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A numerical method is proposed by wavelet-Galerkin and quasilinearization approach for nonlinear boundary value problems.
Quasilinearization technique is applied to linearize the nonlinear differential equation and then wavelet-Galerkin method is
implemented to linearized differential equations. In each iteration of quasilinearization technique, solution is updated by wavelet-
Galerkinmethod. In order to demonstrate the applicability of proposedmethod, we consider the various nonlinear boundary value
problems.

1. Introduction

The Galerkin method [1] is a very well-known method for
finding the numerical solutions of differential equations.
According to wavelet-Galerkin method, connection coeffi-
cients are the inner products of Daubechies scaling functions
and their derivatives, because we are taking Daubechies
scaling functions as a Galerkin basis. The exact and explicit
representations of the differential operators in orthonormal
bases of compactly supported wavelets are described by
Beylkin [2] and he also discussed the sparse representa-
tions of shift operators in orthonormal bases of compactly
supported wavelets. Latto et al. [3] gave the connection
coefficients for zeroth level of resolution; these connection
coefficients are essentially based on an unbounded domain.
Chen et al. [4] provided the way of calculating the connection
coefficients on a bounded interval and these finite integrals
play a vital role in the wavelet-Galerkin approximation of
differential equations. Restrepo and Leaf [5] reviewed the
inner products of Daubechies wavelets and their derivatives
and used the connection coefficients for approximation of
differential operators.

Amaratunga et al. [6] implemented the wavelet-Galerkin
technique for solving the one-dimensional counterpart of
Helmholtz’s equation. Mishra and Sabina [7] used the
wavelet-Galerkin method for solving linear, homogeneous

boundary value problemswith constant coefficients and com-
pared the obtained solution with the exact solution by using
a family of Daubechies wavelets and at different levels of res-
olution. Daubechies scaling functions as the Galerkin bases
were used by Jianhua et al. [8] and the authors implemented
the wavelet-Galerkinmethod for differential equations with a
boundary layer. In order to implement the wavelet-Galerkin
method, they considered the linear, inhomogeneous second
order boundary value problem with constant coefficients.
In [9–13] several applications of wavelet-Galerkin method
are done and these applications are for linear boundary
value problems. Motivated by the work of authors [6–13], we
extended the wavelet-Galerkin method for the solution of
nonlinear boundary value problems.

The quasilinearization approach was introduced by Kal-
aba and Bellman [14, 15] as a generalization of the Newton-
Raphson method [16] to solve individual or systems of
nonlinear ordinary and partial differential equations. The
quasilinearization approach is suitable for a general nonlinear
ordinary or partial differential equations of any order.

Jiwari [19] used a uniform Haar wavelet method with
quasilinearization technique for the approximate solution
of Burgers’ equation and compared the results with the
solutions obtained by the other numerical methods and
the exact solution. The same approach was used by Kaur
et al. [20] for the solutions of nonlinear boundary value
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problems in which they treated the quadratic nonlinearity
of unknown function. In [21], we extend the Haar wavelet
quasilinearization technique for fractional nonlinear initial
and boundary value problems.

In this paper, we consider the compactly supported
Daubechies scaling functions [22] as a Galerkin basis and
propose a numerical method by combining wavelet-Galerkin
method with quasilinearization technique for solving non-
linear boundary value problems. The method deals with
not only quadratic nonlinearities but also various other
forms of nonlinearities. To the best of our knowledge, the
wavelet-Galerkinmethod, with Daubechies scaling functions
as Galerkin basis, has not been implemented for numeri-
cal solutions of nonlinear differential equations. Illustrative
problems show the advantage of the proposed method.

The paper is arranged as follows: in Section 2, we give a
brief review of Daubechies’ wavelets, while in Section 3 we
describe the two-term connection coefficients. In Section 4,
we give the procedure of implementation of the wavelet-
Galerkin method. In Section 5, the quasilinearization tech-
nique for dealing with ordinary differential equations is
discussed, while in Section 6 we apply the wavelet-Galerkin
method with quasilinearization technique to some nonlinear
boundary value problems. Finally, in Section 7 we conclude
our work.

2. Daubechies’ Wavelets

Daubechies [22, 23] constructed a family of compactly
supported orthonormal wavelets. A wavelet system consists
of a scaling function 𝜙(𝑥) and a wavelet function 𝜓(𝑥). There
are two important relations inwavelet theory, whichwe called
two-scale relation. Consider

𝜙 (𝑥) =
𝑁−1

∑
𝑙=0

𝑝
𝑙
𝜙
𝑙 (2𝑥) , (1)

and the equation

𝜓 (𝑥) =
1

∑
𝑙=2−𝑁

(−1)
𝑙
𝑝
1−𝑙
𝜙
𝑙 (2𝑥) , (2)

where 𝜙
𝑙
(⋅) := 𝜙(⋅ − 𝑙). Relations (1) and (2) are known

as refinement relations. The coefficients 𝑝
𝑙
are called the

wavelet filter coefficients. Relations (1) and (2) are also called
refinement relations and𝑁 (an even integer) is the number of
wavelet filter coefficients in the refinement relations.The sup-
ports of the scaling function 𝜙(𝑥) and wavelet function 𝜓(𝑥)
are [0,𝑁 − 1] and [1 − 𝑁/2,𝑁/2], respectively. Daubechies
[22] constructed wavelet filter coefficients 𝑝

