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We introduce some vector-valued sequence spaces defined by aMusielak-Orlicz function and the concepts of lacunary convergence
and strong (𝐴)-convergence, where 𝐴 = (𝑎

𝑖𝑘
) is an infinite matrix of complex numbers. We also make an effort to study some

topological properties and some inclusion relations between these spaces.

1. Introduction and Preliminaries

An Orlicz function 𝑀 : [0,∞) → [0,∞) is convex and
continuous such that 𝑀(0) = 0, 𝑀(𝑥) > 0 for 𝑥 > 0.
Lindenstrauss andTzafriri [1] used the idea ofOrlicz function
to define the following sequence space:

ℓ
𝑀

= {𝑥 ∈ 𝑤 :

∞

∑

𝑘=1

𝑀(

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝜌
) < ∞} , (1)

which is called as an Orlicz sequence space.The space ℓ
𝑀
is a

Banach space with the norm

‖𝑥‖ = inf {𝜌 > 0 :

∞

∑

𝑘=1

𝑀(

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝜌
) ≤ 1} . (2)

It is shown in [1] that everyOrlicz sequence space ℓ
𝑀
contains

a subspace isomorphic to ℓ
𝑝

(𝑝 ≥ 1). An Orlicz function 𝑀

satisfies Δ
2
-condition if and only if, for any constant 𝐿 > 1,

there exists a constant 𝐾(𝐿) such that 𝑀(𝐿𝑢) ≤ 𝐾(𝐿)𝑀(𝑢)

for all values of 𝑢 ≥ 0. An Orlicz function 𝑀 can always be
represented in the following integral form:

𝑀(𝑥) = ∫

𝑥

0

𝜂 (𝑡) 𝑑𝑡, (3)

where 𝜂 is known as the kernel of𝑀 and is right differentiable
for 𝑡 ≥ 0, 𝜂(0) = 0, 𝜂(𝑡) > 0; 𝜂 is nondecreasing and 𝜂(𝑡) →

∞ as 𝑡 → ∞.

A sequence M = (𝑀
𝑘
) of Orlicz functions is called a

Musielak-Orlicz function; see ([2, 3]). A sequenceN = (𝑁
𝑘
)

defined by

𝑁
𝑘 (V) = sup {|V| 𝑢 − 𝑀

𝑘 (𝑢) : 𝑢 ≥ 0} , 𝑘 = 1, 2, . . . (4)

is called the complementary function of a Musielak-Orlicz
function M. For a given Musielak-Orlicz function M, the
Musielak-Orlicz sequence space 𝑡M and its subspace ℎM are
defined as follows:

𝑡M = {𝑥 ∈ 𝑤 : 𝐼M (𝑐𝑥) < ∞ for some 𝑐 > 0} ,

ℎM = {𝑥 ∈ 𝑤 : 𝐼M (𝑐𝑥) < ∞, ∀𝑐 > 0} ,

(5)

where 𝐼M is a convex modular defined by

𝐼M (𝑥) =

∞

∑

𝑘=1

𝑀
𝑘
(𝑥
𝑘
) , 𝑥 = (𝑥

𝑘
) ∈ 𝑡M. (6)

We consider 𝑡M equipped with the Luxemburg norm

‖𝑥‖ = inf {𝑘 > 0 : 𝐼M (
𝑥

𝑘
) ≤ 1} (7)

or equipped with the Orlicz norm

‖𝑥‖
0
= inf {1

𝑘
(1 + 𝐼M (𝑘𝑥)) : 𝑘 > 0} . (8)
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A Musielak-Orlicz function (𝑀
𝑘
) is said to satisfy Δ

2
-

condition if there exist constants 𝑎, 𝐾 > 0 and a sequence
𝑐 = (𝑐

𝑘
)
∞

𝑘=1
∈ ℓ
1

+
(the positive cone of ℓ

1) such that the
inequality

𝑀
𝑘 (2𝑢) ≤ 𝐾𝑀

𝑘 (𝑢) + 𝑐
𝑘 (9)

holds for all 𝑘 ∈ N and 𝑢 ∈ 𝑅
+
, whenever 𝑀

𝑘
(𝑢) ≤ 𝑎.

Let 𝑋 be a linear metric space. A function 𝑝: 𝑋 → R is
called paranorm, if

(1) 𝑝(𝑥) ≥ 0, for all 𝑥 ∈ 𝑋;
(2) 𝑝(−𝑥) = 𝑝(𝑥), for all 𝑥 ∈ 𝑋;
(3) 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦), for all 𝑥, 𝑦 ∈ 𝑋;
(4) if (𝜎

𝑛
) is a sequence of scalars with 𝜎

𝑛
→ 𝜎 as 𝑛 →

∞ and (𝑥
𝑛
) is a sequence of vectors with 𝑝(𝑥

𝑛
−𝑥) →

0 as 𝑛 → ∞, then 𝑝(𝜎
𝑛
𝑥
𝑛
− 𝜎𝑥) → 0 as 𝑛 →

∞.

A paranorm 𝑝 for which 𝑝(𝑥) = 0 implies 𝑥 = 0 is
called total paranorm and the pair (𝑋, 𝑝) is called a total
paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see
[4], Theorem 10.4.2, P-183). For more details about sequence
spaces, see [5–11] and references therein.

