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Evolution problem is now a hot topic in the mathematical biology field. This paper investigates the adaptive evolution of pathogen
virulence in a susceptible-infected (SI) model under drug treatment. We explore the evolution of a continuous trait, virulence of
a pathogen, and consider virulence-dependent cure rate (recovery rate) that dramatically affects the outcome of evolution. With
the methods of critical function analysis and adaptive dynamics, we identify the evolutionary conditions for continuously stable
strategies, evolutionary repellers, and evolutionary branching points. First, the results show that a high-intensity strength drug
treatment can result in evolutionary branching and the evolution of pathogen strains will tend towards a higher virulence with the
increase of the strength of the treatment. Second,we use the critical function analysis to investigate the evolution of virulence-related
traits and show that evolutionary outcomes strongly depend on the shape of the trade-off between virulence and transmission.
Third, after evolutionary branching, the two infective species will evolve to an evolutionarily stable dimorphism at which they can
continue to coexist, and no further branching is possible, which is independent of the cure rate function.

1. Introduction

Virus leads to the spread of the disease, which attracts
the attention and research of many researchers [1–10]. In
this paper, we will use a classical susceptible-infected (S-
I) epidemic model and assume that all hosts are equally
susceptible [1, 2]. Once infected, the host may either die or
recover from drug curing, and then, the host becomes fully
susceptible again. The model considers a pathogen which
increases the mortality of infected hosts by its virulence and
whose rate of transmission to uninfected hosts depends on
its virulence. High virulence of the pathogen reduces cure
rates of infected individuals.There is much good work on the
evolution between transmission and virulence [1–5], but the
work on the evolutionary adaptive dynamics between drug
treatment and virulence is very little (note that this situation
is very common in evolutionary ecology and supported by
empirical data [6]). Our main aim is to explore how the
strength of treatment affects the outcome of evolution. The
outcome of evolution often depends on traits which influence

infectious ability such as virulence.Therefore, as a phenotype
trait, virulence of the pathogen will be taken as an object
of study. The evolution of pathogens recently has focused
especially on influence virulence and on reasons for the
coexistence of parasite strains [2, 7, 8]. Here, we develop an
epidemiological model to study the effect of drug treatment
on the evolution of pathogen virulence. The model is based
upon adaptive dynamics [11–19], inwhichwe explore not only
the coexistence of parasite strains but also continuously stable
strategy and evolutionary branching.

The rest of the paper is organized as follows. In Section 2,
a susceptible-infected model under drug treatment is first
proposed and then the fitness of mutant strains will be
deduced. In Section 3, the critical function analysis and
adaptive dynamics are carried out to investigate evolution-
ary dynamics in a monomorphic state. Section 4 discusses
the dimorphic coexistence and coevolution of two parasite
strains. We then conclude our paper in Section 5 with
discussions.
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2. Model and Demographic Properties

The epidemic model itself for influenza and venereal disease
is of the simplest kinds, it is assumed that the cured infective
hosts recover and become susceptible, and thus infection
is not permanent as they have recovery rate. The infective
individuals, although possibly subject to a higher mortality
and lower fertility than the susceptible, are otherwise active
in the population. The model considers a pathogen which
increases the mortality of infected hosts by its virulence 𝑥,
and an increase in transmission rate can only evolve with
a parallel increase in virulence. In this model, we take into
account treating, and the recovery becomes susceptible after
the infective individuals are cured. It is assumed that an
increase in virulence can evolve with a decrease in cure rate
(recovery rate).

2.1. Monomorphic Evolutionary Dynamics. In this subsec-
tion, in case of amonomorphic infective populationwith trait
𝑥, the host dynamics becomes

𝑆


(𝑡) = 𝜆𝑁 − 𝜇 (𝑁) 𝑆 − 𝛽 (𝑥) 𝑆𝐼 + ℎ (𝑥) 𝐼,

𝐼


(𝑡) = 𝛽 (𝑥) 𝑆𝐼 − 𝜇 (𝑁) 𝐼 − 𝛼 (𝑥) 𝐼 − ℎ (𝑥) 𝐼,

(1)

where 𝑆 and 𝐼, respectively, represent the density of the
susceptible population and the infected population at time
𝑡, with total population density 𝑁 = 𝑆 + 𝐼, 𝜆 is per capita
birth rate, and ℎ(𝑥) is the cure rate (the recovery rate) related
to virulence of the pathogen. The population is subjected
to density-dependent mortality given by the continuous,
monotone increasing function 𝜇(𝑁), the infectives suffer
also an additional mortality 𝛼(𝑥) due to disease, and the
transmission rate 𝛽(𝑥) depends on virulence of the pathogen.

Concerning the effect of virulence 𝑥 of the pathogen on
the transmission rate 𝛽(𝑥), mortality 𝛼(𝑥) due to disease
and the cure rate ℎ(𝑥), biological considerations dictate the
properties: 𝛽(𝑥) and 𝛼(𝑥) are continuous and increasing
functions, while ℎ(𝑥) is a continuous and decreasing function
because strong virulence means large transmission rate, large
mortality due to disease, and small cure rate.