𝑙
to satisfy the

certain conditions. These conditions are linked with certain
properties of scaling and wavelet functions [4]. Consider

𝑁−1

∑
𝑙=0

𝑝
𝑙
= 2 󳨐⇒ ∫

∞

−∞

𝜙 (𝑥) 𝑑𝑥 = 1, (3)

𝑁−1

∑
𝑙=0

𝑝
𝑙
𝑝
𝑙−2𝑚

= 2𝛿
0,𝑚

󳨐⇒ ∫
∞

−∞

𝜙 (𝑥) 𝜙 (𝑥 − 𝑚) 𝑑𝑥 = 𝛿
0,𝑚
, (4)

1

∑
𝑙=2−𝑁

(−1)
𝑙
𝑝
1−𝑙
𝑝
𝑙−2𝑚

= 0 󳨐⇒ ∫
∞

−∞

𝜙 (𝑥) 𝜓 (𝑥 − 𝑚) 𝑑𝑥 = 0,

for any integer 𝑚,
(5)

𝑁−1

∑
𝑙=0

(−1)
𝑙
𝑙
𝑚
𝑝
𝑙
= 0 󳨐⇒ ∫

∞

−∞

𝑥
𝑚
𝜓 (𝑥) 𝑑𝑥 = 0,

𝑚 = 0, 1, . . . ,
𝑁

2
− 1.

(6)

Relation (3) shows that scaling functions have unit area
and relations (4) and (5) indicate the orthonormality of 𝜙 and
orthogonality of𝜙 and𝜓, respectively. Relation (6) shows that
mthmoment of𝜓 is zero; that is, it has𝑚 vanishingmoments,
which implies that we can express the elements of the set
1, 𝑥, . . . , 𝑥𝑁/2 − 1 as a linear combination of 𝜙(𝑥 − 𝑘), integer
translate of 𝜙(𝑥).

Daubechies wavelet has no explicit expressions for the
scaling function 𝜙(𝑥) and the wavelet function 𝜓(𝑥) at
arbitrary 𝑥.

The simplest Daubechies wavelet [24] is the Haar wavelet,
which has explicit expression for calculating the scaling func-
tion 𝜙(𝑥). It is also called D2, which means the Daubechies
wavelet having two filter coefficients. It is also called db1,
which means the Daubechies wavelet having one vanishing
moment. db2 (D4) has four wavelet coefficients, that is,
𝑁 = 4, and two vanishing moments. Similarly, DN has 𝑁-
coefficients and𝑁/2-vanishing moments.

3. Two-Term Connection Coefficients

In the present work, we are dealing with the second order
nonlinear boundary value problems. We will be concerned
with the 2-term connection coefficients. Two-term connec-
tion coefficients are defined as

Ω
𝑑
1
,𝑑
2

𝑘
= ∫
∞

−∞

𝜙
𝑑
1 (𝑥) 𝜙

𝑑
2 (𝑥 − 𝑘) 𝑑𝑥. (7)

Take 𝑑 times derivative of the Daubechies scaling function
(1), by assuming that it is 𝑑 times differentiable, to obtain

𝜙
𝑑
(𝑥) = 2

𝑑

𝑁−1

∑
𝑙=0

𝑝
𝑙
𝜙
𝑑

𝑙
(2𝑥) , where 𝜙𝑑 (𝑥) :=

𝑑𝑑𝜙

𝑑𝑥𝑑
. (8)

Use (8) in (7) and changing variables, to obtain [3]

Ω
𝑑
1
,𝑑
2

𝑘
= 2
𝑑
1
+𝑑
2
−1
∑
𝑚,𝑙

𝑝
𝑚
𝑝
𝑙−2𝑘+𝑚

∫
∞

−∞

𝜙
𝑑
1 (𝑥) 𝜙

𝑑
2 (𝑥 − 𝑙) 𝑑𝑥.

(9)

Let ⋀𝑑1 ,𝑑2 be a column vector with 2𝑁 − 3 components
which are connection coefficients: ⋀𝑑1 ,𝑑2 = [Ω

𝑑
1
,𝑑
2

𝑘
]
𝑘=1:2𝑁−3

.
Equation (9) gives a system of linear equations with⋀𝑑1 ,𝑑2 as
unknown vector; we can write (9) in vector form as

1

2𝑑1+𝑑2−1
⋀
𝑑
1
,𝑑
2

= 𝑇⋀
𝑑
1
,𝑑
2

, (10)
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where 𝑇 is a square matrix of order 2𝑁 − 3; that is, 𝑇
𝑘:𝑙

=

∑
𝑁−1

𝑚=0
𝑝
𝑚
𝑝
𝑙−2𝑘+𝑚

, where indices 𝑘 and 𝑙 vary from 1 to 2𝑁−3.
We use the substitution [13] 𝑦 = 2𝑗𝑥, 𝐶

𝑙
= 2𝑗/2𝑐

𝑙
, throughout

our work. This substitution provides a way of calculating the
connection coefficients. Here, 𝑗 and 𝑙 are integers and 2𝑗 is
scaling factor. It corresponds to either the expansion (𝑗 > 0)
or the contraction (𝑗 < 0) of the scaling or wavelet function.

