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The local fractional decomposition method is applied to obtain the nondifferentiable numerical solutions for the local fractional
Tricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions.

1. Introduction

The Tricomi equation [1] is the second-order linear partial
differential equations of mixed type, which had been applied
to describe the theory of plane transonic flow [2–7]. The
Tricomi equation was used to describe the differentiable
problems for the theory of plane transonic flow. However,
for the fractal theory of plane transonic flow with nondif-
ferentiable terms, the Tricomi equation is not applied to
describe them. Recently, the local fractional calculus [8] was
applied to describe the nondifferentiable problems, such as
the fractal heat conduction [8, 9], the damped and dissipative
wave equations in fractal strings [10], the local fractional
Schrödinger equation [11], the wave equation on Cantor sets
[12], the Navier-Stokes equations on Cantor sets [13], and
others [14–19]. Recently, the local fractional Tricomi equation
arising in fractal transonic flowwas suggested in the form [19]

𝑦
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼

𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
= 0, (1)

where the quantity 𝑢(𝑥, 𝑦) is the nondifferentiable function,
and the local fractional operator denotes [8]

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
=

Δ
𝛼

(𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡
0
))

(𝑡 − 𝑡
0
)
𝛼

, (2)

where

Δ
𝛼

(𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡
0
)) ≅ Γ (1 + 𝛼) [𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡

0
)] .

(3)

The local fractional decomposition method [12] was used to
solve the diffusion equation on Cantor time-space. The aim
of this paper is to use the local fractional decomposition
method to solve the local fractional Tricomi equation arising
in fractal transonic flow with the local fractional derivative
boundary value conditions. The structure of this paper is
as follows. In Section 2, the local fractional integrals and
derivatives are introduced. In Section 3, the local fractional
decomposition method is suggested. In Section 4, the non-
differentiable numerical solutions for local fractional Tricomi
equation with the local fractional derivative boundary value
conditions are given. Finally, the conclusions are shown in
Section 5.

2. Local Fractional Integrals and Derivatives

In this section, we introduce the basic theory of the local
fractional integrals and derivatives [8–19], which are applied
in the paper.
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Definition 1 (see [8–19]). For |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and

𝜀 ∈ 𝑅, we give the function 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏), when

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥
0
)
󵄨󵄨󵄨󵄨 < 𝜀
𝛼

, 0 < 𝛼 ≤ 1, (4)

is valid.

Definition 2 (see [8–19]). Let (𝑡
𝑗
, 𝑡
𝑗+1

), 𝑗 = 0, . . . , 𝑁−1, 𝑡
0
= 𝑎,

and 𝑡
𝑁

= 𝑏withΔ𝑡
𝑗
= 𝑡
𝑗+1

−𝑡
𝑗
andΔ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, . . .}, be

a partition of the interval [𝑎, 𝑏]. The local fractional integral
of 𝑓(𝑥) in the interval [𝑎, 𝑏] is defined as

𝑎
𝐼
𝑏

(𝛼)

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

.

(5)

As the inverse operator of (6), local fractional derivative of
𝑓(𝑥) of the order 𝛼 in the interval (𝑎, 𝑏) is presented as [8–19]

𝑑
𝛼

𝑓 (𝑥
0
)

𝑑𝑥𝛼
= 𝐷
𝑥

(𝛼)

𝑓 (𝑥
0
) =

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (6)

where

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥

0
)] . (7)

The formulas of local fractional derivative and integral, which
appear in the paper, are valid [8]:

𝑑
𝛼

𝑑𝑥𝛼

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
, 𝑛 ∈ 𝑁,

𝑑
𝛼

𝑑𝑥𝛼
𝐸
𝛼
(𝑥
𝛼

) = 𝐸
𝛼
(𝑥
𝛼

) ,

𝑑
𝛼

𝑑𝑥𝛼
sin
𝛼
(𝑥
𝛼

) = cos
𝛼
(𝑥
𝛼

) ,

𝑑
𝛼

𝑑𝑥𝛼
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𝛼
(𝑥
𝛼

) = − sin
𝛼
(𝑥
𝛼

) ,

0
𝐼
𝑥

(𝛼)
𝑥
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
=

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
, 𝑛 ∈ 𝑁,

0
𝐼
𝑥

(𝛼)cos
𝛼
(𝑥
𝛼

) = sin
𝛼
(𝑥
𝛼

) .