The space of lacunary strong convergence has been
introduced by Freedman et al. [12]. A sequence of positive
integers 𝜃 = (𝑘

𝑟
) is called “lacunary” if 𝑘

0
= 0, 0 < 𝑘

𝑟
< 𝑘
𝑟+1

and ℎ
𝑟

= 𝑘
𝑟
− 𝑘
𝑟−1

→ ∞, as 𝑟 → ∞. The intervals
determined by 𝜃 are denoted by 𝐼

𝑟
= (𝑘
𝑟−1

, 𝑘
𝑟
] and the ratio

𝑘
𝑟
/𝑘
𝑟−1

will be denoted by 𝑞
𝑟
. The space of lacunary strongly

convergent sequences𝑁
𝜃
is defined by Freedman et al. [12] as

follows:

𝑁
𝜃
= {𝑥 = (𝑥

𝑖
) : lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑠
󵄨󵄨󵄨󵄨 = 0, for some 𝑠} .

(10)

The space |𝜎
1
| of strongly Cesàro summable sequences is

󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 = {𝑥 = (𝑥

𝑘
) : there exists 𝐿 such that

1

𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝐿
󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑛 󳨀→ ∞} .

(11)

In case, when 𝜃 = (2
𝑟
), 𝑁
𝜃
= |𝜎
1
|. Recently, Bilgin [13] in his

paper generalized the concept of lacunary convergence and
introduced the space 𝑁

0
(𝐴, 𝑓), as

𝑁
0
(𝐴, 𝑓)

= {𝑥 = (𝑥
𝑖
) : lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝑓 (
󵄨󵄨󵄨󵄨𝐴 𝑖 (𝑥) − 𝑠

󵄨󵄨󵄨󵄨) = 0, for some 𝑠} ,

(12)

where 𝑓 is a modulus function and 𝐴 = (𝐴
𝑖
(𝑥)); 𝐴

𝑖
𝑥 =

∑
∞

𝑘=1
𝑎
𝑖𝑘
𝑥
𝑘
converges for each 𝑖. Later Bilgin [14] generalized

lacunary strongly 𝐴-convergent sequences with respect to a
sequence of modulus function 𝐹 = (𝑓

𝑖
) as follows:

𝑁
0 (𝐴, 𝐹)

= {𝑥 = (𝑥
𝑖
) : lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝑓
𝑖
(
󵄨󵄨󵄨󵄨𝐴 𝑖 (𝑥) − 𝑠

󵄨󵄨󵄨󵄨) = 0, for some 𝑠} .

(13)

We write 𝜃 for the zero sequences.
Mursaleen and Noman [15] introduced the notion of 𝜆-

convergent and 𝜆-bounded sequences as follows.
Let 𝜆 = (𝜆

𝑘
)
∞

𝑘=1
be a strictly increasing sequence of

positive real numbers tending to infinity, that is,

0 < 𝜆
0
< 𝜆
1
< ⋅ ⋅ ⋅ , 𝜆

𝑘
󳨀→ ∞ as 𝑘 󳨀→ ∞, (14)

and said that a sequence 𝑥 = (𝑥
𝑘
) ∈ 𝑤 is 𝜆-convergent to the

number 𝐿, called the 𝜆-limit of 𝑥 ifΛ
𝑚
(𝑥) → 𝐿 as𝑚 → ∞,

where

𝜆
𝑚 (𝑥) =

1

𝜆
𝑚

𝑚

∑

𝑘=1

(𝜆
𝑘
− 𝜆
𝑘−1

) 𝑥
𝑘
. (15)

The sequence 𝑥 = (𝑥
𝑘
) ∈ 𝑤 is 𝜆-bounded if sup

𝑚
|Λ
𝑚
(𝑥)| <

∞. It is well known [15] that if lim
𝑚
𝑥
𝑚

= 𝑎 in the ordinary
sense of convergence, then

lim
𝑚

(
1

𝜆
𝑚

(

𝑚

∑

𝑘=1

(𝜆
𝑘
− 𝜆
𝑘−1

)
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑎

󵄨󵄨󵄨󵄨)) = 0. (16)

This implies that

lim
𝑚

󵄨󵄨󵄨󵄨Λ𝑚 (𝑥) − 𝑎
󵄨󵄨󵄨󵄨 = lim
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜆
𝑚

𝑚

∑

𝑘=1

(𝜆
𝑘
− 𝜆
𝑘−1

) (𝑥
𝑘
− 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0,

(17)

which yields that lim
𝑚
Λ
𝑚
(𝑥) = 𝑎 and hence 𝑥 = (𝑥

𝑘
) ∈ 𝑤 is

𝜆-convergent to 𝑎.
We now introduce the concept of lacunary strongly 𝐴-

convergence for sequences with the elements chosen from a
Banach space (𝐸, ‖ ⋅ ‖) over the complex field C, with respect
to Musielak-Orlicz functionsM = (𝑀

𝑖
).