In this model we assume linear density-dependent mor-
tality. Let 𝜇(𝑁) = 𝐴 + 𝐵𝑁 such that, in absence of the
pathogen, the host exhibits logistic growth. Without loss of
generality we adopt the values 𝐴 = 𝐵 = 1. Now setting the
right-hand sides of (1) to 0, when

𝛽 (𝑥) >

𝜇 (𝑁
∗
) + 𝛼 (𝑥) + ℎ (𝑥)

𝑁
∗

(2)

is satisfied, the system (1) has a unique stable positive
equilibrium (𝑁

∗
(𝑥), 𝑆
∗
(𝑥), 𝐼
∗
(𝑥)) [14], where

𝑁
∗

(𝑥) = (𝛼 (𝑥) − 𝛽 (𝑥) + 𝜆𝛽 (𝑥) − 𝛼 (𝑥) 𝛽 (𝑥)

+√−4 (𝜆 + ℎ (𝑥)) (1 + ℎ (𝑥) + 𝛼 (𝑥)) 𝛽(𝑥)
2
+ ((1 + 𝜆 + ℎ (𝑥)) 𝛽 (𝑥) + 𝛼 (𝑥) (1 + 𝛽 (𝑥)))

2

) (2𝛽 (𝑥))
−1

,

𝑆
∗

(𝑥) = (𝛼 (𝑥) + 𝛽 (𝑥) + 𝜆𝛽 (𝑥) + 2ℎ (𝑥) 𝛽 (𝑥) + 𝛼 (𝑥) 𝛽 (𝑥)

+√−4 (𝜆 + ℎ (𝑥)) (1 + ℎ (𝑥) + 𝛼 (𝑥)) 𝛽(𝑥)
2
+ ((1 + 𝜆 + 2ℎ (𝑥)) 𝛽 (𝑥) + 𝛼 (𝑥) (1 + 𝛽 (𝑥)))

2

) (2𝛽(𝑥)
2
)

−1

,

𝐼
∗

(𝑥) = 𝑁
∗

(𝑥) − 𝑆
∗

(𝑥) .

(3)

To find the invasion fitness for a mutant infected pop-
ulation, we extend the resident population model (1) by
introducing a mutant infected population 𝐼

𝑦
. If the mutant

infected population with a slightly different trait 𝑦 enters into
the resident susceptible-infected system at a low density, the
resident-mutant population dynamics is given by

𝑆


(𝑡) = 𝜆𝑁 − 𝜇 (𝑁) 𝑆 − 𝛽 (𝑥) 𝑆𝐼 − 𝛽 (𝑦) 𝑆𝐼
𝑦

+ ℎ (𝑥) 𝐼 + ℎ (𝑦) 𝐼
𝑦
,

𝐼


(𝑡) = 𝛽 (𝑥) 𝑆𝐼 − 𝜇 (𝑁) 𝐼 − 𝛼 (𝑥) 𝐼 − ℎ (𝑥) 𝐼,

𝐼


𝑦
(𝑡) = 𝛽 (𝑦) 𝑆𝐼

𝑦
− 𝜇 (𝑁) 𝐼

𝑦
− 𝛼 (𝑦) 𝐼

𝑦
− ℎ (𝑦) 𝐼

𝑦
.

(4)

Here, 𝐼
𝑦

denotes the population density of the mutant
infected population at time 𝑡. One ecological equilibrium
of the resident-mutant model (4) is (𝑆∗(𝑥), 𝐼∗(𝑥), 0), where
𝑆
∗
(𝑥) and 𝐼∗(𝑥) are the same as those in (3). Just before the

occurrence of themutation, the resident populations are close
to the steady state (3) of the resident population model (1)
or land at it. Thus, just after the small and rare mutation, the
resident and mutant populations are close to the ecological
equilibrium ofmodel (4), 𝐼∗(𝑥) and 0, respectively. However,
the stability of the equilibrium (𝑆

∗
(𝑥), 𝐼
∗
(𝑥), 0) of model (4)

determines whether or not the mutant predators can invade.
The stability of the extinction equilibrium (𝑆

∗
(𝑥), 𝐼
∗
(𝑥), 0) is

governed by the following Jacobianmatrix 𝐽, that results from
straight forward linearization:
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𝐽 =
(

(

𝜆−

𝜕𝜇 (𝑁
∗
)

𝜕𝑆
∗

− 𝜇 (𝑁
∗
) − 𝛽 (𝑥) 𝐼

∗
𝜆 −

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝑆
∗
− 𝛽 (𝑥) 𝑆

∗
+ ℎ (𝑥) 𝜆 −

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝑦

𝑆
∗
− 𝛽 (𝑦) 𝑆

∗
+ ℎ (𝑦)

𝛽 (𝑥) 𝐼
∗
−

𝜕𝜇 (𝑁
∗
)

𝜕𝑆
∗

𝐼
∗

−

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝐼
∗

−

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝑦

𝐼
∗

0 0 𝛽 (𝑦) 𝑆
∗
− 𝜇 (𝑁

∗
) − 𝛼 (𝑦) − ℎ (𝑦)

