Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 857341, 19 pages
http://dx.doi.org/10.1155/2014/857341

Research Article

Exponential Stability of Periodic Solutions for
Inertial Type BAM Cohen-Grossberg Neural Networks

Chunfang Miao and Yunquan Ke

Department of Mathematics, Shaoxing University, Shaoxing, Zhejiang 312000, China

Correspondence should be addressed to Yunquan Ke; keyunquan@usx.edu.cn

Received 6 February 2014; Revised 22 March 2014; Accepted 3 April 2014; Published 19 May 2014

Academic Editor: Zidong Wang

Copyright © 2014 C. Miao and Y. Ke. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existence and exponential stability of periodic solutions for inertial type BAM Cohen-Grossberg neural networks are
investigated. First, by properly choosing variable substitution, the system is transformed to first order differential equation. Second,
some sufficient conditions that ensure the existence and exponential stability of periodic solutions for the system are obtained
by constructing suitable Lyapunov functional and using differential mean value theorem and inequality technique. Finally, two

examples are given to illustrate the effectiveness of the results.

1. Introduction

The Cohen-Grossberg-type BAM neural networks model is
initially proposed by Cohen and Grossberg [1], has their
promising potential for the tasks of parallel computation,
associative memory, and has great ability to solve difficult
optimization problems. Thus, the analysis of the dynamical
behaviors of bidirectional associative memory neural net-
works and Cohen-Grossberg neural networks is important
and necessary. In recent years, many researchers have studied
the stability and other dynamical behaviors of the Cohen-
Grossberg-type BAM neural networks; see [2-10].

On the other hand, some authors studied neural net-
works, added the inertia, and obtained some results. For
example, Li et al. [11] added the inertia to a delay differential
equation which can be described by

X=ax—-bx+cf (x-—hx(t-1)) 1)

and obtained obvious chaotic behavior. Liu et al. [12,13] found
chaotic behavior of the inertial two-neuron system with time
through numerical simulation and gave that the system will
lose its stability when the time delay is increased and will
rise a quasiperiodic motion and chaos under the interaction
of the periodic excitation. Wheeler and Schieve [14] added
the inertia to a continuous-time Hopfield effective-neuron
system which is shown to exhibit chaos. They explain that the

chaos is confirmed by Lyapunov exponents, power spectra,
and phase space plotsthis system is described by

%) = —a;,X; — a;,x, + aj; tanh (x;) + a;, tanh (x,),
%, = —b; X, — b,x, + by; tanh (x;) + by, tanh (x,) .

Babcock and Westervelt [15] studied the electronic neural
networks with added inertia and found that when the neuron
couplings are of an inertial nature, the dynamics can be
complex, in contrast to the simpler behavior displayed when
they of the standard resistor-capacitor variety. For various
values of the neuron gain and the quality factor of the
couplings, they find ringing about the stationary points,
instability and spontaneous oscillation, intertwined basins
of attraction, and chaotic response to a harmonic drive. Ge
and Xu [16] considered an inertial four-neuron delayed bidi-
rectional associative memory model. Weak resonant double
Hopf bifurcations are completely analyzed in the parameter
space of the coupling weight and the coupling delay by the
perturbation-incremental scheme. Others, Liu et al. [17, 18],
investigated the Hopf bifurcation and dynamics of an inertial
two-neuron system or in a single inertial neuron mode.
Zhao et al. [19] investigated the stability and the bifurcation
of a class of inertial neural networks. The authors Ke and
Miao [20, 21] investigated stability of equilibrium point and
periodic solutions in inertial BAM neural networks with
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time delays, respectively. From the above, the inertia can
be considered a useful tool that is added to help in the
generation of chaos in neural systems. Horikawa and Kitajima
[22] investigated a kinematical description of traveling waves
of the oscillations in neural networks with inertia. When
the inertia is below a critical value and the state of each
neuron is overdamped, properties of the networks are the
same as those without inertia. The duration of the transient
oscillations increases with inertia, and the increasing rate of
the logarithm of the duration becomes more than double.
When the inertia exceeds a critical value and the state of
each neuron becomes underdamped, properties of the net-
works qualitatively change. The periodic solution is stabilized
through the pitchfork bifurcation as inertia increases. More
bifurcations occur so that various periodic solutions are
generated, and the stability of the periodic solutions changes
alternately. Ke and Miao [23] investigated the stability of
inertial Cohen-Grossberg-type neural networks with time
delays. To the best of our knowledge, the question on the
periodic solutions of inertial type BAM Cohen-Grossberg
neural networks with time delays is still open. To provide the
theoretical basis of practical application, this paper is devoted
to present a sufficient criterion to ensure the existence and
exponential stability of periodic solutions for inertial type
BAM Cohen-Grossberg neural networks with time delays.

We consider the following inertial type BAM Cohen-
Grossberg neural networks with time delays:

du (1) du (1)

a4

a; (u; ()

x| 8 (0) = Y g5 (v; (£ =7 0))
=1

_Ii (t) >
3)
d*v (t) dv, ()
J J
PR ety (v;®)
X [ej (Vj (t)) - Zhjigi (”i (f —0j (t)))
i=1

fori=1,2,...,n,j=1,2,...,m,where the second derivative

is called an inertial term of system (3); o, 3; > 0 are
constants; u;(¢) and vj(t) are the states of the ith neuron from
the neural field F;; and the jth neuron from the neural field
Fy at the time £, respectively; f;, g; denote the activation
functions of jth neuron from F;, and the ith neuron from
Fy, respectively; ¢; weights the strength of the ith neuron on
the jth neuron at the time ¢t — 7;;(t); hj; weights the strength
of the jth neuron on the ith neuron at the time t — 0;(t);
0 < 7;(t) < Tand 0 < 0;(t) < o3 Li(2), J;(£) denote the
external inputs on the ith neuron from F;; and the jth neuron
from F at the time f, respectively; a;(u;(¢)) and dj(vj(t))
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represent amplification functions; b;(u;(¢)) and ej(vj(t)) are
appropriately behaved functions such that the solutions of
model (3) remain bounded.

The initial conditions of system (3) are given by

w© =940, Uy 9, r<sso
av; (s) @)
vj (S) = (ij (S) ’ At = v/vj (S) , —0<s20,

where ¢,,(s), ¥,;(s), ¢,;(s), and y,;(s) are bounded and
continuous functions.