Let 𝐴 = (𝑎
𝑖𝑘
) be an infinite matrix of complex numbers

andM = (𝑀
𝑖
) be a Musielak-Orlicz function. In the present

paper we define the following sequence spaces:

𝑁
𝜃 (𝐸, 𝐴, Λ,M)

= {𝑥 = (𝑥
𝑘
) : 𝑥
𝑘
∈ 𝐸,

lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)] = 0

for some 𝑠 = (𝑠
1
, 𝑠
2
, . . .) ∈ 𝐸, 𝑒

𝑖
∈ C, 𝜌

(𝑖)
> 0} ,
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𝑁
0

𝜃
(𝐸, 𝐴, Λ,M)

= {𝑥 = (𝑥
𝑘
) : 𝑥
𝑘
∈ 𝐸,

lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)] = 0

for some 𝜌
(𝑖)

> 0} .

(18)
If we take 𝑀

𝑖
(𝑥) = 𝑥, for all 𝑖 ∈ N, we have

𝑁
𝜃 (𝐸, 𝐴, Λ)

= {𝑥 = (𝑥
𝑘
) : 𝑥
𝑘
∈ 𝐸,

lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
] = 0

for some 𝑠 = (𝑠
1
, 𝑠
2
, . . .) ∈ 𝐸, 𝑒

𝑖
∈ C, 𝜌

(𝑖)
> 0} ,

𝑁
0

𝜃
(𝐸, 𝐴, Λ)

= {𝑥 = (𝑥
𝑘
) : 𝑥
𝑘
∈ 𝐸,

lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌(𝑖)
] = 0

for some 𝜌
(𝑖)

> 0} ,

(19)

where

𝑒
𝑖
= {

1, at the 𝑖th place,
0, otherwise.

(20)

A sequence 𝑥 is said to be Λ-lacunary strong 𝐴-convergent
with respect to M if there is a number 𝑠 = (𝑠

1
, 𝑠
2
, . . .) ∈ 𝐸,

such that 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ,M).

We have generalized the strongly Cesàro-summable
sequence space into Λ-strongly Cesàro-summable vector-
valued sequence space as

󵄨󵄨󵄨󵄨𝜎1 (𝐸, 𝐴, Λ)
󵄨󵄨󵄨󵄨

= {𝑥 = 𝑥
𝑘
:

there exists 𝐿 = (𝐿
1
, 𝐿
2
, . . .) ∈ 𝐸, 𝑒

𝑖
∈ C

such that 1

𝑛

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝐿
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩 󳨀→ 0} ,

(21)

where 𝐴 = (𝑎
𝑛𝑘
) is a Cesàro matrix, that is,

𝑎
𝑛𝑘

=

{{

{{

{

1

𝑛
, if 1 ≤ 𝑘 ≤ 𝑛,

0, if 𝑘 ≥ 𝑛.

(22)

Then it can be shown that |𝜎
1
(𝐸, 𝐴, Λ)| is a paranormed space

with respect to the paranorm

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 + sup
𝑛

(
1

𝑛

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩) . (23)

2. Topological Properties of the Spaces
𝑁
𝜃
(𝐸,𝐴,Λ,M) and 𝑁

0

𝜃
(𝐸,𝐴,Λ,M)

Theorem 1. Let 𝐴 = (𝑎
𝑖𝑘
) be an infinite matrix of complex

numbers and let M = (𝑀
𝑖
) be a Musielak-Orlicz function.

Then 𝑁
𝜃
(𝐸, 𝐴, Λ,M) and 𝑁

0

𝜃
(𝐸, 𝐴, Λ,M) are linear spaces

over the field of complex number C.

Proof. It is easy to prove.

Theorem 2. Let 𝐴 = (𝑎
𝑖𝑘
) be an infinite matrix of complex

numbers and let M = (𝑀
𝑖
) be a Musielak-Orlicz function.

Then 𝑁
0

𝜃
(𝐸, 𝐴, Λ,M) is normal spaces, when 𝐸 is normal.

Proof. Let 𝑥 ∈ 𝑁
0

𝜃
(𝐸, 𝐴, Λ,M). Let ‖𝑦‖ ≤ ‖𝑥‖. Then

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦))
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩 . (24)

SinceM = (𝑀
𝑖
) is increasing,

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦))
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

≤
1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)] .

(25)

Consequently, 𝑦 ∈ 𝑁
0

𝜃
(𝐸, 𝐴, Λ,M). This completes the proof

of the theorem.

Theorem 3. The spaces 𝑁
𝜃
(𝐸, 𝐴, Λ,M) and 𝑁

0

𝜃
(𝐸, 𝐴, Λ,M)

are paranormed spaces, with respect to the paranorm

‖𝑥‖ = inf {𝜌
(𝑖)

> 0 : 𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝑎𝑖0𝑥1
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)

+ sup
𝑟≥1

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)] ≤ 1,

𝜌
(𝑖)

≥ 0} .

(26)

Proof. It is easy to prove, so we omit the details.

3. Relation between the Spaces
𝑁
𝜃
(𝐸,𝐴,Λ) and 𝑁

𝜃
(𝐸,𝐴,Λ,M)

Themain purpose of this section is to study relation between
𝑁
𝜃
(𝐸, 𝐴, Λ) and 𝑁

𝜃
(𝐸, 𝐴, Λ,M).