(8)

3. Analysis of the Method

In this section, we give the local fractional decomposition
method [12]. We consider the following local fractional
operator equation in the form

𝐿
(2)

𝛼
𝑢 + 𝑅
𝛼
𝑢 = 0, (9)

where 𝐿(2)
𝛼

is linear local fractional operators of the order 2𝛼
with respect to𝑥 and𝑅

𝛼
is the linear local fractional operators

of order less than 2𝛼. We write (9) as

𝐿
(2𝛼)

𝑥𝑥
𝑢 + 𝑅
𝛼
𝑢 = 0, (10)

where the 2𝛼-th local fractional differential operator denotes

𝐿
(𝑛)

𝛼
= 𝐿
(2𝛼)

𝑥𝑥
=

𝜕
2𝛼

𝜕𝑥2𝛼
, (11)

and the linear local fractional operators of order less than 2𝛼

denote

𝑅
𝛼
=

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
. (12)

Define the 2𝛼-fold local fractional integral operator

𝐿
(−2𝛼)

𝛼
𝑚(𝑠) =

0
𝐼
𝑥

(𝛼)

0
𝐼
𝑥

(𝛼)

𝑚(𝑠) (13)

so that we obtain the local fractional iterative formula as
follows:

𝐿
(−2𝛼)

𝛼
𝐿
(2𝛼)

𝑥𝑥
𝑢 + 𝐿
(−2𝛼)

𝛼
𝐿
(−2𝛼)

𝛼
𝑅
𝛼
𝑢 = 0, (14)

which leads to

𝑢 (𝑥) = 𝑢
0
(𝑥) + 𝐿

(−2𝛼)

𝛼
𝐿
(−2𝛼)

𝛼
𝑅
𝛼
𝑢. (15)

Therefore, for 𝑛 ≥ 0, we obtain the recurrence formula in the
form

𝑢
𝑛+1

(𝑥) = 𝐿
(−2)

𝛼
𝑅
𝛼
𝑢
𝑛
(𝑥) ,

𝑢
0
(𝑥) = 𝑟 (𝑥) .

(16)

Finally, the solution of (9) reads

𝑢 (𝑥) = lim
𝑛→∞

𝜙
𝑛
(𝑥) = lim

𝑛→∞

∞

∑

𝑛=0

𝑢
𝑛
(𝑥) . (17)

4. The Nondifferentiable Numerical Solutions

In this section, we discuss the nondifferentiable numerical
solutions for the local fractional Tricomi equation arising
in fractal transonic flow with the local fractional derivative
boundary value conditions.

Example 1. We consider the initial-boundary value condi-
tions for the local fractional Tricomi equation in the form [19]

𝑢 (0, 𝑦) = 0, (18)

𝑢 (𝑙, 𝑦) = 0, (19)

𝑢 (𝑥, 0) =
𝑥
𝛼

Γ (1 + 𝛼)
, (20)

𝜕
𝛼

𝑢 (𝑥, 0)

𝜕𝑥𝛼
=

𝑥
𝛼

Γ (1 + 𝛼)
. (21)

Using (20)-(21), we structure the recurrence formula in the
form

𝑢
𝑛+1

(𝑥, 𝑦) = 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
𝑛
(𝑥, 𝑦)

𝜕𝑦2𝛼
] ,

𝑢
0
(𝑥, 𝑦) =

𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
.

(22)
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Hence, for 𝑛 = 0, the first term of (22) reads

𝑢
1
(𝑥, 𝑦) = 0. (23)

For 𝑛 = 1 the second term of (22) is given as

𝑢
2
(𝑥, 𝑦) = 0. (24)

Hence, we obtain

𝑢
0
(𝑥, 𝑦) = 𝑢

1
(𝑥, 𝑦) = ⋅ ⋅ ⋅ = 𝑢

𝑛
(𝑥, 𝑦) = 0. (25)

Finally, the solution of (9) with the local fractional derivative
boundary value conditions (19)–(21) can be written as

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝜙
𝑛
(𝑥, 𝑦)

= lim
𝑛→∞

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑦)

=
𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)

(26)

which is in accordance with the result from the local frac-
tional variational iteration method [19].