This paper is organized as follows. Some preliminaries are
given in Section 2. In Section 3, the sufficient conditions are
derived which ensure the existence and exponential stability
of periodic solutions for inertial Cohen-Grossberg-type BAM
neural networks. In Section 4, two illustrative examples are
given to show the effectiveness of the proposed theory.

2. Preliminaries

Throughout this paper, we make the following assumptions.

(H;) Foreachi =1,2,...,n, j = 1,2,...,m, the functions
a;(u), dj(v), b.(u), and ej(v) are differentiable and

satisty
0<ag <a(u)<a, 'ai' (u)| <A,
0<d;<d;(<d, |d;w|<D, (5)

forallu, v € R.

(H,) Foreachi =1,2,...,n, j = 1,2,...,m, the activation
functions f;, g; satisfy Lipschitz condition, and there

exist constants lj > 0, 71‘ >0,k; >0,and g; > 0, such

that
|fj (v1) - £ (Vz)' <Ly =, |f1 (V)' 57,"
bl b E R,
Vi, Vy, v ©)
|g: (1) = g; ()| < ki [y — 1], lg: )| < g,

Uy, Uy, U € R,

(H;) Foreach i = 1,2,...,n, j = L,2,...,m, Ii(t), J;(t)
are continuously periodic functions defined on t ¢
[0, 00) with common period w > 0 and satisfy 0 <
I <I(t)<I,0< lj <Jt)<J;.

(H,) Let B;(4;) = a;(u;)b,(1;); there exist constants T; > 0
and K; > 0, such that

0<T;<B(w<K, i=12...,m, u;eR  (7)

(Hs) Let Ej(vj) = dj(vj)ej(vj); there exist constants T]fk >0
and KJ’.‘ > 0, such that

* ! * .
0<TjsEj(v)£K,, j=L12,...,m, vjeR. (8)
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T,»j(t) and crﬁ(t) are continuously differentiable periodic
functions, and there exist constants 0 < 7;; < 1and 0 < 7j; <
1, such that

T (1) <T; < 1, 0y (1) <T; <1, 9)
wherei = 1,2,...,n, j = 1,2,...,m, and Tl-’j(t) and a;i(t)
express the derivative of Tij(t) and cr]-i(t).

Introducing variable transformation

x; (t) = % +u;(t), i=12,...,n
dvj () (10)
yi (1) = e +vi(t), j=12....m,
then (3) and (4) can be rewritten as
O )+ 5,0,
dx:
xdl—t(t) =—(1=a)u; (t) = (a; = 1) x; (£) — a; (1; (1))
x | b (u; (1))
- zi Gifj (Vj (t — T (f))) -L®) |,
=
dv; (t)
chlt =-v;(t) +y; (0,
dy; (t) _

T (1=8)v; = (B;=1) 3,0 = d; (v; )

x |e;(v; (1)

- ; hingi (u; (=03 (1)) =T, 0 |

(11)
u; (s) = ¢,; (s), du{;t(s) =y, (s), -T<s<0,
Xi (S) = Pui (S) + 1l’ui (S) = ¢ui (S) > “T<S< 0;
dav; (s) (12)
vi(s) =, (s), 7 =y,;(s), -0<s<0,
y]-(S)=(PVj(S)+WVj(S)inj(S), _GSSSO:
fori=1,2,...,n,j=12,...,m.
Definition 1. Let
) = (@, 1), @),....a, ),
(13)

T = (7, (0,7, (1) Ty ()T

3
be an w-periodic solution of system (3) with initial value
— — dﬁl S —
u; () =, (s), dt()zl//m.(s), -T<s<0,
) (V1)
_ _ de (s) _
v]-(s) :(pvj(s), — :wvj(s), -0<s<0,
for every solution
u(t) = (uy ),y (1) .. ou, (1))
. (14)
vit)= (v @®),v,(t),...,v, (1))
of system (3) with any initial value
du; (s
u; () = @, (5), % =y, (s), -T<s<0,
(IV2)
dv]- (s)
vi(s) =g, (s), i =v,;(s), -0<s<0.
If there exist constants § > 0 and M > 0, such that
n _ m _ 2
() -a @)+ (v; &) -7, (1)
i=1 j=1 (15)

]
fori = 1,2,...,n,j = 1,2,...,m,and t > 0, then solutions
u(t), v(t) are said to be exponentially stable, where

S Meiat ["(Puz - ¢ui”2 + (PV] - av}

Imﬁ@W=m%ZMﬂw@ﬁm
—T<t<0;—1
(16)
_ 2
9, (-9, ()|

2 m
o =9l = sup 3.
O<L< ]:1

3. Main Results

In this section, we can derive some sufficient conditions
which ensure the existence and exponential stability of
periodic solutions for system (3).

Theorem 2. For system (3), under the hypotheses (H,)-(H;),
then u,(t), ulf(t), vj(t), and v;.(t) are bounded, i = 1,2,...,n,
j=12,...,mandt >0.

Proof. If u;(t) > 0, then we have

d |u; ()] _ du; (t)

; (17)
dt dt

if u;(t) < 0, then

d |“i (t)| _ _d“i (t)

18
dt dt (18)




Hence, d|u;(t)|/dt = sgn(u;(t))(du,(t)/dt). Similarly, we can
get

d|vi (t)l B dv; (t)

FTE (v ®) dr ’
d? |u; (1) d?u, (t) 9
—gE (u; (1)) o (19)
d* |v; (1)] _ d*v; (t)

i sgn (v; (1)) —a

Since b;(u;) are differentiable on u; (i = 1,2,...,n), and then

we have
b (u; (1) = b, (0) = b (u ) u; (1), (20)

where u]" lies between u; and 0.
It follows from (3) that

Al du @)
= —(xi

a2 dr sgn (u; (1)) a; (u; ()
X {bz (u; (1) - Z Gifj (Vj (t — T (t))) +1; (f)}
=1
dlu.
= _“i% —sgn (u; (1)) a; (u; (1))

x [b, (u; (1) = b, (0) + b, (0)