Theorem 4. Let 𝐴 = (𝑎
𝑖𝑘
) be an infinite matrix of complex

numbers and let M = (𝑀
𝑖
) be a Musielak-Orlicz function
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satisfyingΔ
2
-condition. If 𝑥 isΛ-lacunary strong𝐴-convergent

to 𝑠, with respect toM and (𝐸, ‖ ⋅ ‖) is a normal Banach space,
then 𝑁

𝜃
(𝐸, 𝐴, Λ) ⊂ 𝑁

𝜃
(𝐸, 𝐴, Λ,M).

Proof . Let 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ) and 𝑥

Λ

󳨀→ 𝑠, where 𝑠 = (𝑠
1
, 𝑠
2
,

. . .) ∈ 𝐸, 𝑒
𝑖
∈ C. Then

lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌
) = 0 for some 𝜌 > 0.

(27)

We define two sequences 𝑦 and 𝑧 such that

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩)

= {
(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) , if (

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑘 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) > 1,

𝜃, if (
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) ≤ 1,

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑧) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩)

= {
𝜃, if (

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) > 1,

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) , if (

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑘 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) ≤ 1.

(28)

Hence,

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) = (

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩)

+ (
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑧) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) .

(29)

Now,

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) ≤ (

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) ,

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑧) − 𝑠

𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) ≤ (

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩) .

(30)

Since𝑁
𝜃
(𝐸,𝐴,Λ)is normal,𝑦, 𝑧∈𝑁

𝜃
(𝐸, 𝐴, Λ). Let sup

𝑖
𝑀
𝑖
(2) =

𝑇. Then

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

=
1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑧) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

≤
1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[
1

2
𝑀
𝑖
(2

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)

+
1

2
𝑀
𝑖
(2

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑧) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

<
1

2

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝐾
1
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)𝑀
𝑖 (2)

+
1

2

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝐾
2
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑧) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)𝑀
𝑖 (2)

≤
1

2

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝐾
1
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑦) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
) sup𝑀

𝑖 (2)

+
1

2

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝐾
2
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑧) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
) sup𝑀

𝑖 (2)

󳨀→ 0 as 𝑟 󳨀→ ∞.

(31)

Hence 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ,M). This completes the proof of the

theorem.

Theorem 5. Let 𝐴 = (𝑎
𝑖𝑘
) be an infinite matrix of complex

numbers and let M = (𝑀
𝑖
) be a Musielak-Orlicz function

satisfying Δ
2
-condition. If

lim
𝑢→∞

inf
𝑖

𝑀
𝑖
(V/𝜌(𝑖))

V/𝜌(𝑖)
> 0 for some 𝜌

(𝑖)
> 0, (32)

then 𝑁
𝜃
(𝐸, 𝐴, Λ) = 𝑁

𝜃
(𝐸, 𝐴, Λ,M).

Proof . If limV→∞inf 𝑖(𝑀𝑖(V/𝜌
(𝑖)
)/V/𝜌(𝑖)) > 0 for some 𝜌

(𝑖)
>

0, then there exists a number 𝛾 > 0 such that

𝑀
𝑖
(

V
𝜌(𝑖)

) ≥ 𝛾(
V

𝜌(𝑖)
) ∀V > 0 and some 𝜌

(𝑖)
> 0. (33)

Let 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ,M) and 𝑥

Λ

󳨀→ 𝑠, where 𝑠 = (𝑠
1
, 𝑠
2
, . . .) ∈ 𝐸,

𝑒
𝑖
∈ C. Then clearly

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

≥
1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝑢
𝑖
[𝛾(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

= 𝛾
1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
) .

(34)

Hence 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ). This completes the proof.

4. Relation between the Spaces
|𝜎
1
(𝐸,𝐴,Λ)| and 𝑁

𝜃
(𝐸,𝐴,Λ)

In this section of the paper we study relation between the
spaces |𝜎

1
(𝐸, 𝐴, Λ)| and 𝑁

𝜃
(𝐸, 𝐴, Λ).

Lemma 6. |𝜎
1
(𝐸, 𝐴, Λ)|

0
⊂ 𝑁

𝜃
(𝐸, 𝐴, Λ) if and only if

lim inf
𝑟
𝑞
𝑟
> 1.
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Proof . First suppose that lim inf
𝑟
𝑞
𝑟
> 1. Then there exist 𝛿 >

0 such that 1 + 𝛿 ≤ 𝑞
𝑟
for all 𝑟 ≥ 1. Let 𝑥 ∈ |𝜎

1
(𝐸, 𝐴, Λ)|

0.
Then

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩 =

1

ℎ
𝑟

𝑘
𝑟

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

−
1

ℎ
𝑟

𝑘
𝑟−1

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

=
𝑘
𝑟

ℎ
𝑟

(
1

𝑘
𝑟

𝑘
𝑟

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩)

−
𝑘
𝑟−1

ℎ
𝑟

(
1

𝑘
𝑟−1

𝑘
𝑟−1

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩) .

(35)

Now, ℎ
𝑟
= 𝑘
𝑟
− 𝑘
𝑟−1

. So we have

𝑘
𝑟

ℎ
𝑟

=
𝑘
𝑟

𝑘
𝑟
− 𝑘
𝑟−1

=
𝑞
𝑟

𝑞
𝑟
− 1

= 1 +
1

𝑞
𝑟
− 1

≤ 1 +
1

𝛿
=

𝛿 + 1

𝛿
.