Example 2. Let us consider the initial-boundary value condi-
tions for the local fractional Tricomi equation in the form

𝑢 (0, 𝑦) = 0,

𝑢 (𝑙, 𝑦) = 0,

𝑢 (𝑥, 0) = 0,

𝜕
𝛼

𝑢 (𝑥, 0)

𝜕𝑥𝛼
= cos
𝛼
(𝑥
𝛼

) .

(27)

In view of (27), we set up the recurrence formula in the form

𝑢
𝑛+1

(𝑥, 𝑦) = 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
𝑛
(𝑥, 𝑦)

𝜕𝑦2𝛼
] ,

𝑢
0
(𝑥, 𝑦) = cos

𝛼
(𝑥
𝛼

)
𝑦
𝛼

Γ (1 + 𝛼)
.

(28)

Hence, from (28) we get the following equations:

𝑢
1
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
0
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(cos
𝛼
(𝑥
𝛼

)
𝑦
𝛼

Γ (1 + 𝛼)
)]

= 0,

𝑢
2
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
1
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

𝑢
3
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
2
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

𝑢
4
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
3
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

...

𝑢
𝑛
(𝑥, 𝑦) = 0.

(29)

Finally, we obtain the solution of (9) with the local fractional
derivative boundary value conditions (27), namely,

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝜙
𝑛
(𝑥, 𝑦)

= lim
𝑛→∞

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑦)

= cos
𝛼
(𝑥
𝛼

)
𝑦
𝛼

Γ (1 + 𝛼)
,

(30)

whose graph is shown in Figure 1.

Example 3. Let us consider the initial-boundary value condi-
tions for the local fractional Tricomi equation in the form

𝑢 (0, 𝑦) = 0,

𝑢 (𝑙, 𝑦) = 0,

𝑢 (𝑥, 0) =
𝑥
𝛼

Γ (1 + 𝛼)
,

𝜕
𝛼

𝑢 (𝑥, 0)

𝜕𝑥𝛼
= sin
𝛼
(𝑥
𝛼

) .

(31)
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Figure 1: The plot of the solution of (9) with the local fractional
derivative boundary value conditions (27) when 𝛼 = ln 2/ ln 3.

Making use of (31), the recurrence formula can be written as

𝑢
𝑛+1

(𝑥, 𝑦) = 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
𝑛
(𝑥, 𝑦)

𝜕𝑦2𝛼
] ,

𝑢
0
(𝑥, 𝑦) =

𝑥
𝛼

Γ (1 + 𝛼)
+ sin
𝛼
(𝑥
𝛼

)
𝑦
𝛼

Γ (1 + 𝛼)
.

(32)

Appling (32) gives the following equations:

𝑢
1
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
0
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼

×(
𝑥
𝛼

Γ (1 + 𝛼)
+ sin
𝛼
(𝑥
𝛼

)
𝑦
𝛼

Γ (1 + 𝛼)
) ]

= 0,

𝑢
2
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
1
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

𝑢
3
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
2
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,
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Figure 2: The plot of the solution of (9) with the local fractional
derivative boundary value conditions (31) when 𝛼 = ln 2/ ln 3.

𝑢
4
(𝑥, 𝑦) = 𝐿

(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝑢
3
(𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)

𝛼
[
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

...

𝑢
𝑛
(𝑥, 𝑦) = 0.

(33)

Finally, the solution of (9) with the local fractional derivative
boundary value conditions (31) reads

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝜙
𝑛
(𝑥, 𝑦)

= lim
𝑛→∞

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑦)

=
𝑥
𝛼

Γ (1 + 𝛼)
+ sin
𝛼
(𝑥
𝛼

)
𝑦
𝛼

Γ (1 + 𝛼)
,

(34)

and its graph is shown in Figure 2.

5. Conclusions

In this work we discussed the nondifferentiable numerical
solutions for the local fractional Tricomi equation arising
in fractal transonic flow with the local fractional derivative
boundary value conditions by using the local fractional
decompositionmethod and their plots were also shown in the
MatLab software.
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