- i 6if; (vi (=7 ®)) + 1, (t)]

j=1

d |u; (1)
oG————

i —sgn (u; (1)) a; (u; (1))

X [b (u]) u; (t) + b, (0)

- i ¢if; (v; (£ =7 0)) + I, (t)]

j=1

—oc-d |u,» (t)l ~
boodt

X [lbz (0) + Z 'Cij'7j +Tij| .
i1

a;b; |”i (t)l +a

(21)
Similarly, we can obtain
d*|v; (1) d|v; (@t
i j
a2 <-p dr dje; |VJ' (t)| o

AC A
i=1
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From (21), (22), we can obtain

ab

=iz

— m
|“i (t)| < Cle/\lt +C26M + i [|bl (0)| + Z 'c,-j'fj +Ii] ,
j=1

(23)

where A, = (-o; = \/a? —4a;b;)/2 and C,, C, are any real

constants:

. .. d, _
[y @] < ikt ikt oy 0]+ 3 sl 7+ T, |
dje; i=1

(24)

where A}, = (=f; |} —4d,e;)/2 and C], C; are any real
constants.

Since «; > 0, ﬁj > 0, we have Re(1;) < 0, Re(A,) < 0,
Re(1]) < 0, and Re(A}) < 0, and formula (23) shows that all
solutions u;(t) to (3) are bounded fori = 1,2,...,n,t > 0.

Formula (24) shows that all solutions vj(t) to (3) are
bounded for j = 1,2,...,m,t > 0.

On the other hand, from (3) we also can obtain

du; (t) e—aitdui ) oot j
dat dt

t e““a; (u; (s))
0

X [bz (1 (5))

(25)
- Jicijfj (v (s =7 0)) + 1 (S)] ds,
i=1,2,...n
= en Rt [ (s, 0)
X [e;’ (v 9) - ihjigi
= (26)

X (ui (s -0 (t))) +7];(s) :| ds,

j=L2,...,m

Since u;(t), vj(t) are bounded, we may assume that
lu; (1) < R;, Ivj(t)l < R;, where R; > 0, R;f > 0 are constants,
i=12,...,n,j=12,...,m.

From (25), we have

—du;t(t)’ < |y (0)] + % |:EiRi +[6; (0] + Z 'Cij| 71‘ * Ti] :
i j=1
(27)

Formula (27) shows that all solutions ul{(t) are bounded for
i=1,2,...,n,t>0.
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From (26), we have

dv; (t)
j
(28)
v L R} + 'ej (0)' + Z |hji'§i +7j:| )
/3]‘ i=1
Formula (28) shows that all solutions v;(t) are bounded for
j=1,2,...,mt20. O

Theorem 3. Under the hypotheses (H,)-(Hs), ifo; — K; > 0,
B;—Kj >0, and

o —T; - 2+A<Z|J|f+l> i |' R

l

m m
_“z_Ti+aiZ|cif|lj+Ai<Z| 11|f +I>
= =

-7 i<
=

—

ﬁj—T].* -2+D; <Z|hji'§i+7j> +Z %7 ' 1]_|
i-1
-B;-T; +3j2'hji|ki+Dj (Z'h1i|gi+71> <0
i=1 i=1

(29)

fori=1,2,...,n, j=1,2,...,m, then system (3) has one w-
periodic solution, which is exponentially stable.

Proof. Ifu; (t), x! (t), v} (t), and y; (t) are w-periodic solution

of (11), which are exponentially stable, then we can obtain that

(u] (t), v/ (t)) are w-periodic solution of system (3), which is

exponentially stable. In the following we only prove that (11)

has one w-periodic solution, which is exponentially stable.
Let

4, (1)),
) =@, 0,5, ). 7, )

be solution of system (3) with initial value (IV'1), and let

u(t) = (u, (t),u,(t),...
(30)

= (1), 0) o1, (1))

. (31)
v(t)=(v, ®),v,(1),...,v,, 1))
be solution of system (3) with any initial value (IV2).
Let
0= 0w, 5,0-2Y50,
T dr Y a0V
G0 =u -5, wO=x0-%0, O
p; () =v; () —v; (1), q; () = y; () = y; (1),

fori=1,2,...,n,j=12,...,m.

From (11), we can obtain

dz; (t) 3
dt - Zi (t) + wi (t) 5
dw; (t)

=—(1-
dt (

+a; (u; (1)) [i%‘ £ (v (¢

j=1

o) z; (1) = (o — 1) w; (t)

~ 7))
—ﬂ@ﬂ—w®m1

a; (u; (1))

X [Z ¢ f; (v (¢

j=1

+(a; (u; (1) —

T (t))) +1 (f)jl

= [a; (u; ) b; (u; (1) — a; (w; (1)) b; (; (1))],

(33)
fori=1,2,...,n

dp; (t)
dt

=-p; () +q;(®),

dt

+@mmﬂgmw¢4w@ﬁm

1-B,)p; &)= (B;—1)q; ()

- (5=, 0)]|
d;(v;»))
by (5, (-0,0) 4,0

1 (7,0)e; (7,0)],

(34)

+(d;(v; ) -

d!

~[d; (v @) e (v; ) -d

M=

1

forj=1,2,...,m
Since functions g;(1) and b,(u) are differentiable, using
differential mean value theorem, we have

a; (u; (1) —a; (5 (1) = a/ (§) 2, (1),
a; (u; (1) b (w; (1) — a; (w; (1)) b; (; (1)) (35)
= B; (w) - B; () = B; (Ez) z; (1),

where §; and &, lie between u; and 7.
Since 0 < T; < Bj(u) < K, if o

-Bl(¢§)>a-K;>0and0 < a; -

- K; > 0, then we have
Bi(€) < oy~ T;.
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2 2
From (33) we get < -2 (1) + [oci - B (El)] w
2
%dz(ljt(t) = —Zl.2 (t) + Z; (t) w; (t) 5 _ ((X- _ 1) w2 (t)
il (w? ) +p3 (t—7;(0)
% w(;zt(t) =—(1-a)z (O w; () - (o - 1) w] () +3; z' |, 12( ;(0))

+a; (u; () w; (t)