)

)

. (5)

To show its structure, we rewrite matrix 𝐽 in a way that
uses its block-triangular form:

𝐽 = (

𝐽res 𝐽
1

0 𝐽mut
) , (6)

where

𝐽res =
[

[

[

[

[

𝜆 −

𝜕𝜇 (𝑁
∗
)

𝜕𝑆
∗

− 𝜇 (𝑁
∗
) − 𝛽 (𝑥) 𝐼

∗
𝜆 −

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝑆
∗
− 𝛽 (𝑥) 𝑆

∗
+ ℎ (𝑥)

𝛽 (𝑥) 𝐼
∗
−

𝜕𝜇 (𝑁
∗
)

𝜕𝑆
∗

𝐼
∗

−

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝐼
∗

]

]

]

]

]

, 0 = (0, 0) ,

𝐽
1
= [𝜆 −

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝑦

𝑆
∗
− 𝛽 (𝑦) 𝑆

∗
+ ℎ (𝑦) , −

𝜕𝜇 (𝑁
∗
)

𝜕𝐼
∗

𝑦

𝐼
∗
]

𝑇

, 𝐽mut = 𝛽 (𝑦) 𝑆
∗
− 𝜇 (𝑁

∗
) − 𝛼 (𝑦) − ℎ (𝑦) .

(7)

Here 𝐽 is an upper triangular matrix, so its eigenvalues are
given by the eigenvalues of the diagonal blocks, 𝐽res and 𝐽mut.
We have already acquired that if (2) holds, (𝑆∗(𝑥), 𝐼∗(𝑥))
is globally asymptotically stable before mutant predators
appear, which implies the eigenvalues of 𝐽res have negative
real parts.Therefore, if 𝐽mut < 0, then all eigenvalues of 𝐽 have
negative real parts, the equilibrium (𝑆

∗
(𝑥), 𝐼
∗
(𝑥), 0) of system

(4) is stable, and the mutant cannot invade. Otherwise, they
can invade. So the relevant is the single element of 𝐽mut, which
we define as

𝑠
𝑥
(𝑦) = 𝛽 (𝑦) 𝑆

∗

(𝑥) − 𝜇 (𝑁
∗

(𝑥)) − 𝛼 (𝑦) − ℎ (𝑦) , (8)
where 𝑠

𝑥
(𝑥) = 0.

Note that 𝑠
𝑥
(𝑦) is just the per capita growth rate of hosts

infected with the mutant strain. If 𝑠
𝑥
(𝑦) > 0, the abundance

of mutant infected strains will initially increase, the mutant
strains can successfully invade the resident strains; while if
𝑠
𝑥
(𝑦) < 0, mutant infected strains cannot invade, and they

are doomed to extinct.Thus, 𝑠
𝑥
(𝑦) is, namely, invasion fitness

[15], so we think the invasion fitness determines the fate of
mutant infected strains.

From (8), we can clearly see that there are two aspects of
the environment, into which a mutant enters, that influence
its invasion fitness: the density of the susceptible and the total
density of hosts (which acts through the density-dependent
mortality).These are both functions of the resident strain and
will thus act as feedback variables in the evolutionary process.
When mutations are very small, trait 𝑦 and trait 𝑥 are similar
to each other and we have as a linear approximation of the
mutant’s fitness [13]

𝑠
𝑥
(𝑦) = 𝑠

𝑥
(𝑥) + 𝐷 (𝑥) (𝑦 − 𝑥) , (9)

where𝐷(𝑥) = (𝜕𝑠
𝑥
(𝑦)/𝜕𝑦)|

𝑦=𝑥
.

If 𝐷(𝑥) > 0, it is clear that only mutants with 𝑦 > 𝑥

can invade and take over resident infected strains, whereas
if 𝐷(𝑥) < 0, then it is only possible for mutants with 𝑦 < 𝑥.
The virulence thus evolves in the direction of the local fitness
gradient until it reaches the neighborhood of a strategy for
which 𝐷(𝑥) is zero. A strategy 𝑥∗ for which the local fitness
gradient is zero is called an evolutionarily singular strategy
[13]; that is,

𝐷(𝑥
∗
) =

𝜕𝑠
𝑥
(𝑦)

𝜕𝑦








𝑦=𝑥=𝑥

∗

= 𝛽

(𝑥
∗
) 𝑆
∗
(𝑥
∗
) − 𝛼

(𝑥
∗
) − ℎ

(𝑥
∗
) = 0

⇒ 𝛽

(𝑥
∗
) =

𝛼

(𝑥
∗
) + ℎ

(𝑥
∗
)

𝑆
∗
(𝑥
∗
)

.

(10)

Since mutations are random and very small, the evolu-
tionary model of virulence 𝑥 can be given by

𝑑𝑥

𝑑𝑡

=

1

2

𝛿𝜎
2
𝐼
∗

(𝑥)𝐷 (𝑥) , (11)

where 𝛿 is the probability of individual mutation which
is born in resident infected population; 𝜌2 is the variance
of mutation distribution of infected population; (1/2)𝛿𝜌2 is
mutational rate of the infected; 𝐼∗(𝑥) is the population density
of the resident infected at positive equilibrium.