Define connection coefficients as

Ω
0,𝑑

𝑘
= 2
𝑑𝑗
∫𝜙
(0)
(𝑦) 𝜙
𝑑
(𝑦 − 𝑘) 𝑑𝑦. (11)

Similarly, we can obtain

1

2𝑑−1
⋀
0,𝑑

= 𝑇⋀
0,𝑑

. (12)

It is homogeneous system and thus does not have a
unique nonzero solution. In order to make the system
inhomogeneous, one equation is addedwhich is derived from
the moment equation of the scaling function [3] as follows:

𝑥
𝑑
= ∑
𝑖

𝑚
𝑑

𝑖
2
𝑗/2
𝜙
𝑖
(2
𝑗
𝑥) , (13)

where 𝑚𝑑
𝑖
is the dth moment of 𝜙

𝑗,𝑖
(𝑥) := 𝜙(2𝑗𝑥 − 𝑖) and we

can compute it by considering the orthonormality of𝜙(𝑥) that
is

𝑚
𝑑

𝑖
= ∫𝑥

𝑑
2
𝑗/2
𝜙
𝑖
(2
𝑗
𝑥) 𝑑𝑥. (14)

Considering the substitution 𝑦 = 2𝑗𝑥 in (13), we arrive at

𝑦
𝑑
= 2
𝑗𝑑
2
𝑗/2
∑
𝑖

𝑚
𝑑

𝑖
𝜙
𝑖
(𝑦) . (15)

Differentiate (15) 𝑑 times to get

𝑑! = 2
𝑗𝑑
2
𝑗/2
∑
𝑖

𝑚
𝑑

𝑖
𝜙
𝑑

𝑖
(𝑦) . (16)

Taking inner product on both sides of (16) with 𝜙(𝑦 − 𝑝),

𝑑! = 2
𝑗/2
∑
𝑖

𝑚
𝑑

𝑖
2
𝑗𝑑
∫𝜙
𝑑

𝑖
(𝑦) 𝜙
𝑝
(𝑦) 𝑑𝑦, (17)

or

𝑑!2
−𝑗/2

= ∑
𝑖

𝑚
𝑑

𝑖
⋀
𝑑,0

. (18)

Equation (14) implies

𝑚
𝑑

𝑖
= ∫

𝑦𝑑

2𝑗𝑑
2
𝑗/2
𝜙
𝑖
(𝑦) 𝑑

𝑦

2𝑗
,

𝑚
𝑑

𝑖
= 2
−𝑗𝑑−𝑗/2

∫𝑦
𝑑
𝜙
𝑖
(𝑦) 𝑑𝑦,

𝑚
𝑑

𝑖
= 2
−𝑗𝑑−𝑗/2

𝑀
𝑑

𝑖
,

(19)

where𝑀𝑑
𝑖
= ∫𝑥𝑑𝜙

𝑖
(𝑥)𝑑𝑥 is the dthmoment of𝜙

𝑖
and𝑀0

0
= 1

implies the unit area under 𝜙. Equation (19) shows that dth

moment of 𝜙
𝑗,𝑖
(𝑥) is equal to the 2−𝑗𝑑−𝑗/2 times dth moment

of 𝜙(𝑥 − 𝑖).
Latto et al. [3] derive an explicit formula to compute the

moments of 𝜙(𝑥). Consider

𝑀
𝑗

𝑖
=

1

2 (2𝑗 − 1)

𝑗

∑
𝑘=0

(
𝑗
𝑘
) 𝑖
𝑗−𝑘

𝑘−1

∑
𝑙=0

(
𝑘
𝑙
)𝑀
𝑙

0
(
𝑁−1

∑
𝑖=0

𝑎
𝑖
𝑖
𝑘−1

) , (20)

where 𝑎
𝑖
are Daubechies wavelet coefficients. Finally, we get

the system for the calculation of connection coefficients.
Consider

(
𝑇 −

1

2𝑑−1
𝐼

𝑚𝑑
)⋀
0,𝑑

= (
0

𝑑!2−𝑗/2
) , (21)

where𝑚𝑑 is a row vector with all the𝑚𝑑
𝑖
.

4. Implementation of
Wavelet-Galerkin Method

Consider the following form of boundary value problem:

𝑦
󸀠󸀠
(𝑥) + 𝑎𝑦

󸀠
(𝑥) + 𝑏𝑦 (𝑥) = 𝑓 (𝑥) , 𝑦 (0) = 𝛼, 𝑦 (1) = 𝛽,

(22)

where 𝑎, 𝑏, 𝛼, and 𝛽 are real constants. A trial solution for (22)
is

𝑦 (𝑥) ≅ ∑
𝑙

𝑐
𝑙
2
𝑗/2
𝜙 (2
𝑗
𝑥 − 𝑙) , 𝑙 ∈ Z. (23)

Use (23) in (22) to obtain

𝑑2

𝑑𝑥2
∑
𝑙

𝑐
𝑙
2
𝑗/2
𝜙 (2
𝑗
𝑥 − 𝑙) + 𝑎

𝑑

𝑑𝑥
∑
𝑙

𝑐
𝑙
2
𝑗/2
𝜙 (2
𝑗
𝑥 − 𝑙)

+ 𝑏∑
𝑙

𝑐
𝑙
2
𝑗/2
𝜙 (2
𝑗
𝑥 − 𝑙) − 𝑓 (𝑥) ̸= 0, 𝑙 ∈ Z.