!i[ﬂ(@ww» [§H7TJ€Q§ﬂ@

st
=%[ai—Tl( “2+4 A, <Z| A7) +I>]zf(t)
550 :
1 _ _ m
+(a; (u; (1)) —a; (u; (1)) w; () 3 [2 - - T, (51) ta; Z; |Cl]' i
=
' [;Cﬁfi (7 (=75 0)) + 1, (t):| +A,; <§: les| £ +7,~>] w; (1)
=
— [a; (u; ) b; (u; (1)) (36) a
—a; (5 () b (5% (D) ] w; (0) 2 JZ EAGRIAL)
—(1-)z O w (1) - (@ - 1) w] () (37)
+a; (u; (1) w; (t) fori=1,2,...,nt > 0.
Similar to the above derivation, from (34) we can get
filvi(t -1 (t)))
LZ e L2 (R0 g o)
5le-s )] 3|51 6)-200,(ShmlaeT,) | o
@) 0w 3 [2 B =15 () + 4 2 il
‘ i f i (vt =75 (6) I (t) n _
j;wf] (7 (¢ -7 ®)) + } +Dj<Z|hﬁ|g7,-+Ij)] 20
i=1
-B(§)z () w (1), i=12...,n q 2
? ;' 'ilkizi (t_ Oji (f))

From (36), we can obtain
(38)

2 (& O+ uf ) for j=1,2,...,m,t> 0.
_ We consider the Lyapunov functional
<2 (0 + [0~ B (E)] 2 () w; () - (o — 1) ] (8) yap

m " ) ,
| i(t)|Z'Cij'lj|Pj(t_Tij(t))' V(t) = {Z = ()
= 2

i=1

Mz

YRS

Ci: t
1' l]_' L J ) p]; (s)ds
1t T t=7;(t)

1

+ A, |7 0] |wi (1) [§| |7, T,.] )

J
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L3 {p] (t) +4; ® . e {spj (t);qj (t)
j=1 j=1
3 C |hji' ! e(s+0;(s)) 2 1 .
?;1 Ejiki Jt—oji(t)e " K (S)dsy» +E ﬁ]_Tj -2
(39)
p (S| l5+7 2
where € > 0 is a small number. +oj Z| Ji|gi +Jj pj ()
Calculating the upper right Dini-derivative D"V (t) of =
V(t) along the solution of (33) and (34), using (37) and (38), ] n
we have +E[2_ﬁj_T; Z' |k
i=1
D'V (t)
" D, hi|g:+7; (t)
Z{sz (t) +wi () St+%%(zi2(t)+wi2(t))eet ’ <Z' Jlg ' )]%
i=1
3 n
+@§: 'C| [p (1) ) ?;| |k f o (t))
2 51-7,
4 & |l
(1= 0) £ (15, 0) ] | P
< P] (t) + q] (t) 1d 2 2 et 2 g
+) e EE(PJ' t)+q; (1) e x [z (e - (1-0}, (1) 2 (t -0 1))]
j=1
d, o |, n m
+?le|_16' k, Sestz{%lg+(xl—Tl—2 +A,<Z'c,]'7]+7,>
i=1 ji i=1 =1
x [z e — (10}, 0) 7 g
+ydiT =k j|z (t)
X(t—o‘ji(t))eSt]} j=1 —0ji
n 2 2 l —o.. —T. N
Sest;{ezi(t);wi(t) +2|i£+2 & Tz*“J_ZIMZ
+—[a— =2+ A <i|,|? 7>]z(t) +4; <;'J|f +I>]w(t)}
j=1
v )1
+%|:2 o; T+aZ']'l +et;{5[s+ﬁ]—T -2+D; (Z'hﬂlngF])

n_ l' ET
+A, <Z| 5| f +1>]wf(t) +;ai1—]?ijlje ]p?(t)

1 _n
+%;|’J|ZJPJ (t-7 )+ %Z | j 2[8 Bi=T; + JZ| 1'

Jj=1

, +D; ) hilg,+7; 2~(l‘)}-
x [p?(t)e”—@—T,.j(t))p]?(t—r,.j(t))]} J<Zl| il ’)]q]

(40)
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From condition of Theorem 3, we can choose a small ¢ > 0
such that

eto—T,—2+A,; <Z' J|f +I> iajl_ji'kiew
<0,
s+2—ai—Ti+aii| |l +A, <i|lj|7j+f,->
j=1

<0,

e+B;-T; -2+D; <Z|h]l|gl+] >+iai1|i"f?|“ljesr

i=1

<0,

uM:

Juf+7,) 20,

i=1,2,...,n j=12,....,m, t >0.
(41)

s+2—/§’j—TJfk+Hji|hﬁ|ki+D (
P

From (40), we get D*V(¢) < 0 and so V(t) < V(0), for all
t > 0. From (39), we have

n

z (t)+w (t) Etépi (t) +4; ®) o
=1

V()
® 2

=i

est

- [(w; () -1, ®) + (x,(t) - %, (1)) ]

M:

Il
—

est

+ —
2

s

Il
—

[(v; 0 -7,0) + (7,0 -7,0)],

J

n 2 2
i=1

m . 0
“i I. J s(5+‘r (s)) 2 s)ds
2 Z 1-7,;7 ~134(t) ( )

P (0) +4; (0)

z{ '
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¥ { (05 © -5, ) | (640 =9, ©)’
iz 2 2

0 +7;;(s - 2
X J “ &S+ ))((ij (s) - P, (s)) dS}
—;

3

j=1

{(gov, 0)-9,,0) (s 0) -7, )
2

+ﬂi il N
251-0; "
0 o) )
X 8 >0 ((Puz (pui (S)) ds
_Uj(s)
— 12
"(Pui _¢ui”2 + "¢“i B (l)”i”
- 2 2
- 4 ] — 12
— 2 — |?
el el
2 2
m 7. |h|
j ji o — 2
+0'j; - hax ‘[ 1 _Eﬁki} ¢ pui = Puil
m h.. S~ . 2
_ 1+02d~max ’]’_l ki esa “S"m (Pw"
st Ti<isn I_Gji 2

. "(/)ui _g_bui"2 N Xvj _XV]' ’
2 2

e [ o N }

2 2

N "‘/’ui —ﬁ_bm'uz N Xvj —ij ’
2 2

-4

3

“%i - §_"ui"2 + 00 = Py

(42)
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where M* = max{l + azyllajmaxlsis”{(lhﬁl/(l -
5]- ))k }ew) I+ TZ, 1 1maX1§j5m{(|Cij|/(1 _?ij))lj}esr}s