(36)

Also
𝑘
𝑟−1

ℎ
𝑟

=
𝑘
𝑟−1

𝑘
𝑟
− 𝑘
𝑟−1

=
1

𝑞
𝑟
− 1

≤
1

𝛿
. (37)

Since 𝑥 ∈ |𝜎
1
(𝐸, 𝐴, Λ)|

0, then

1

𝑘
𝑟

𝑘
𝑟

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩 󳨀→ 0,

1

𝑘
𝑟−1

𝑘
𝑟−1

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩 󳨀→ 0,

(38)

and hence
1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩 󳨀→ 0; (39)

that is, 𝑥 ∈ 𝑁
0

𝜃
(𝐸, 𝐴, Λ). By linearity, it follows that

|𝜎
1
(𝐸, 𝐴, Λ)|

0
⊂ 𝑁
𝜃
(𝐸, 𝐴, Λ).

Next, suppose that lim inf
𝑟
𝑞
𝑟
= 1. Since 𝜃 is lacunary we

can select a subsequence 𝑘
𝑟
𝑗

of 𝜃 such that

𝑘
𝑟
𝑗

𝑘
𝑟
𝑗
−1

< 1 +
1

𝑗
,

𝑘
𝑟
𝑗
−1

𝑘
𝑟
𝑗−1

> 𝑗, (40)

where 𝑟
𝑗
≥ 𝑟
𝑗−1

+ 2. Define 𝑥 = (𝑥
𝑖
) by

Λ
𝑖 (𝑥) = {

𝑒
𝑖
, if 𝑖 ∈ 𝐼

𝑟
𝑗

, for some 𝑗 = 1, 2, . . . ,

𝜃, otherwise,
(41)

where ‖𝑒
𝑖
‖ = 1 and let 𝐴 = 𝐼, and then for any 𝐿 =

(𝐿
1
, 𝐿
2
, . . .) ∈ 𝐸, 𝑒

𝑖
∈ C,

1

ℎ
𝑟
𝑗

∑

𝑖∈𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝐿)
󵄩󵄩󵄩󵄩

𝜌
) =

󵄩󵄩󵄩󵄩𝑒𝑖 − 𝐿
𝑖
𝑒
𝑖

󵄩󵄩󵄩󵄩

𝜌

=

󵄩󵄩󵄩󵄩1 − 𝐿
𝑖

󵄩󵄩󵄩󵄩

𝜌
for 𝑗 = 1, 2, . . . ,

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
) =

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

𝜌
=

1

𝜌
.

(42)

So, 𝑥 ∉ 𝑁
𝜃
(𝐸, 𝐴, Λ). But 𝑥 is strongly Cesàro-summable,

since if 𝑡 is sufficiently large integer we can find the unique
𝑗 for which 𝑘

𝑟
𝑗
−1

< 𝑡 ≤ 𝑘
𝑟
𝑗+1
−1

and hence

1

𝑡

𝑡

∑

𝑖=1

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))

󵄩󵄩󵄩󵄩) <
1

𝑘
𝑟
𝑗
−1

𝑡

∑

𝑖=1

1

≤
1

𝑘
𝑟
𝑗
−1

𝑘
𝑟
𝑗

≤

𝑘
𝑟
𝑗
−1

+ ℎ
𝑟
𝑗

𝑘
𝑟
𝑗
−1

<
1

𝑗
+

1

𝑗
=

2

𝑗
, as 𝑡 󳨀→ ∞,

(43)

and it follows that also 𝑗 → ∞. Hence 𝑥 ∈ |𝜎
1
(𝐸, 𝐴, Λ)|

0.

Lemma 7. 𝑁
𝜃
(𝐸, 𝐴, Λ) ⊂ |𝜎

1
(𝐸, 𝐴, Λ)| if and only if

lim sup
𝑟
𝑞
𝑟
< ∞.

Proof. First suppose that if lim sup
𝑟
𝑞
𝑟
< ∞, there exists 𝑀 >

0 such that 𝑞
𝑟

< 𝑀 for all 𝑟 ≥ 1. Let 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ) and

𝜖 > 0. Then

lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
) = 0 for some 𝜌 > 0. (44)

Then we can find 𝑅 > 0 and 𝐾 > 0 such that

sup
𝑗≥𝑅

1

ℎ
𝑗

∑

𝐼
𝑗

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
) < 𝜖,

1

ℎ
𝑗

∑

𝐼
𝑗

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
) < 𝐾 ∀𝑖 = 1, 2, . . .