(24)

For simplicity, use substitution 𝑦 = 2𝑗𝑥, 𝐶
𝑙
= 2𝑗/2𝑐

𝑙
. Also, we

have 𝑑𝑛/𝑑𝑥𝑛 = 2𝑛𝑗𝑑𝑛/𝑑𝑦𝑛, 𝑛 ∈ N.
Now (24) implies

∑
𝑙

𝐶
𝑙
2
2𝑗 𝑑
2

𝑑𝑦2
𝜙 (𝑦 − 𝑙) + 𝑎∑

𝑙

𝐶
𝑙
2
𝑗 𝑑

𝑑𝑦
𝜙 (𝑦 − 𝑙)

+ 𝑏∑
𝑙

𝐶
𝑙
𝜙 (𝑦 − 𝑙) − 𝑓(

𝑦

2𝑗
) ̸= 0, 𝑙 ∈ Z.

(25)

Multiplying 𝜙
𝑝
(𝑦), on both sides of (25), and integrating,

we get

∑
𝑙

𝐶
𝑙
2
2𝑗
∫𝜙 (𝑦 − 𝑝)

𝑑2

𝑑𝑦2
𝜙 (𝑦 − 𝑙) 𝑑𝑦

+ 𝑎∑
𝑙

𝐶
𝑙
2
𝑗
∫𝜙 (𝑦 − 𝑝)

𝑑

𝑑𝑦
𝜙 (𝑦 − 𝑙) 𝑑𝑦
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+ 𝑏∑
𝑙

𝐶
𝑙
∫𝜙 (𝑦 − 𝑝) 𝜙 (𝑦 − 𝑙) 𝑑𝑦

= ∫𝜙 (𝑦 − 𝑝)𝑓(
𝑦

2𝑗
)𝑑𝑦,

(26)

where 𝑓(𝑥) = ∑
𝑚

𝑖=0
𝑏
𝑖
𝑥𝑖, is a polynomial of degree𝑚 in 𝑥.

The orthonormality of Daubechies wavelets implies

∫𝜙 (𝑦 − 𝑝) 𝜙 (𝑦 − 𝑙) 𝑑𝑦 = 𝛿
𝑝,𝑙
. (27)

Now use (11) and (27) in (26); we have

∑
𝑙

𝐶
𝑙
(Ω
0,2

𝑙−𝑝
+ 𝑎Ω
0,1

𝑙−𝑝
+ 𝑏𝛿
𝑝,𝑙
) =
𝑚

∑
𝑖=0

𝑏
𝑖
∫
𝑦𝑖

2𝑗𝑖
𝜙 (𝑦 − 𝑝) 𝑑𝑦, (28)

or

∑
𝑙

𝐶
𝑙
(Ω
0,2

𝑙−𝑝
+ 𝑎Ω
0,1

𝑙−𝑝
+ 𝑏𝛿
𝑝,𝑙
) =
𝑚

∑
𝑖=0

𝑏
𝑖

2𝑗𝑖
𝑀
𝑖

𝑝
. (29)

Treatment of the boundary conditions [25] is as follows.
Conditions 𝑦(0) = 𝛼 and 𝑦(1) = 𝛽 imply

∑
𝑙

𝐶
𝑙
𝜙
𝑙 (0) = 𝛼,

∑
𝑙

𝐶
𝑙
𝜙
𝑙 (1) = 𝛽.

(30)

Since inner product of 𝜙
𝑙
(𝑦) and 𝜙

𝑝
(𝑦) gives (27), there-

fore (30) implies

∑
𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (0) = 𝛼,

∑
𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (1) = 𝛽.

(31)

5. Quasilinearization

The quasilinearization approach is a generalized Newton-
Raphson technique for functional equations [26, 27]. It
converges quadratically to the exact solution, if there is
convergence at all, and it has monotone convergence.

Let us consider the nonlinear nth order differential
equation as follows:

𝑦
󸀠󸀠
(𝑥) = 𝑓 (𝑦 (𝑥) , 𝑥) , (32)

with the boundary conditions

𝑦 (𝑎) = 𝛼, 𝑦 (𝑏) = 𝛽, 𝑎 ≤ 𝑥 ≤ 𝑏. (33)

Here, 𝑓 is a function of the function 𝑦(𝑥). Choose an
initial approximation of the function 𝑦(𝑥), let us say 𝑦

0
(𝑥); it

may be 𝑦
0
(𝑥) = 𝛼, for 𝑎 ≤ 𝑥 ≤ 𝑏. The function 𝑓 can now be

expanded around the function 𝑦
0
(𝑥) by the use of the Taylor

series. Consider
𝑓 (𝑦 (𝑥) , 𝑥) ≈ 𝑓 (𝑦

0 (𝑥) , 𝑥)

+ (𝑦 (𝑥) − 𝑦0 (𝑥)) 𝑓𝑦
0

(𝑦
0 (𝑥) , 𝑥) ,

(34)

where second and higher order terms are ignored. Using (34)
in (32), we get

𝑦
󸀠󸀠
(𝑥) ≈ 𝑓 (𝑦

0 (𝑥) , 𝑥) + (𝑦 (𝑥) − 𝑦0 (𝑥)) 𝑓𝑦
0

(𝑦
0 (𝑥) , 𝑥) .