— 2 2
M= M+ ||¢ui - ¢ui|| + "ij ~ Xvj . (43)

— 2 _ 2
lui = Pull” + |00 = 91

Since V(0) > V (t), from (42), we obtain

Y [0 -5 O + (x, () - % 0))]
i=1
Y 0-7,0) +(yo-7,0)] @
=1

3

< Me_St ["(Pul - ¢ui|l2 + ¢V] - ¢v1

From (44), we obtain
m

> (u; () -1, ®) Z(v ) -7, (t)

=1 j=1 (45)
]
Fori = 1,2,...,n,j = 1,2,...,m, when I(t), ]j(t),
7;;(t), and 0 ; are continuously periodic functions defined on
t € [0, 0c0) with common period w > 0, if u;(¢), vj(t) are the
solutions of (3), then for any natural number k, u;(t + kw),

v j(t + kw) are the solutions of (3). Thus, from (45), there exist
constants N > 0 and & > 0, such that

< MeiSt |:||(P141 _¢ui"2 + ||(PV] _avj

|u; (¢ + (k+ 1) @) —u; (t + ko)| < Ne 2T (46)
|v; (£ + (k+ 1) w) = v; (t + k)| < Ne ), (47)

fori=1,2,...,n,j=1,2,...,m,t > 0.
It is noted that, for any natural number p,

u(t+(p+1)w) =u,(t)

P
+ 3 (u; (t+ (k+ 1) @) = (£ + kw)).
k=
' (48)

Thus

u; (t+ (p+ 1) w)| < |u; (8)]
P
3 |y (4 (e + 1) @) = uy (t+ k).
k=
' (49)

Since u;(t) is bounded, it follows from (46) and (49) that
{u(t + pw)} uniformly converges to a continuous functions
u*(t) = (uj (t),u; (), ..., u,(t)) on any compact set of R.

Similarly, since vj(t) is bounded, from (47), {v(t + pw)}
uniformly converges to a continuous function v* (t) = (v} (¢),
vy (t),...,v,(t)) on any compact set of R.

When u;(1), u;(t), vj(t), and v;(t) are bounded, x;(t) =
u;(t) + ul{(t), y]-(t) = vj(t) + v;(t), and we can obtain that
x;(1), yj(t) are bounded. Similarly, from (44), they can be
proved that {x(t + pw)}, {y(t + pw)} uniformly converge to
continuous functions x*(t) = (x{(t),x;(t),...,x,(t)) and
y @) = (y (1), y;(t),..., ¥, () on any compact set of R,
respectively.

Now we will show that (17 (£), v*T(£))T is the w-periodic
solution of system (3).

First, u” (t), v* (t) are w-periodic functions, since

u” (t +w) =P1meu(t+ (p+1)w)=u* (),

(50)
Vit +w) = Plemv(t+ (p+Dw)=v"(t).

Second, we prove that W), v*T(1))" is a solution of system
(3).

In fact, [(t + pw) = L(t), ];(t + pw) = J;(t), 7;;( + pw) =
Tij(t)’ O']l(t + P(U) = Gjl(t)’ and

%}Lpﬂ)) u; (t+ pw) + x; (t + pw),

dx; (t + pw)
dt
(- o) u; (t + pw) = (o =

~a,(u (£ + p)

1) x; (t + pw)

b (u; (t + pw))

=3 6, ¢+ b=, ) - 1)

=1

dv (t + pw)
]T =—v; (t+ pw) + y; (t + pw),

dy; (t + pw)
dt

_(1 _ﬁj)"j(t+P“’)_ (/3]’— 1)}’j(t+Pw)
~d; (vj (t+ pw))

e (vj (t +pw))
- Zhjigi (”i (t + pw—0j; (t))) -J;® |,
i
(51)

fori=1,2,...,m,j=1,2,...,m
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Since {u(t + pw)} and {v(t + pw)} uniformly converge to
continuous function

u® (1) = (uy @),u5 (£),...,u, (),
V() = (v (8),vy (1), v, (1)),

respectively, {x(t + pw)} and {y(t + pw)} uniformly converge
to a continuous function

x" () = (%] (1), %, (1),....x, (1),

(52)

(53)
YO =010, O3, @),
respectively. (51) implies that
du; (t + pw) dx; (t + pw)
dt ’ dt ’
(54)

{dv,-(;:pw)}) 1dyj(;:pw)}

uniformly converge to continuous functions on any compact
set of R, respectively. Thus, let p — ©0; we obtain

du; (t) -

I —u; (t) +x; (t),

dx; (t)
dt
=-(1-o)u (t)—(a;—1)x; (¢)

—a; (u; (1))
x | b (u (1))

m

- J:ZI 6 f; (Vi (-1, 0)) - Lo |
dv;.k (t) . .
dar Vi ) +y; (),
dy; (t)
dt

=—(1-B)v; O~ (B-1) 7 ®
a,50)

x |e; (v )
=2 g (] (£ =05 0)) =10 |
i=1

(55)

fori=1,2,...,n,j=12,...,m.

Abstract and Applied Analysis

Thus, (w7 (t), v*T(t)) is a periodic solution of system (3).
From (45), we obtain that system (3) has one w-periodic
solution, which is exponentially stable. O

Theorem 4. Under the hypotheses (H,)-(Hs), there is w-
periodic solution of system (3), which is exponentially stable,
if the following conditions hold:

o —1-T;>0, Bi—1-T; >0,

m 3 m
T, + A ij |Cij| + Al +a ZZJ' 'Cif' <0
= s

(56)
~T; + D, leyi 'hﬁl +D;];+d, Z;ki |hji' <0,
fori=1,2...,n,j=12...,m.
Proof. Let
() = (1 (6,5 (t),.... 0, (1)
. (57)
V()= (¥, (), V5 (),...,V, (1)
be solution of system (3) with initial value (IV'1), and let
u®) = (uy, () 1y 1), (0)
(58)

v(e) = (v, )y (15 o, ()

be solution of system (3) with any initial value (IV2).
From (33), we can obtain

@ =sgn (z; (1) (-2 (1) + w; (1)) (59)