A singular strategy 𝑥∗ is evolutionarily stable strategy
(ESS) [16] if no nearby mutant can invade, in other words,
if 𝑠
𝑥
∗(𝑦) < 0 for all 𝑦 ̸= 𝑥

∗ in a neighborhood of 𝑥∗. If the
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singular strategy 𝑥∗ is a local fitness maximum, it is a local
ESS satisfying

𝜕
2
𝑠
𝑥
(𝑦)

𝜕𝑦
2









𝑦=𝑥=𝑥

∗

= 𝛽

(𝑥
∗
)

𝛼

(𝑥
∗
) + ℎ

(𝑥
∗
)

𝛽

(𝑥
∗
)

− 𝛼

(𝑥
∗
) − ℎ

(𝑥
∗
) < 0.

(12)

Since at 𝑥∗ the sign of the local fitness gradient changes
from positive to negative, 𝐷(𝑥) is a decreasing function with
respect to 𝑥. Directional evolution of resident infected strain
can approach singular strategy, so the singularity must be
convergence stable [15], if

𝑑𝐷(𝑥)

𝑑𝑥








𝑦=𝑥=𝑥

∗

=

𝑑

𝑑𝑥

[

𝜕𝑠
𝑥
(𝑦)

𝜕𝑦








𝑦=𝑥

]










𝑥=𝑥
∗

=

𝜕
2
𝑠
𝑥
(𝑦)

𝜕𝑦
2









𝑦=𝑥=𝑥

∗

+

𝜕
2
𝑠
𝑥
(𝑦)

𝜕𝑦𝜕𝑥









𝑦=𝑥=𝑥

∗

< 0.

(13)

A singularity that is not only evolutionarily stable but also
convergence stable is said to be a continuously stable strategy
(CSS) and will represent a stable endpoint of evolution. In
this case, the continuously stable strategy satisfies (12) and
(13), and thus the resident pathogen has a maximum fitness.
However, if (13) holds but (12) does not, gradual evolution
will proceed towards a singularity atwhich anynearbymutant
can invade such that the resident pathogen can undergo
evolutionary branching and in which case the singularity
will become an evolutionary branching point. The evolving
pathogen will turn dimorphic after evolutionary branching.
At least initially, the dimorphic pathogens will evolve away
from the singularity and thus apart from one another. If (13)
does not hold, the singularity is a repeller.

In this model, we choose the cure rate function, transmis-
sion rate function, and mortality function of infected hosts
like this:

ℎ (𝑥) = 𝑐(1 −

1

1 + V exp (−𝑥/ (1 + 𝑝))
) ,

𝛽 (𝑥) =

𝑎𝑥

𝑏 + 𝑥

(1 − 𝐾 exp(−
(𝑥 − 𝜇)

2

𝜎
2

)) ,

𝛼 (𝑥) = 𝑥,

(14)

where 𝑝 represents the strength of treatment disturbance [7,
17].

We use “pairwise invasibility plot” (PIP) to study how the
strength of treatment affects the outcome of evolution. So
we choose three different values of 𝑝, we have plotted three
PIPs in Figure 1, in which 𝑥-axis and 𝑦-axis represent the
resident strategy and the mutant strategy, respectively. We
look along a vertical line through the evolutionary singular
strategy on the 𝑥-axis. By the conditions of ESS-stability,
we know if the singular strategy 𝑥∗ is ESS-stable, it will
satisfy that the vertical line through 𝑥∗ lies completely inside

a region marked “−” corresponding to mutants for which
𝑠
𝑥
(𝑦) < 0 and which therefore cannot invade; we can

see when 𝑝 = 0.5, the singular strategy is an ESS (see
Figure 1(a)). Figure 1(a) shows that when𝑝 = 0.5, the singular
strategy is not only ESS-stable but also convergence stable,
so the singular strategy 𝑥∗ is a CSS. By the conditions of
evolutionary branching, we know if the singular strategy is
convergence stable, but not evolutionarily stable, the parts
of vertical line inside a region marked “+” correspond to
strategies on the 𝑦-axis for which 𝑠

𝑥
(𝑦) > 0 and hence denote

potentially invading mutants. Obviously when 𝑝 = 6 and 𝑝 =
8, the mutant pathogen strains can invade, so evolutionary
branching occurs (see Figures 1(b) and 1(c)).

2.2. The Effect of Treatment Disturbance Strength on Evolu-
tionary Dynamics. Correspondingly, we plot the bifurcation
diagram in Figure 2, and through the diagram we can see
the singular trait values (the virulence 𝑥) as a function of
the strength of the treatment 𝑝, which shows the stability
properties of the singular strategy will change due to the
changing values of 𝑝. An increase in values of 𝑝 will parallel
increase in the singular trait values (the virulence 𝑥). This
shows an increase in the strength of the treatment can lead
to stable evolution towards larger virulence 𝑥. This means
the pathogen strain will have immunity against drugs. Then
the strain outcompetes its rivals and gives birth to the higher
virulence mutant pathogen strains. In the lower part, when
𝑝 is near zero, that is to say, the cure rate is very small, then
there is an ESS, but it loses ESS-stability when 𝑝 > 1.49; then
all convergence stable singularities are branching points. It is
easy to see that a low strength drug treatment may induce a
continuously stable strategy, while a high strength treatment
can induce evolutionary branching. Moreover, there is a
complicated evolutionary dynamics including evolutionary
branching, CSS, and repeller when 𝑝 > 7.5.