(35)

Solving (35) for𝑦(𝑥), call it𝑦
1
(𝑥) and expand (32) about𝑦

1
(𝑥)

𝑦
󸀠󸀠
(𝑥) ≈ 𝑓 (𝑦

1 (𝑥) , 𝑥) + (𝑦 (𝑥) − 𝑦1 (𝑥)) 𝑓𝑦
1

(𝑦
1 (𝑥) , 𝑥) ,

(36)

we obtain a third approximation for 𝑦(𝑥), call it 𝑦
2
(𝑥).

Assume that the problem converges and continue the proce-
dure for obtaining desired accuracy. Recurrence relation is of
the form

𝑦
󸀠󸀠

𝑟+1
(𝑥) = 𝑓 (𝑦

𝑟 (𝑥) , 𝑥) + (𝑦𝑟+1 (𝑥) − 𝑦𝑟 (𝑥)) 𝑓𝑦
𝑟

(𝑦
𝑟 (𝑥) , 𝑥) ,

(37)

where 𝑦
𝑟
(𝑥) is known and can be used for obtaining 𝑦

𝑟+1
(𝑥).

Equation (37) is always a linear differential equation and
boundary conditions are

𝑦
𝑟+1 (𝑎) = 𝛼, 𝑦

𝑟+1 (𝑏) = 𝛽. (38)

Now consider the nonlinear second order differential equa-
tion of the form [26]

𝑦
󸀠󸀠
(𝑥) = 𝑓 (𝑦

󸀠
(𝑥) , 𝑦 (𝑥) , 𝑥) . (39)

Here, the first derivative 𝑦󸀠(𝑥) can be considered as another
function and (39) implies

𝑦
󸀠󸀠

𝑟+1
(𝑥) = 𝑓 (𝑦

󸀠

𝑟
(𝑥) , 𝑦𝑟 (𝑥) , 𝑥)

+ (𝑦
𝑟+1 (𝑥) − 𝑦𝑟 (𝑥)) 𝑓𝑦

𝑟

(𝑦
󸀠

𝑟
(𝑥) , 𝑦𝑟 (𝑥) , 𝑥)

+ (𝑦
󸀠

𝑟+1
(𝑥) − 𝑦

󸀠

𝑟
(𝑥)) 𝑓𝑦󸀠

𝑟

(𝑦
󸀠

𝑟
(𝑥) , 𝑦𝑟 (𝑥) , 𝑥) ,

(40)

with the same boundary conditions

𝑦
𝑟+1 (𝑎) = 𝛼, 𝑦

𝑟+1 (𝑏) = 𝛽. (41)

Similarly, one can follow the same procedure for higher order
nonlinear differential equations to obtain the recurrence
relation

𝐿
𝑛
𝑦
𝑟+1 (𝑥) = 𝑓 (𝑦

𝑟 (𝑥) , 𝑦
󸀠

𝑟
(𝑥) , . . . , 𝑦

𝑛−1

𝑟
(𝑥) , 𝑥)

+
𝑛−1

∑
𝑗=0

(𝑦
𝑗

𝑟+1
(𝑥) − 𝑦

𝑗

𝑟
(𝑥))

× 𝑓
𝑦
𝑗 (𝑦
𝑟 (𝑥) , 𝑦

󸀠

𝑟
(𝑥) , . . . , 𝑦

𝑛−1

𝑟
(𝑥) , 𝑥) ,

(42)

where 𝑛 is order of the differential equation. Equation (42)
is always a linear differential equation and can be solved
recursively, where 𝑦

𝑟
(𝑥) is known and one can use it to get

𝑦
𝑟+1
(𝑥).
In order to test the wavelet-Galerkin method with quasi-

linearization technique, four different nonlinear problems are
considered.
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Figure 1: Comparison of exact solution and solution by wavelet-Galerkin method with quasilinearization technique at 𝐽 = 13, for different
iterations, and we used𝐷16.

Table 1: Comparison of exact solution 𝑦exact and solution by the
wavelet-Galerkin method with quasilinearization technique 𝑦NEW
at second iteration: level of resolution 𝐽 = 13 and 𝐷16 is used as
Galerkin bases.