<—lz@)|+|w; @], i=12....n

d |wi (t)l
dt

= sgn (w; (1)) { —-(1-0)z; () — (o — 1) w; (t)
+a; (u; (1))

| Eatntote-no

3

-
Il

S GIGEAO))]



Abstract and Applied Analysis
+ (@ (u; (1) - @ (1; (1))
x [icijfj (7 (t -7 ®)) +1 (t)}
pn
— [a (u; ) b; (u; 1))

—a, (T (1)) b (7 (1)) ] }

= sgn (w; (t)) ‘| - (1-a)z (1) = (o — 1) w; (1)
+a; (y; (t))

’ !;—2 o[£ (v (t -7 ®))

—ﬂ@oqwmﬂ
+ ail (Ez) z; (t)

x {icﬁfi (7 (t -7 ®)) + 1 (t>}

=1
_B,{ (2,) z; (t) }
< (o= 1-B(&)) ]z O] - (o = 1) [w; (1)

+a Zl leil 1|25 (8 =7 ®)]
=

+ A,

1

Z 'Cij| 71' + Tz} |Zi (t)l
=

< lai -1-T;+ A <§: 'Cij'7j +Ti>:| |z; )]
=1

(- 1) [w, (1) +al§1 65| |p; (¢ = )]

(60)
fori=1,2,...,n.
From (34), we can obtain
d|p; ®)|
——— =sgn(p;0) (-p; () +q; 1)) -

<-|p; 0| +|a; @], i=12....m,

1

d |q1‘ (t)|
dt

= sgn(q; (1) { ~(1-B;)p; = (B~ 1)q;®
+d,(v; (1) [i hii [g: (ui (t = 0;: )
(5t 0, )]

+(d; (v;0) - d;(v;®))

: [ghﬁgi (@ (t - 05 )) +7; (f)]
~[d; (v; ) ¢; (v; )
4, (5,0)¢,(5,0)] |
= sgn (g, () { ~(1=B;) p; ) = (B = 1) q; )
4y 0) | 3 plo o - 0,0)
a5 -0, )] |
+di (&) p; ) [2 hyigi (3 (¢ - 0 1))
+J; (£) ]
~E(&)p; (t)}

< (Bi-1-E;(&))]p; 0] - (8;=1)]a; ®)

+ 4, Y |k 2 (£ - 0, )] + Dy [y )
i=1
<(Ehla)
i=1
< [/31‘ -1-T; +D, <Z |h;i| 4 +7f)] |p; )]
i=1

- (ﬂj - 1) |qj (t)l +d, ; |hji| k; |Zi (t —0j (t))|,

(62)

forj=1,2,...,m.
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From (60) and (62), we can obtain

|w; ()] < "™ w; (0)]

+ |:oc,-— 1 —7}+A,-<i|c,-j|7j+7i>]
=1
<]

t
D) |z,- (s)| ds
0

v 3ol [ €0 gy (s vy 0)] s
j=1 0

(63)
fori=1,2,...,n.

jg; ] <" |q; 0]
+ [ﬁj ~1-T; + D, (Z il 5 +71)]
i=1
x r B~ D) |pj (s)| ds
0

— i t _ o=
+d; ; |hj,»' k; JO P |z,- (s -0 (t))| ds,

(64)

forj=1,2,...,m.
We consider the functions g;(£), h;(n) given by

9: ) =8-T,+ A, ii 'Cljl + AL +a; i l; |Cij| ¢,
=1 =1

hi(n)=n-T; +D; >'G 'hﬁ| +D;J;+d; Y k; |hﬁ' S
i=1 i=1

(65)
fori=1,2,...,n,j=12,...,m.
Obviously
dg; (§) .
! > 1 i = > i >
b >0 ngmgt(f) +00, g;(0)<0 -
66
M50 o tim () = 00, () <0
d;«l > n—+0o J 71 ? J >
fori=1,2,...,n,j=12,...,m.

Therefore, there exist constants §;, 77; € (0, +00), such that

gi(Ez’)zo’
hi(n,)=0, j=12,..,m.

i=1,2,...,n,
(67)

Abstract and Applied Analysis

We choose & = min{&,,&,, ..., &, 11, 1p» - - H,}> then € > 05

when 0 < § < Z, we have

mo__ _ m
6_T"+Aizfj 'Cij"LAiIi’faile |oy| e <0,
- "~ (68)
8-T; +D1'izzlf7i |hﬁ| +Dy]; +aj;ki 'hji|€60 <0,

fori=1,2,...,mn,j=1,2,...,m.

Since the initial values ¢,,;(s), ¥,,;(s), ¢, ;(s), and y,(s) are
bounded and continuous functions, then there exist N;, N,,
N,, and N, > 0, such that |p,;(t)] < N, ly,;(t)] < N,,
|<ij(t)| < N5, |1//Vj(4)| <SNg,i=12,...,nj=12,...,m,
and t € [-y,0], y = max{o, 7}.

Let L = max{N; +N,, N; + N,}; we will show that, for any
sufficiently small constant e > 0 and 0 < & < ¢,

St

|z,- (t)| <(L+¢) e, lwi (t)| <(L+ge)e ",

-8
|pj (t)| <(L+e)e™,
fori=1,2,...,n,j=1,2,...,m,and t > 0.
Considering proof of contradiction, if (69) does not hold,
there are 15 possible situations; here we only discuss the
following four cases; that is,

g, )| < L+e)e™,

|2 (8)] = (L + &) ™", W >0,
|z < L+e)e®™, telot),
w (O] < L+e)e™, telot], (70)
|pj (t)| <@L+e)e™, telot],
g, < L+e)e™, tefot],

lwg (£))] = (L +¢) e o

lz; ()] < (L+e) e, te[ot],
lw; (1) < L+e)e™™, telot), (71)
lp; O < L+e)e™™, teo],
|q]~ (t)| <(L+e)e™, telot],
ot d|p (t
|Pl(t1)|:(L+€)€61, WZO’
lz:(0)] < L+e)e™, telot],
lw; @)] < (L +¢) e, telot], (72)
lp; (0| < L+e)e™, telor),
la; 0] < @+e)e®, telot],
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or

la; (£)] = (L+e) e,
lz;(0)] < (L+e) e, telot],
lw; )| < L+e)e™, telot], (73)
lp; O] < LW+e)e™, telot],

;)] < L+e)e™, telor),

where k € {1,2,...,n},1 € {1,2,..