(45)

Then if 𝑡 is any integer with

𝑘
𝑟−1

≤ 𝑡 ≤ 𝑘
𝑟
, where 𝑟 > 𝑅, (46)

then

1

𝑡

𝑡

∑

𝑗=1

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

≤
1

𝑘
𝑟−1

𝑘
𝑟

∑

𝑖=1

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

=
1

𝑘
𝑟−1

(∑

𝐼
1

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

+ ∑

𝐼
2

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

+ ⋅ ⋅ ⋅ +∑

𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
))
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=
𝑘
1

𝑘
𝑟−1

1

ℎ
1

∑

𝐼
1

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

+
𝑘
2
− 𝑘
1

𝑘
𝑟−1

1

ℎ
2

∑

𝐼
2

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

+ ⋅ ⋅ ⋅ +
𝑘
𝑅
− 𝑘
𝑅−1

𝑘
𝑟−1

1

ℎ
𝑅

∑

𝐼
𝑅

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

+
𝑘
𝑅+1

− 𝑘
𝑅

𝑘
𝑟−1

1

ℎ
𝑅+1

∑

𝐼
𝑅+1

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

+ ⋅ ⋅ ⋅ +
𝑘
𝑟
− 𝑘
𝑟−1

𝑘
𝑟−1

1

ℎ
𝑟

∑

𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

≤
𝑘
𝑅

𝑘
𝑟−1

sup
𝑖≥1

1

ℎ
𝑖

∑

𝐼
𝑖

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

+
𝑘
𝑟
− 𝑘
𝑅

𝑘
𝑟−1

1

ℎ
𝑟

∑

𝐼
𝑟

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
)

< 𝐾
𝑘
𝑅

𝑘
𝑟−1

+ 𝜖(𝑞
𝑟
−

𝑘
𝑅

𝑘
𝑟−1

)

< 𝐾
𝑘
𝑅

𝑘
𝑟−1

+ 𝜖𝑞
𝑟

< 𝐾
𝑘
𝑅

𝑘
𝑟−1

+ 𝜖𝑀.

(47)

Since 𝑘
𝑟−1

→ ∞ as 𝑟 → ∞, it follows that

1

𝑡

𝑡

∑

𝑗=1

(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))
󵄩󵄩󵄩󵄩

𝜌
) 󳨀→ 0 (48)

and hence 𝑥 ∈ |𝜎
1
(𝐸, 𝐴, Λ)|.

Next, suppose that lim sup
𝑟
𝑞
𝑟

= ∞. We construct a
sequence in 𝑁

𝜃
(𝐸, 𝐴, Λ) that is not Cesaro Λ-summable.

By the idea of Freedman et al. [12] we can construct a
subsequence 𝑘

𝑟
𝑗

of the lacunary sequence 𝜃 = (𝑘
𝑟
) such that

𝑞
𝑟
𝑗

> 𝑗, and then define a bounded difference sequence 𝑥 by

Λ
𝑖 (𝑥) = {

𝑒
𝑖
, if 𝑘

𝑟
𝑗
−1

< 𝑖 < 2𝑘
𝑟
𝑗
−1

,

𝜃, otherwise,
(49)

where ‖𝑒
𝑖
‖ = 1. Let 𝐴 = 𝐼 and 𝜌 = 1. Then,

1

ℎ
𝑟
𝑗

∑

𝐼
𝑟
𝑗

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))

󵄩󵄩󵄩󵄩) =

2𝑘
𝑟
𝑗
−1

− 𝑘
𝑟
𝑗
−1

𝑘
𝑟
𝑗

− 𝑘
𝑟
𝑗
−1

=

𝑘
𝑟
𝑗
−1

𝑘
𝑟
𝑗

− 𝑘
𝑟
𝑗
−1

<
1

𝑗 − 1

(50)

and if 𝑟 ̸= 𝑟
𝑗
,

1

ℎ
𝑟
𝑗

∑

𝐼
𝑟
𝑗

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))

󵄩󵄩󵄩󵄩) = 0. (51)

Thus 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ). For the above sequence and for 𝑖 =

1, 2, . . . , 𝑘
𝑟
𝑗

1

𝑘
𝑟
𝑗

∑

𝑖

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑒

𝑖
)
󵄩󵄩󵄩󵄩) >

1

𝑘
𝑟
𝑗

(2𝑘
𝑟
𝑗
−1

− 𝑘
𝑟
𝑗
−1

)

= 1 −
2

𝑞
𝑟
𝑗

> 1 −
2

𝑗
,

(52)

this converges to 1, but for 𝑖 = 1, 2, . . . , 2𝑘
𝑟
𝑗
−1
,

2

𝑘
𝑟
𝑗−1

∑

𝑖

(
󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥))

󵄩󵄩󵄩󵄩) ≥

𝑘
𝑟
𝑗
−1

2𝑘
𝑟
𝑗
−1

=
1

2
. (53)

It proves that 𝑥 ∉ |𝜎
1
(𝐸, 𝐴, Λ)|, since any sequence in

|𝜎
1
(𝐸, 𝐴, Λ)| consisting of 𝜃’s and 𝑒

𝑖
’s has a limit only 0 or

1.

Theorem8. Let 𝜃 be a lacunary sequence.Then|𝜎
1
(𝐸, 𝐴, Λ)| =

𝑁
𝜃
(𝐸, 𝐴, Λ) if and only if 1 ≤ lim inf

𝑟
𝑞
𝑟
≤ lim sup

𝑟
𝑞
𝑟
< ∞.

Proof . The proof of the theorem follows from Lemmas 6 and
7.