Third iteration 𝐽 = 13

𝑥 𝑦NEW 𝑦exact Absolute error
0.1 1.0022𝑒 − 2 1.0𝑒 − 2 2.2423𝑒 − 5

0.2 4.0045𝑒 − 2 4.0𝑒 − 2 4.4852𝑒 − 5

0.3 9.0067𝑒 − 2 9.0𝑒 − 2 6.7318𝑒 − 5

0.4 1.6009𝑒 − 1 1.6𝑒 − 1 8.9901𝑒 − 5

0.5 2.5011𝑒 − 1 2.5𝑒 − 1 1.1275𝑒 − 4

0.6 3.6014𝑒 − 1 3.6𝑒 − 1 1.3613𝑒 − 4

0.7 4.9016𝑒 − 1 4.9𝑒 − 1 1.6038𝑒 − 4

0.8 6.4019𝑒 − 1 6.4𝑒 − 1 1.8602𝑒 − 4

0.9 8.1021𝑒 − 1 8.1𝑒 − 1 2.1369𝑒 − 4

6. Applications

In this section, we solve some nonlinear ordinary differential
equations by the wavelet-Galerkin method along with quasi-
linearization technique and compare the results with those
obtained by other methods and exact solution.

Example 1. We consider the nonlinear two-point boundary
value problem [28] as follows:

𝑦
󸀠󸀠
(𝑥) + 𝑦

2
(𝑥) = 𝑥

4
+ 2, 0 < 𝑥 < 1, (43)

subject to the boundary conditions 𝑦(0) = 0, 𝑦(1) = 1. The
exact solution is 𝑦(𝑥) = 𝑥2. Apply quasilinearization to (43);
we get

𝑦
󸀠󸀠

𝑟+1
(𝑥) + 2𝑦𝑟 (𝑥) 𝑦𝑟+1 (𝑥) = 𝑦

2

𝑟
(𝑥) + 2 + 𝑥

4
, (44)

with the boundary conditions 𝑦
𝑟+1
(0) = 0, 𝑦

𝑟+1
(1) = 1.

Applying wavelet-Galerkin method to (44), we have

∑
𝑙

𝐶
𝑙
(Ω
0,2

𝑙−𝑝
+ 2𝑦
𝑟 (𝑥) 𝛿𝑝,𝑙) = 𝑦

2

𝑟
(𝑥) +

4

∑
𝑖=0

𝑏
𝑖

2𝑗𝑖
𝑀
𝑖

𝑝
, (45)

and boundary conditions imply

∑
𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (0) = 0, ∑

𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (1) = 1, (46)

where 𝑏 = [2, 0, 0, 0, 1], with the initial approximation
𝑦
0
(𝑥) = 0.
We solved (43) by using 𝐷16 and fixed the level of

resolution 𝐽 = 13. Figure 1 shows the exact solution and
approximate solution by proposedmethod at first and second
iteration; that is, 𝑦

0
(𝑥) is the initial approximation, and by

using 𝑦
0
(𝑥)we get 𝑦

1
(𝑥), that is, the solution at first iteration,

and then 𝑦
1
(𝑥) is used to get 𝑦

2
(𝑥), which is the solution

of (43) at second iteration. Table 1 is used to compare the
approximate solution by proposedmethod at second iteration
for 𝐽 = 13 and exact solution. We may get more accurate
results while increasing level of resolution at higher iteration.
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Figure 2: Comparison of exact solution and solution by wavelet-Galerkin method with quasilinearization technique at level of resolution
𝐽 = 13 and we use𝐷12 as Galerkin bases and at 𝜆 = 1 and 𝜆 = 2, respectively.

Example 2. We consider the nonlinear Bratu’s boundary
value problem as follows:

−𝑦
󸀠󸀠
(𝑥) = 𝜆𝑒

𝑦(𝑥)
, 𝑦 (0) = 0, 𝑦 (1) = 0. (47)

The quasilinear form of (47) is

𝑦
󸀠󸀠

𝑟+1
(𝑥) + 𝜆𝑒

𝑦
𝑟
(𝑥)
𝑦
𝑟+1 (𝑥) = −𝜆𝑒

𝑦
𝑟
(𝑥)
(1 − 𝑦

𝑟 (𝑥)) , (48)

with the boundary conditions 𝑦
𝑟+1
(0) = 0, 𝑦

𝑟+1
(1) = 0.

Wavelet-Galerkin method for (48) implies

∑
𝑙

𝐶
𝑙
(Ω
0,2

𝑙−𝑝
+ 𝜆𝑒
𝑦
𝑟
(𝑥)
𝛿
𝑝,𝑙
) = −𝜆𝑒

𝑦
𝑟
(𝑥)
(1 − 𝑦

𝑟 (𝑥)) , (49)

and, from boundary conditions, we have

∑
𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (0) = 0, ∑

𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (1) = 0, (50)

with the initial approximation 𝑦
0
(𝑥) = 0.

Bratu’s boundary value problem is solved by using 𝐷12
as Galerkin bases and at level of resolution 𝐽 = 13.
Decomposition method [17] is already implemented on
(47). We compared our results with the results obtained by
decomposition method and exact solution. Our results are
more accurate as compared to decomposition method [17] at
𝜆 = 1 and 𝜆 = 2 as shown in Tables 2 and 3, respectively.
We used the MATLAB command of one-dimensional data
interpolation using spline to get the values at 𝑥 = 0.1, 𝑥 =
0.2, . . . , 𝑥 = 0.9 and plot the exact and approximate solutions
at these points for 𝜆 = 1 and 𝜆 = 2 as shown in Figure 2.

Table 2: Comparison of exact solution 𝑦exact, solution by decompo-
sition method 𝑦DM, and solution by the wavelet-Galerkin method
with quasilinearization technique 𝑦NEW at second iteration and𝐷12
is used as Galerkin bases.