1,2,...,nm,and j=1,2,...,m.
Therefore, by (59) and (70), we have

dtlz (¢
TI] o )+  0)

om}p,and t; > 0,1 =

(74)
<—(L+¢) ey (L+e¢) e =0,

which is a contradiction with d¥|z,(t,)|/dt > 0.
By (63) and (71), we obtain

()] = (L +e)e™
m — —_—
< - |we (0)] + | o — 1 = Tj + A Z f; |ij| + Al
=1
t m
x L eV 12 (5)| ds + @ Z l; |ij|
=1
t
X Ll e(ak_l)(s_tl) 'p] (S - Tkj (S))| ds
<(L+¢)

m
e(l_ak)tl + (xk_l_Tk+Ak27j |ij|+Aka
j=1

) st)-0 N
a—1)(s—t;)-0s -
xj e V%ds + ay E l; 'ij'
0 j=1

t
« J le(txkfl)(sftl)fﬁeré“rkj(s) ds
0

m
S(L+8) e(l_ak)t1+ [ak—l—Tk+Akaj |ij|
j=1

m
+A I +a, Z l; |ckj

eT(S
i

oot _ -ty

X —
(Xk—l—(s

(75)
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Since

ock_1—8>ock—1—Tk+AkZ7j'Ckf|
j=1
! (76)

m
7 — 0
j=1
we have

[(xk -1-T+ A Z;":l?j |ckj' + ARl +ay Yl |ckj| efa]

((Xk -1- 8)
< 1.
(77)
From (75), we have
L+e<L+e (78)
which is a contradiction.
Therefore, by (61) and (75), we have
d’ lPl (tl)l
— < - t t
di IPI( 1)|+|‘ﬂ( 1)| (79)

<—(L+ee +(L+e)e™ =0,

which is a contradiction with d*|p(t,)|/dt > 0.
By (70) and (80), we obtain

l‘Zl (tl)l

= (L+e)e® <" g (0)
+ [ﬁz ~1-T; +D; ) g, || + DJ’]
i=1
ty Iy
" L e(ﬁ1_1)(s—t1) |Pl (5)| ds +d, Z k; |hli|
i=1
ty
N J B D=t |z; (s — 0y (5))| ds
0
i=1
t (B-1)(s—t,)-0 Ry
% JO e Bi=1)(s=t1)~ *ds + d, Zki |hli|

i=1

t
« J ! (B Ds—t1)=05+50,(5) ds}
0
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n
<(L+e) {e(l_ﬂ’)tl + |:ﬁ1 -1-T; +DlZ£_7i [P

i=1

+DyJ; +d; Z ki |y 6061|

i=1
e*é\tl _ e(lfﬁl)tl
X —————————— .
Bi—-1-06
(80)
Since
B-1-6>p-1-T;
+D; Z?i |Pui| + DyJ; + d; Z ki | e >0,
i=1 i=1
(81)
we have

[B-1-T + D, Y%, G, [l + DT, +dy X1y K [y | €]
(B—1-9)

<1.
(82)

From (80), we have
L+e<L+e (83)

which is a contradiction.
Similarly, we can prove that the other 11 possible situa-
tions; thus (69) holds; let ¢ — 0; we have

|z: (0] < Le™, |w; (1)| < Le™,
(84)

o) <Le™, g <L,

fori=1,2,...,n,j=12,...,m,and t > 0.
From (84), there exist constants § > 0 and M > 0 such
that

Z(ui ®) -1 (t) Z (v t)-v; () )
=1 j=1 (85)
<M g =Bl + 0 -7, ], >0

Using (85), similarly with the proof of Theorem 3, we know
that system (3) has one w-periodic solution, which is expo-
nentially stable. U

4. Numerical Examples

In this section, we give two examples for showing our results.

Abstract and Applied Analysis

Example 1. We consider the following inertial Cohen-
Grossberg-type BAM neural networks with time delays (n =
m = 3):

d’u; (t)
dt?
o du () 3
=TT T (u; (1))
3
X |:bz (u; (1) - Z Cijfj (Vj (t — T (t))) - (f)jl >
=1
d*v; ()
dt?
dvj (t)

=p———4;(v;)

3
X [ej (Vj (t)) - Z h;i g (”i (t —-0j (t))) -J; (f):| ,
i1

(86)
fori, j = 1,2, 3, where
a, =17, a, = 1.9, a =18, B, =23,
1 1
B, =2, Bs =22, 1 = _6 Cp = E’
L1 1 1 1
13750 61 = 3’ Cn = 3’ 03 3
. . 1 Lo ]
317 350 327 3y %3—64 =3y
1 1 1 1
h = —), h = —, h = — h = —),
2= 35 135 oy 21 = 35 2= 73
1 1 1
hy; = —, hy = —, hyy = — hyy = —,
3735 317 o 27 o 373,
) =2+ ——, e (m)=2- ——,
1+u? 1+ u’

2
a; (u )—16+1+u,
3

8 1 10
by (u,) = 54 b, (u,) = St by (us) = 2ol

1 1
dl("l):“’m, dZ(VZ)zz_Tvﬁ’
d (v ) =2+ ;
3 3) — 1+V§)
4 1
el (VI) = ;Vla 62 (VZ) = 51/2, e3 (V3) = 1_5V3,
eli—ei et

