and complete method, there are still some important
problems to be studied. How to study higher-dimensional
NLDEs and systems via the CLBS method? How to deal with
the initial value problems by means of the CLBS method? Is it
possible to apply the CLBS method to other types of evolution
equations?
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