𝜆 = 1

Second iteration 𝐽 = 13

𝑥 𝑦DM [17] 𝑦NEW 𝑦exact

0.1 0.0471616875 0.0498386633 0.0498467900

0.2 0.0871680000 0.0891737644 0.0891899350

0.3 0.1177614375 0.1175850602 0.1176090956

0.4 0.1369920000 0.1347586231 0.1347902526

0.5 0.1435546875 0.1405003497 0.1405392142

0.6 0.1369920000 0.1347446015 0.1347902526

0.7 0.1177614375 0.1175571769 0.1176090956

0.8 0.0871680000 0.0891323318 0.0891899350

0.9 0.0471616875 0.0497841328 0.0498467900

Example 3. Consider the nonlinear Troesch’s boundary value
problem as follows:

𝑦
󸀠󸀠
(𝑥) − 𝜆 sinh (𝜆𝑦 (𝑥)) = 0, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 0, 𝑦 (1) = 1.
(51)

The quasilinearized form of (51) is

𝑦
󸀠󸀠

𝑟+1
(𝑥) − 𝜆

2 cosh (𝜆𝑦
𝑟 (𝑥)) 𝑦𝑟+1 (𝑥)

= 𝜆 sinh (𝜆𝑦
𝑟 (𝑥)) − 𝜆

2
𝑦
𝑟 (𝑥) cosh (𝜆𝑦𝑟 (𝑥)) ,

(52)

where 0 ≤ 𝑥 ≤ 1, with the boundary conditions 𝑦
𝑟+1
(0) = 0,

𝑦
𝑟+1
(1) = 1.
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Figure 3: Comparison of exact solution and solution by wavelet-Galerkin method with quasilinearization technique at level of resolution
𝐽 = 13 and𝐷8 is used as Galerkin bases and at 𝜆 = 0.5 and 𝜆 = 1, respectively.

Table 3: Comparison of exact solution 𝑦exact, solution by decompo-
sition method 𝑦DM, and solution by the wavelet-Galerkin method
with quasilinearization technique 𝑦NEW at second iteration and𝐷12
is used as Galerkin bases.

𝜆 = 2

Second iteration 𝐽 = 13

𝑥 𝑦DM [17] 𝑦NEW 𝑦exact

0.1 0.1144107440 0.1143861795 0.0991935000

0.2 0.2064191156 0.2063705472 0.1917440000

0.3 0.2738793116 0.2738079343 0.2679915000

0.4 0.3150893646 0.3149970528 0.3183360000

0.5 0.3289524214 0.3288416969 0.3359375000

0.6 0.3150893646 0.3149632892 0.3183360000

0.7 0.2738793116 0.2737413240 0.2679915000

0.8 0.2064191156 0.2062728271 0.1917440000

0.9 0.1144107440 0.1142597336 0.0991935000

Implementation of wavelet-Galerkin method to (52)
implies

∑
𝑙

𝐶
𝑙
(Ω
0,2

𝑙−𝑝
− 𝜆
2 cosh (𝜆𝑦

𝑟 (𝑥)) 𝛿𝑝,𝑙)

= 𝜆 sinh (𝜆𝑦
𝑟 (𝑥)) − 𝜆

2
𝑦
𝑟 (𝑥) cosh (𝜆𝑦𝑟 (𝑥)) ,

(53)

and boundary conditions lead to

∑
𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (0) = 0, ∑

𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (1) = 1, (54)

with the initial approximation 𝑦
0
(𝑥) = 0. Tables 4 and 5 and

Figure 3 represent the solution of (51) at second iteration.

Table 4: Comparison of exact solution 𝑦exact, solution by variational
iteration method 𝑦VIM, and solutions by the wavelet-Galerkin
method with quasilinearization technique 𝑦NEW at second iteration,
at different level of resolutions, and we used𝐷8 as Galerkin bases.

𝜆 = 0.5

Second iteration 𝐽 = 11 𝐽 = 13

𝑥 𝑦VIM [18] 𝑦NEW 𝑦NEW 𝑦exact

0.1 0.100042 0.095994 0.095956 0.095177

0.2 0.200334 0.192228 0.192152 0.190634

0.3 0.301128 0.288944 0.288829 0.286653

0.4 0.402677 0.386385 0.386231 0.383523

0.5 0.505241 0.484798 0.484606 0.481537

0.6 0.609082 0.584436 0.584204 0.581002

0.7 0.714470 0.685556 0.685284 0.682235

0.8 0.821682 0.788424 0.788112 0.785572

0.9 0.931008 0.893316 0.892962 0.891367

1.0 1.042740 1.000592 1.000194 1.000000

We use 𝐷8 as Galerkin bases to find the solution of (51)
at different level of resolutions and at 𝜆 = 0.5 and 𝜆 =
1 as shown in Tables 4 and 5, respectively. Solutions by
proposed method are compared with variational iteration
method [18] and with exact solution. Our results are in high
agreement with exact solution and better than variational
iteration method [18].