3. Critical Function and Evolutionary Analysis

As stated above, we specify the 𝛼(𝑥) and ℎ(𝑥) as (14), the
parameters V < 1, 𝑐 and 𝑝 are constants, and the values of 𝐾
decide the convexity of the trade-off function 𝛽(𝑥); we know
if the trade-off function 𝛽(𝑥) is concave, the evolutionary
dynamics of this model leads to ESS. However, this may not
be the case when the trade-off is partly convex, for which such
a singularity can constitute an evolutionary branching point
or repeller [7]. From the second equation of system (1), we
have

𝑆
∗

(𝑥) =

𝜇 (𝑁
∗
(𝑥)) + 𝛼 (𝑥) + ℎ (𝑥)

𝛽 (𝑥)

. (15)

As such (10) constitutes a differential equation which
together with (15) can be expressed as

𝛽


crit (𝑥) =
𝛽crit (𝑥) (𝛼


(𝑥) + ℎ


(𝑥))

𝜇 (𝑁
∗
(𝑥)) + 𝛼 (𝑥) + ℎ (𝑥)

. (16)

The solutions of (16) define curves in the 𝑥 − 𝛽crit-
plane that have the slopes required by (10) at all points,
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Figure 1: Pairwise invasibility plots. The resident and mutant strategies are denoted by 𝑥 and 𝑦, respectively. The shaded areas marked with
“+” indicate the combinations of 𝑥 and 𝑦 for which the fitness of the mutant, 𝑠

𝑥
(𝑦), is positive. Arrows indicate the direction of disruptive

selection which implies convergent stability. Black bullet 𝐴 = evolutionarily stable singular strategy, red bullet 𝐵 = evolutionary branching
point, and blue bullet 𝐶 = repeller. (a) Only one singular strategy is a CSS when 𝑝 = 0.5; (b) only one singular strategy is an evolutionary
branching point when 𝑝 = 6; and (c) multisingular strategies 𝑝 = 8. Model parameters: 𝑎 = 200, 𝑏 = 10, 𝜇 = 6, 𝜎 = 10, 𝑐 = 2, V = 0.8,𝐾 = 0.3,
and 𝜆 = 10.25.

with different initial values yielding alternative curves. These
curves are referred to as critical functions [7, 8], and sin-
gular strategies are those values of virulence for which the
trade-off is tangential to any such critical function. Then
we superpose a trade-off function 𝛽(𝑥) onto the critical
functions, which confirms the existence and identifies the
directions of the singularity for this and any other choice
of trade-off functions. When the singularity identified is

located at a point where the evolutionary stability can be
directly inferred from the curvature of the trade-off at
the point of tangency. Thus we have the following theo-
rems.

Theorem 1. If the trade-off function is concave, we superpose
such a trade-off function 𝛽(𝑥) onto the convex critical function;
the evolutionary dynamics of this model leads to ESS.
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Figure 2: Bifurcation diagram for evolutionarily singular strategy
𝑥 and recovery disturbance strength 𝑝. Red solid lines indicate
unstable singular strategy 𝑥 (i.e., evolutionary branching point),
black solid lines indicate the CSS, and red dashed line indicates the
repeller. The parameter values are 𝑎 = 200, 𝑏 = 10, 𝜇 = 6, 𝜎 = 10,
𝑐 = 2, V = 0.8, 𝐾 = 0.3, and 𝜆 = 10.25.

Proof. From (8), we calculate the second derivative of 𝑠
𝑥
(𝑦)

with respect to 𝑦,

𝜕
2
𝑠
𝑥
(𝑦)

𝜕𝑦
2









𝑦=𝑥=𝑥

∗

= 𝛽

(𝑥
∗
) 𝑆
∗
(𝑥
∗
) − 𝛼

(𝑥
∗
) − ℎ

(𝑥
∗
) ;

(17)

ℎ(𝑥) is given from (14), and the parameters V < 1, so,

ℎ


(𝑥) = −

𝑐V
(1 + 𝑝)

2

⋅

exp (−𝑥/ (1 + 𝑝)) (V exp (−𝑥/ (1 + 𝑝)) − 1)
(1 + V exp (−𝑥/(1 + 𝑝)))3

> 0.

(18)

When the trade-off function 𝛽(𝑥) is concave, 𝛽(𝑥) < 0. So,
we have

𝜕
2
𝑠
𝑥
(𝑦)

𝜕𝑦
2









𝑦=𝑥=𝑥

∗

< 0. (19)

Clearly, the conclusion holds up.