5. Statistical Convergence

The notion of statistical convergence was introduced by
Fast [16] and Schoenberg [17] independently. Over the years
and under different names, statistical convergence has been
discussed in the theory of Fourier analysis, ergodic theory,
and number theory. Later on, it was further investigated from
the sequence space point of view and linkedwith summability
theory by Fridy [18], Connor [19], Šalát [20], Mursaleen
and Edely [21], Isk [22], Mohiuddine and Alghamdi [23],
Hazarika et al. [24], Kolk [25], Maddox [26], Alotaibi and
Mursaleen [27], Mohiuddine et al. [28], Mohiuddine and
Aiyub [29], and many others. In recent years, generalizations
of statistical convergence have appeared in the study of strong
integral summability and the structure of ideals of bounded
continuous functions on locally compact spaces. Statistical
convergence and its generalizations are also connected with
subsets of the Stone-Čech compactification of natural num-
bers.Moreover, statistical convergence is closely related to the
concept of convergence in probability.The notion depends on
the density of subsets of the set N of natural numbers.

A subset 𝐸 of N is said to have the natural density 𝛿(𝐸) if
the following limit exists:

𝛿 (𝐸) = lim
𝑛→∞

1

𝑛

𝑛

∑

𝑘=1

𝜒
𝐸 (𝑘) , (54)

where 𝜒
𝐸
is the characteristic function of 𝐸. It is clear that

any finite subset of N has zero natural density and 𝛿(𝐸
𝑐
) =

1 − 𝛿(𝐸).
A sequence 𝑥 = (𝑥

𝑘
) is said to be statistically convergent

to the number 𝐿 if for every 𝜖 > 0

lim
𝑛→∞

1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 ≥ 𝜖}
󵄨󵄨󵄨󵄨 = 0. (55)
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Bilgin [14] also introduced the concept of statistical conver-
gence in 𝑁

0
(𝐴, 𝐹) and proved some inclusion relation.

Let 𝜃 be a lacunary sequence and let 𝐴 = (𝑎
𝑖𝑘
) be

an infinite matrix of complex numbers. Then a sequence
𝑥 ∈ 𝑁

𝜃
(𝐸, 𝐴, Λ,M) is said to be Λ-lacunary 𝐴-statistically

convergent to a number 𝑠 = (𝑠
1
, 𝑠
2
, . . .) ∈ 𝐸, 𝑒

𝑖
∈ C if for any

𝜖 > 0,

lim
𝑟→∞

1

ℎ
𝑟

󵄨󵄨󵄨󵄨Λ 𝑘𝐴0 (𝜖)
󵄨󵄨󵄨󵄨 = 0, (56)

where

Λ𝐴
0 (𝜖) = {𝑖 ∈ 𝐼

𝑟
: 𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑘 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
) ≥ 𝜖} . (57)

We denote it as 𝑥
Λ-stat
󳨀󳨀󳨀󳨀→ 𝑠. The vertical bar denotes the

cardinality of the set. The set of all Λ-lacunary 𝐴-statistical
convergent sequences is denoted by 𝑆

𝜃
(𝐸, 𝐴, Λ,M).

In this section we study some relation between the spaces
𝑆
𝜃
(𝐸, 𝐴, Λ,M) and 𝑁

𝜃
(𝐸, 𝐴, Λ,M).

Theorem 9. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and let (𝑀
𝑖
) be pointwise convergent. Then 𝑁

𝜃
(𝐸, 𝐴, Λ,M) ⊂

𝑆
𝜃
(𝐸, 𝐴, Λ,M) if and only if lim

𝑖
𝑀
𝑖
(V/𝜌(𝑖)) > 0 for some

V > 0, 𝜌
(𝑖)

> 0.

Proof . Let 𝜖 > 0 and 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ,M). Let 𝑥 Λ󳨀→ 𝑠, where

𝑠 = (𝑠
1
, 𝑠
2
, . . .) ∈ 𝐸, 𝑒

𝑖
∈ C. Since lim

𝑖
𝑀
𝑖
(V/𝜌) > 0, there

exists a number 𝑐 > 0 such that

𝑀
𝑖
(
V
𝜌
) ≥ 𝑐 for V > 𝜖. (58)

Let

𝐼
1

𝑟
= {𝑖 ∈ 𝐼

𝑟
: [𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)] ≥ 𝜖} . (59)

Then

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

≥
1

ℎ
𝑟

∑

𝑖∈𝐼
1

𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

≥ 𝑐
1

ℎ
𝑟

󵄨󵄨󵄨󵄨Λ 𝑘𝐴0 (𝜖)
󵄨󵄨󵄨󵄨 .

(60)

Hence it follows that 𝑥 ∈ 𝑆
𝜃
(𝐸, 𝐴, Λ,M).

Conversely, let us assume that the condition does not hold
good.Then there is a number V > 0 such that lim

𝑖
𝑀
𝑖
(V/𝜌) = 0

for some 𝜌 > 0. Now, we select a lacunary sequence 𝜃 = (𝑘
𝑟
)

such that 𝑀
𝑖
(V/𝜌) < 2

−𝑟 for any 𝑖 > 𝑘
𝑟
.