Example 4. Consider the following nonlinear boundary
value problem:

𝑦
󸀠󸀠
(𝑥) + 𝑦

󸀠
(𝑥) + 𝑦

3
(𝑥) + 𝑦 (𝑥) = 𝑓 (𝑥) , (55)
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Figure 4: Comparison of exact solution and solution by wavelet-Galerkin method with quasilinearization technique at 𝐽 = 13, for different
iterations, and we use𝐷10 as Galerkin bases.

Table 5: Comparison of exact solution 𝑦exact, solution by variational
iteration method 𝑦VIM, and solutions by the wavelet-Galerkin
method with quasilinearization technique 𝑦NEW at second iteration,
at different level of resolutions, and we used𝐷8 as Galerkin bases.

𝜆 = 1

Seconditeration 𝐽 = 11 𝐽 = 13

𝑥 𝑦VIM [18] 𝑦NEW 𝑦NEW 𝑦exact

0.1 0.100167 0.084715 0.084674 0.081797

0.2 0.201339 0.170280 0.170197 0.164531

0.3 0.304541 0.257558 0.257433 0.249167

0.4 0.410841 0.347444 0.347275 0.336732

0.5 0.521373 0.440880 0.440666 0.428347

0.6 0.637362 0.538877 0.538616 0.525274

0.7 0.760162 0.642538 0.642226 0.628971

0.8 0.891287 0.753089 0.752722 0.741168

0.9 1.032460 0.871929 0.871495 0.863970

1.0 1.185650 1.000718 1.000226 1.000000

subject to the boundary conditions 𝑦(0) = 0, 𝑦(1) = 0, where
𝑓(𝑥) = 2 + 2𝑥 + 𝑥2 − 20𝑥3 − 5𝑥4 − 𝑥5 + 𝑥6 − 3𝑥9 + 3𝑥12 − 𝑥15

and exact solution is given by

𝑦 (𝑥) = 𝑥
2
− 𝑥
5
. (56)

Applying the quasilinearization technique to (55), we get

𝑦
󸀠󸀠

𝑟+1
(𝑥) + 𝑦

󸀠

𝑟+1
(𝑥) + (1 + 3𝑦

2

𝑟
(𝑥)) 𝑦𝑟+1 (𝑥)

= 𝑓 (𝑥) + 2𝑦
3

𝑟
(𝑥) ,

(57)

with the boundary conditions 𝑦
𝑟+1
(0) = 0, 𝑦

𝑟+1
(1) = 0.

Now we apply the wavelet-Galerkin method to (57) as
follows:

∑
𝑙

𝐶
𝑙
(Ω
0,2

𝑙−𝑝
+ Ω
0,1

𝑙−𝑝
+ (1 + 3𝑦

2

𝑟
(𝑥)) 𝛿𝑝,𝑙)

= 2𝑦
3

𝑟
(𝑥) +

15

∑
𝑖=0

𝑏
𝑖

2𝑗𝑖
𝑀
𝑖

𝑝
,

(58)

and boundary conditions imply

∑
𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (0) = 0, ∑

𝑙

𝐶
𝑙
𝛿
𝑙,𝑝 (1) = 0, (59)

where 𝑏 = [2, 2, 1, −20, −5, −1, 1, 0, 0, −3, 0, 0, 3, 0, 0, −1], with
the initial approximations 𝑦

0
(𝑥) = 0.

Numerical solution by proposed method for (55) at
second iteration and level of resolution 𝐽 = 13 are stable
and accurate as shown in Table 6. To get the more accurate
results increase the iteration or level of resolution or both.
Figure 4 shows that approximate solution converges to the
exact solution while increasing iterations. Here, 𝐷10 is used
as Galerkin bases.
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Table 6: Comparison of exact solution 𝑦exact and solution by the
wavelet-Galerkin method with quasilinearization technique 𝑦NEW
at second iteration: level of resolutions 𝐽 = 13 and 𝐷10 is used as
Galerkin bases.

Second iteration 𝐽 = 13

𝑥 𝑦NEW 𝑦exact Absolute error
0.1 0.0100320512 0.0099900000 4.2051152889𝑒 − 005

0.2 0.0397617227 0.0396800000 8.1722744304𝑒 − 005

0.3 0.0876864075 0.0875700000 1.1640750572𝑒 − 004

0.4 0.1499017545 0.1497600000 1.4175454098𝑒 − 004

0.5 0.2189016605 0.2187500000 1.5166050983𝑒 − 004

0.6 0.2823782628 0.2822400000 1.3826276219𝑒 − 004

0.7 0.3220219443 0.3219300000 9.1944320423𝑒 − 005

0.8 0.3123213602 0.3123199999 1.3602317094𝑒 − 006

0.9 0.2193634808 0.2195099999 1.4651915492𝑒 − 004

7. Conclusion

It is shown that the proposed method, wavelet-Galerkin
method with quasilinearization technique, gives stable and
accurate results when applied to different nonlinear bound-
ary value problems. The proposed method provides better
andmore accurate results as compared to variational iteration
method and decomposition method, as shown in Tables 2–
5. Also results are in good agreement with exact solutions.
Figures 1 and 4 show that approximate solution converges to
the exact solution while iterations are increased and absolute
error goes down. The main advantage of the proposed
method is that the different type of nonlinearities can be easily
handled.
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