Theorem 2. If the trade-off function is convex and at the
same time less convex than the critical function at the
point of tangency, then the singularity is an evolutionary
branching point.

Proof. The trade-off function is convex, which will not satisfy
the ESS condition (12). We write out the convergence stable
condition (13),

𝛽

(𝑥
∗
) 𝑠
∗
(𝑥
∗
) − 𝛼

(𝑥
∗
) − ℎ

(𝑥
∗
)

+ 𝛽

(𝑥
∗
) (𝑠
∗
(𝑥
∗
))


< 0;

(20)

that is,

𝛽

(𝑥
∗
) <

𝛼

(𝑥
∗
) + ℎ

(𝑥
∗
)

𝑠
∗
(𝑥
∗
)

−

𝛽

(𝑥
∗
) (𝑠
∗
(𝑥
∗
))


𝑠
∗
(𝑥
∗
)

. (21)

From (10), we know

𝛽

(𝑥
∗
) =

𝛼

(𝑥
∗
) + ℎ

(𝑥
∗
)

𝑠
∗
(𝑥
∗
)

. (22)

Thus we have

𝛽

(𝑥
∗
) <

𝛼

(𝑥
∗
) + ℎ

(𝑥
∗
)

𝑠
∗
(𝑥
∗
)

−

(𝛼

(𝑥
∗
) + ℎ

(𝑥
∗
)) (𝑠
∗
(𝑥
∗
))


(𝑠
∗
(𝑥
∗
))
2

,

(23)

where on the right hand side is exactly the derivative of (16),
that is, 𝛽crit(𝑥

∗
). That is, 𝛽(𝑥∗) < 𝛽



crit(𝑥
∗
). So it can be

seen directly from the critical function that if the trade-off
function is convex and at the same time less convex than the
critical functions at the point of tangency, the singularity at
tangency is convergence stable but not evolutionarily stable;
that is, it is an evolutionary branching point.

In Figure 3(a), when 𝐾 = 0.2, the trade-off function
is concave, so the singular strategy is an ESS. We can see
in Figure 3(b), when 𝐾 = 0.3, the trade-off function is
convex and at the same time less convex than the critical
function at the point of tangency 𝑥

∗, such a trade-off
results in convergence stable but invadable singularity, that
is, evolutionary branching point. Critical functions are always
convex, it is always possible to find a trade-off function that
is locally convex and less convex than the critical function,
satisfying the condition for evolutionary branching. The
singular strategy is a branching point. Of course this result
is consistent with bifurcation diagram in Figure 2.

4. Dimorphic Coexistence

In this section we investigate whether further evolutionary
branching or evolutionarily stable coexistence of the two res-
ident strains occurs. After branching, population dynamics of
two residents with phenotypic traits 𝑥

1
and 𝑥

2
and a mutant

with trait 𝑦 appears, where the two resident strategies soon
grow too far apart near the branching point. Two classes
of infected individuals, 𝐼

1
, 𝐼
2
in a host population represent

a pathogen comprising two different strains, and we now
proceed to investigate the evolutionary endpoint of such a
dimorphic pathogen. In the case of a dimorphic pathogen,
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Figure 3: Critical function analysis (a)-(b), (a) 𝐾 = 0.2, (b) 𝐾 = 0.3; black solid lines indicate the CSS, red solid line indicates convergence
stable but not evolutionarily stable singular strategy 𝑥∗ (i.e., evolutionary branching point), and parameter values are 𝑎 = 200, 𝑏 = 10, 𝜇 =
6, 𝜎 = 10, 𝑐 = 2, V = 0.8, 𝜆 = 10.25, and 𝑝 = 6.

𝐼
1
and 𝐼
2
, one with strain 𝑥

1
and the other with strain 𝑥

2
, the

population dynamics is given by

𝑆


(𝑡) = 𝜆𝑁 − 𝜇 (𝑁) 𝑆 − 𝛽 (𝑥
1
) 𝑆𝐼
1
− 𝛽 (𝑥

2
) 𝑆𝐼
2

+ ℎ (𝑥
1
) 𝐼
1
+ ℎ (𝑥

2
) 𝐼
2
,

𝐼


1
(𝑡) = 𝛽 (𝑥

1
) 𝑆𝐼
1
− 𝜇 (𝑁) 𝐼

1
− 𝛼 (𝑥

1
) 𝐼
1
− ℎ (𝑥

1
) 𝐼
1
,

𝐼


2
(𝑡) = 𝛽 (𝑥

2
) 𝑆𝐼
2
− 𝜇 (𝑁) 𝐼

2
− 𝛼 (𝑥

2
) 𝐼
2
− ℎ (𝑥

2
) 𝐼
2
.