Let 𝐴 = 𝐼, and define the sequence 𝑥 by putting

Λ
𝑖 (𝑥) =

{{

{{

{

V, if 𝑘
𝑟−1

< 𝑖 ≤
𝑘
𝑟
+ 𝑘
𝑟−1

2
,

𝜃, if
𝑘
𝑟
+ 𝑘
𝑟−1

2
< 𝑖 ≤ 𝑘

𝑟
.

(61)

Therefore,

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

𝑀
𝑖
(

󵄩󵄩󵄩󵄩Λ 𝑖 (𝑥)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)

=
1

ℎ
𝑟

∑

𝑘
𝑟−1
<𝑖≤(𝑘

𝑟
+𝑘
𝑟−1
)/2

𝑀
𝑖
(

V
𝜌(𝑖)

)

<
1

ℎ
𝑟

1

2𝑟−1
[
𝑘
𝑟
+ 𝑘
𝑟−1

2
− 𝑘
𝑟−1

]

=
1

2𝑟
󳨀→ 0 as 𝑟 󳨀→ ∞.

(62)

Thus, we have 𝑥 ∈ 𝑁
0

𝜃
(𝐸, 𝐴, Λ,M). But

lim
𝑟→∞

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑖 ∈ 𝐼
𝑟
: 𝑀
𝑖
(

󵄩󵄩󵄩󵄩Λ 𝑖 (𝑥)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑟→∞

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑖 ∈ (𝑘
𝑟−1

,
𝑘
𝑟
+ 𝑘
𝑟−1

2
) : 𝑀

𝑖
(

V
𝜌(𝑖)

) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑟→∞

1

ℎ
𝑟

𝑘
𝑟
− 𝑘
𝑟−1

2
=

1

2
.

(63)

So 𝑥 ∉ 𝑆
𝜃
(𝐸, 𝐴, Λ,M).

Theorem 10. Let M = (𝑀
𝑖
) be a Musielak-Orlicz func-

tion. Then 𝑆
𝜃
(𝐸, 𝐴, Λ,M) ⊂ 𝑁

𝜃
(𝐸, 𝐴, Λ,M) if and only if

supVsup𝑖𝑀𝑖(V/𝜌) < ∞.

Proof . Let 𝑥 ∈ 𝑆
𝜃
(𝐸, 𝐴, Λ,M) and 𝑥

Λ-stat
󳨀󳨀󳨀󳨀→ 𝑠. Suppose ℎ(V) =

sup
𝑖
𝑀
𝑖
(V/𝜌) and ℎ = supVℎ(V). Let

𝐼
2

𝑟
= {𝑖 ∈ 𝐼

𝑟
: 𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
) < 𝜖} . (64)

Now, 𝑀
𝑖
(V) ≤ ℎ for all 𝑖, V > 0. So

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

=
1

ℎ
𝑟

∑

𝑖∈𝐼
1

𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

+
1

ℎ
𝑟

∑

𝑖∈𝐼
2

𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

≤ ℎ
1

ℎ
𝑟

󵄨󵄨󵄨󵄨Λ 𝑘𝐴0 (𝜖)
󵄨󵄨󵄨󵄨 + ℎ (𝜖) .

(65)

Hence, as 𝜖 → 0, it follows that 𝑥 ∈ 𝑁
𝜃
(𝐸, 𝐴, Λ,M).

Conversely, suppose that

sup
V

sup
𝑖

𝑀
𝑖
(
V
𝜌
) = ∞. (66)

Then we have

0 < V
1
< V
2
< ⋅ ⋅ ⋅ < V

𝑟−1
< V
𝑟
< ⋅ ⋅ ⋅ , (67)
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so that𝑀
𝑘
𝑟

(V
𝑟
/𝜌) ≥ ℎ

𝑟
for 𝑟 ≥ 1. Let𝐴 = 𝐼. We set a sequence

𝑥 = (𝑥
𝑖
) by

Λ
𝑖 (𝑥) = {

V
𝑟
, if 𝑖 = 𝑘

𝑟
for some 𝑟 = 1, 2, . . . ,

𝜃, otherwise.
(68)

Then

lim
𝑟→∞

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑖 ∈ 𝐼
𝑟
: [𝑀
𝑖
(

󵄩󵄩󵄩󵄩Λ 𝑖 (𝑥)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)] ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑟→∞

1

ℎ
𝑟

= 0.

(69)

Hence 𝑥
Λ-stat
󳨀󳨀󳨀󳨀→ 0 and hence 𝑥 ∈ 𝑆

𝜃
(𝐸, 𝐴, Λ,M).

But

lim
𝑟→∞

1

ℎ
𝑟

∑

𝑖∈𝐼
𝑟

[𝑀
𝑖
(

󵄩󵄩󵄩󵄩𝐴 𝑖 (Λ 𝑖 (𝑥) − 𝑠
𝑖
𝑒
𝑖
)
󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

= lim
𝑟→∞

1

ℎ
𝑟

[𝑀
𝑘
𝑟

(

󵄩󵄩󵄩󵄩V𝑟 − 𝑠
𝑖
𝑒
𝑖

󵄩󵄩󵄩󵄩

𝜌(𝑖)
)]

≥ lim
𝑟→∞

1

ℎ
𝑟

ℎ
𝑟
= 1.

(70)

So, 𝑥 ∉ 𝑁
𝜃
(𝐸, 𝐴, Λ,M).
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