(24)

Andreasen and Pugliese [1] proved that a necessary and
sufficient condition for two pathogenic strains 𝑥

1
and 𝑥

2
to

coexist at a unique and stable equilibrium of (24) is that both
strains can successfully invade one another. This equilibrium
is given by

𝑆
∗
=

𝛼 (𝑥
1
) − 𝛼 (𝑥

2
) + ℎ (𝑥

1
) − ℎ (𝑥

2
)

𝛽 (𝑥
1
) − 𝛽 (𝑥

2
)

,

𝜇 (𝑁
∗
) = (𝛼 (𝑥

1
) 𝛽 (𝑥
2
) − 𝛼 (𝑥

2
) 𝛽 (𝑥
1
) − ℎ (𝑥

1
) 𝛽 (𝑥
2
)

−ℎ (𝑥
2
) 𝛽 (𝑥
1
)) (𝛽(𝑥

1
) − 𝛽(𝑥

2
))
−1

,

𝐼
∗

1
=

(𝜆 + 𝜇 (𝑁
∗
) − 𝛼 (𝑥

2
))𝑁
∗
+ 𝛼 (𝑥

2
) 𝑆
∗

𝛼 (𝑥
1
) − 𝛼 (𝑥

2
)

,

𝑆
∗
+ 𝐼
∗

1
+ 𝐼
∗

2
= 𝑁
∗
.

(25)

By the same arguments as the above (8), when mutant
pathogen with a slightly different strain 𝑦 enters into the
resident susceptible-infected system at a low density, the
invasion fitness is given by

𝑠
𝑥
1
,𝑥
2

(𝑦) = 𝛽 (𝑦) 𝑆
∗
(𝑥
1
, 𝑥
2
) − 𝜇 (𝑁

∗
(𝑥
1
, 𝑥
2
))

− 𝛼 (𝑦) − ℎ (𝑦) .

(26)

The selection gradients𝑔
1
(𝑥
1
, 𝑥
2
) and𝑔

2
(𝑥
1
, 𝑥
2
) are given

by

𝑔
1
(𝑥
1
, 𝑥
2
) =

𝜕𝑠
𝑥
1
,𝑥
2

(𝑦)

𝜕𝑦









𝑦=𝑥
1

= 𝛽

(𝑥
1
) 𝑆
∗
(𝑥
1
, 𝑥
2
) − 𝛼

(𝑥
1
) − ℎ

(𝑥
1
) ,

(27)

𝑔
2
(𝑥
1
, 𝑥
2
) =

𝜕𝑠
𝑥
1
,𝑥
2

(𝑦)

𝜕𝑦









𝑦=𝑥
2

= 𝛽

(𝑥
2
) 𝑆
∗
(𝑥
1
, 𝑥
2
) − 𝛼

(𝑥
2
) − ℎ

(𝑥
2
) .

(28)

Dimorphic evolutionary singularities are coalitions of res-
ident strategies where the fitness gradient of each strategy
is zero. That is, any solution (𝑥∗

1
, 𝑥
∗

2
) of 𝑔

𝑖
(𝑥
∗

1
, 𝑥
∗

2
) = 0 for

𝑖 = 1, 2 is called evolutionarily singular coalition.
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When individual mutations are random and sufficiently
small, the evolutionary model of traits 𝑥

1
and 𝑥

2
can be given

by

𝑑𝑥
1

𝑑𝑡

=

1

2

𝛿
1
𝜌
2

1
𝐼
∗

1
(𝑥
1
, 𝑥
2
) 𝑔
1
(𝑥
1
, 𝑥
2
) ,

𝑑𝑥
2

𝑑𝑡

=

1

2

𝛿
2
𝜌
2

2
𝐼
∗

2
(𝑥
1
, 𝑥
2
) 𝑔
2
(𝑥
1
, 𝑥
2
) ,

(29)

where 𝐼∗
𝑖
(𝑥
1
, 𝑥
2
) (𝑖 = 1, 2) is the equilibrium population

density of the resident infected 𝐼
𝑖
(𝑖 = 1, 2); (1/2)𝛿

𝑖
𝜌
2

𝑖
(𝑖 =

1, 2) is mutational rate of the infected 𝐼
𝑖
(𝑖 = 1, 2).

Theorem 3. Further evolutionary branching cannot happen in
this model whether the cure rate function is concave or convex.

Proof. A singular coalition is evolutionarily stable if all its
constituent strategies are ESS, that is, if

𝜕
2
𝑠
𝑥
1
,𝑥
2

(𝑦)

𝜕𝑦
2










𝑦=𝑥
∗

𝑖
,𝑥
1
=𝑥
∗

1
,𝑥
2
=𝑥
∗

2

= 𝛽

(𝑥
∗

𝑖
) 𝑆
∗
(𝑥
∗

1
, 𝑥
∗

2
) − 𝛼

(𝑥
∗

𝑖
) − ℎ

(𝑥
∗

𝑖
) < 0

(30)

for 𝑖 = 1 and 2.
The condition for absolute convergence stability is given

by

𝑑
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𝑖
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𝜕𝑠
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,𝑥
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(31)

First, we calculate the mixed derivatives of invasion fitness at
the singular coalition:

𝜕
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𝑠
𝑥
1
,𝑥
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(𝑦)

𝜕𝑦𝜕𝑥
𝑖
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𝜕𝑥
𝑖
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for 𝑖 = 1 and 2. From (25), we have
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Since the singularity condition can be obtained from (27), we
have
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Take (35) and (36) into (33) and (34), respectively, we have
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1
,𝑥
2
=𝑥
∗

2

= 0.

(37)

Then the mixed derivatives of invasion fitness can readily be
verified to be zero. Thus (31) is equivalent to (30). This shows
that further evolutionary branching cannot happen in this
model.

Now, the dynamics of evolution in dimorphic pathogen
is shown through the coexistence plots and evolutionary
branching trees. The dynamics of evolution as predicted
by the model are conformed by numerical simulations
(Figure 4). In these simulations, we use three different values
of 𝑝 (as indicated above in each graph). In the case of 𝑝 =

0.5, from Section 2, the PIP in the Figure 1(a) shows that
the singular strategy 𝑥∗ is an ESS. At the singularity neither
mutants from below nor above can invade and the singularity
is therefore also convergence stable, and this trade-off thus
supports a CSS. Therefore, 𝑥∗ is an evolutionary endpoint
and is not invadable by any other mutant strains. In this
case an initially monomorphic pathogen population can stay
monomorphic. In the corresponding coexistence plot one can
see that no singular dimorphism exists, and evolution will
drive any dimorphism back into a monomorphic state [2, 7].
This outcome is illustrated in Figures 4(a) and 4(d).

With the effect of increasing 𝑝 the singular point 𝑥∗
continues to be convergence stable but not an ESS, and in
the vicinity of 𝑥∗ a dimorphism can appear, and such 𝑥∗ is
an evolutionary branching point (Figures 1(b) and 1(c)). In
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Figure 4: The coexistence plots are depicted, two strains are presented on separate axes and the gray areas define combinations of strains
that are mutually invasible and the corresponding evolutionary branching. Shaded areas indicating protected dimorphism are separated by
stable (black) and unstable (red) isoclines at which selection gradient vanishes in either 𝑥

1
-direction or 𝑥

2
-direction. Red bullet 𝐵 = initial

branching point, black bullet 𝐴 = evolutionarily stable singularity, black bullet 𝐸
𝑖
(𝑥∗
1
, 𝑥
∗

2
) = stable singular coalition, and 𝑖 = 1, 2. “∙” 𝑃 =

repeller point. Correspondingly, below the coexistence plots we simulate evolutionary trees with branching patterns. (a) and (d) 𝑝 = 0.5; (b)
and (e) 𝑝 = 6; (c) and (f) 𝑝 = 8. Other parameter values are 𝑐 = 2, V = 0.8, 𝜆 = 10.25, 𝑘 = 0.3.

this case an initially monomorphic population will be close
to the singular branching point and will undergo disruptive
selection, then becoming dimorphic and comprising two
closely related resident phenotypic traits (the virulences
𝑥
∗

1
and 𝑥∗

2
; see numerical simulations in Figures 4(b) and

4(c)). Finally, the two resident pathogen groups are stable
coexistence and completely host specialized. In this case no
mutant with nonzero transmission on both hosts is able
to invade. In the coexistence plot,the singularity loses its
evolutionary stability; CSS turns into a branching point.With
a further increase in 𝑝, when the values of 𝑝 are 8, then the
shaded areas intersect withmain diagonal at three points cor-
responding to three different evolutionarily singular points
which present complex dynamics such as ESS, repeller, and
evolutionary branching point (Figure 1(c)).Theorem 3 shows
that the population evolves towards a stable dimorphism. As
is shown in Figure 4, from the corresponding evolutionary
branching we can also obtain this result.

5. Discussion

In this paper, we employ the susceptible-infected epidemic
model under drug treatment to explore the adaptive evo-
lution of pathogen virulence. Our results show that the

strength of treatment noticeably affects the outcome of evo-
lution: continuously stable strategies, evolutionary repellers,
and evolutionary branching points. With the methods of
critical function analysis and adaptive dynamics, we have
shown that evolutionary branching of virulence is possible
in a susceptible-infected model with cure rate. Conditions
ensuring evolutionary stability and branching for singular
strategies and coalitions are derived in both monomorphic
and dimorphic environments.

We obtain the biological interpretation for the evolution
of pathogen virulence that if there is no treatment or small
treatment, then the pathogen virulence can be smaller and
evolutionarily stable, while a powerful treatment could accel-
erate pathogen evolution towards higher virulence.

First, by using the methods of “pairwise invasibility plot”
and critical function analysis, we show that if the trade-
off function is concave, the evolutionary dynamics of this
model can lead to evolutionarily stable, while if the trade-
off is convex then the singularity can be an evolutionary
branching point. Second, increase in the strength of the drug
treatment can increase evidently in the singular strategy value
and eventually turns continuously stable strategy into the
branching point. This shows that, with increasing in cure
rates, pathogen populations will tend towards the evolu-
tionary branching points with higher virulence. Note that
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this situation is supported by empirical data [6]. Third, our
analysis reveals that further evolutionary branching cannot
happen in this model whether the cure rate function is
concave or convex. For higher cure rates, after branching
has occurred in virulence phenotype, the mutant pathogen
becomes a resident pathogen and the two resident pathogen
strains stably coexist.
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