L) = seey 90 5@ ey



Abstract and Applied Analysis

1+ cost

1 +sint _
> 0ji = 6

ij = 6

>

L(t) = %(2+sint), ]j(t) = %(2+cost),

ij=1,23.
(87)
Obviously,
2<a (uy) <3, |a{ (u1)| <1, 1<a,(u,) <2,
|a£ (u2)| <1, 1.6 < ay (u3) < 3.6, |a; (u3)| <2,
1<d (v) <2, |di(v)|s1,  12d,(n)<2
Id; (v2)| <1 2<d,y(vy) <3, |d; (v3)' <1,
8 1 10
b (uy) = 15’ bz’ (uy) = PX b3’ (u3) = 50’
4 1 4
51 (v) = P e; (v,) = 3’ e; (vs) = 15
X - y 1
-2 )<l
j=123, x,y€R,
-y 1
|9: () = g: ()| | c , l9: (0l < o>
i=1,2,3 x,y€R,
1 .
OSTijsg, 0<0],——, i=j=123,
sl ool i3
ij -_— 6, ji bl J bl
1 3 1 3
- I t > - H t Y ‘) j = 1)2’3>
3 <5 5 <liO<5 b

i 2M1+L2 N
5 I+ug
.2
15 (1+u?)
B, (1) = a, (i1,) by (uy) = = ( 20, — —2—
2) — ™2 2 2) — 2 1+1/l% 4
-1
Lep(n)- (e L)
2 2 (1+u2)° 16

10 2
= — | 1.6u; + u32 ,
7 1+uj

B, () = a; (uy) by (uy) =

>

ui| oo

ISB; (”1):

By (u3) = a; (us) by (u3)

N | =
IN

o]
=
—~

w

N—

|

N
Qo
/N
=

(o)

V]
—~~

Lol -
+ 1
WQN
\_/WN
v

15

4
E; (v3) = ds (vs) es (v3) = 15 (21/3 1 :31/2 )
3

4 1-v? 4
<E,(v;) = 2+ N,
15 (1+42)?) 5

N =

(88)

By assumptions (H,)-(H;), we select

- 8 - 1 - 10
QI:bI:E) bzzbzzi, 123:b3:§’
_ 4 _ 1 _
gl :el :;, 22: 2:;) 2326321—5)
- 1 1 1 1
I, = =3 k; = T g, = P =T
=173 T YTy AT
I = L 7= 1,2,3
i 32) Zj - 32) J_ > _] - e
8 1 17
T, =1, k1=§> Tz=5) k2_1_6’
1 4 « 1 « 8
T3 = E, k3 = g, Tl = 5, kl = ;,
1 17 1 4
T* = 7> ; = y = > k* = =
23 24 2 5
1 1 _ 1 _ 1
=3 9Ty W Fitj

(89)

Thus, hypotheses (H,)-(H;) hold.
For numerical simulation, the following ten any intial

values are given:

[(Pul (0) > Pun (0) > Pus (0) > 1//ul (0) > 1//142 (0) > 1//143 (0) >
Pu1 (O) > Py (0) > Py (0) > ll’vl (0) > %2 (0) > 1//v3 (0)]
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0.5

uy (t)

-0.5

-1

-1.5

100 120 140 160 180 200
t

0 20 40 60 80

FIGURE 1: Transient response of state variables u, (t) of Example 1.

uy(t)

100 120 140 160 180 200
t

0 20 40 60 80
FIGURE 2: Transient response of state variables u,(t) of Example 1.

=[0.4;—-1;1.5;2;-1.3;2; 0.5; 1.8; 3; 2; —3; 2] ;
[0.1;1.3;0.5;1.5; —-2; 1.5; 1; 1.3; 1; 1.5; =2; 1.5] ;
[-0.2;1.5;-1;-1;-1;-1;-1.5; 1.5; —1; 1.5; =2; 1.5] ;
[-0.7;1;1.8;0.5; 0; —1.3;0.2; —1.3; 2; 1.5; —2; 1.5] ;
[-0.4;0.5;0.8; —2.3; 1; -2.3; —=0.5; —1.5; =2; 1.5; —2; 1.5] ;
[0.5;-0.2;1;1.3;2; 1.3; 1.8; 2; 0.4; 1.5; —2; 1.5] ;
[-0.5;0.2;2; —2.3;1.3; -2.3; 0.6; —0.2; —0.4; 1.5; =25 1.5] ;
[0.8;-0.5; —2; —1.3;2; —1.3; —1.5; 0.5; =2.6; 1.5; —2; 1.5] ;
[-0.6;0.9; -0.5; —2.3; =2; —2.3; —1.2;
—-0.5;-2.3;1.5;-2;1.5];

[0.7;-0.7;-1.5;-3;0.5; -1; -1.1; -1.8; —0.2; 1.5; =2; 1.5] .
(90)
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u3(t)

0 20 40 60 80 100 120 140 160 180 200
t

FIGURE 3: Transient response of state variables u;(t) of Example 1.

71.5 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

t

FIGURE 4: Transient response of state variables v, () of Example 1.

Vz(t)

0 20 40 60 80 100 120 140 160 180 200

Figures 1, 2, 3, 4, 5, and 6 depict the time responses of state .
variables of 1 (t), u,(t), and u,(t) and v,(t), v,(¢), and v5(¢),

of the system in Example 1, respectively. FIGURE 6: Transient response of state variables v,(t) of Example 1.
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On the other hand, we have the following results by simple

calculation:

2 67
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« 31 . 7
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=1 o Tl-op
__ass
o240 7
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128

3 3
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128

Then, the conditions of Theorem 3 hold. From Theorem
3, system (86) has one 27-periodic solution, and all other
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(o1

solutions of system (86) exponentially converge to it ast —

+00.

Evidently, this consequence is coincident with the results

of numerical simulation.

Example 2. For system (86), let o, = 2.12, 0, = 1.6, a3 = 1.7,
B =22, 5, =5/3,and 3; = 1.6,; the other parameters are

the same as those in Example 1.

Through numerical simulation, Figures 7, 8, 9, 10, 11,
and 12 depict the time responses of state variables of u(¢),
u,(t), and u;(¢) and v, (), v4(¢), and v5(t), of the system in

Example 2, respectively.

On the other hand, we have the following results by simple

calculation:

a-1-T;=01>0, oa,-1-T,=0.1>0,

a-1-T;=02>0, B, -1-T =02>0,

«_ 1 .
ﬁz—l—T2=§>0, Bs—-1-T, =0.1 >0,

3 _ 3
T, + A, Zf] 'Clj' + A +a Zlf |C11'| - _2
j=1 =1

- — . 2 77
Tyt Ay ) eyl + Asla + @ Y L] =~
j=1 j=1

S — Sl 165
T+ Ay ) Fles| + AT+ @ Y Lo = -5
j=1 j=1

15

1
-Ty +D1zgzlh11|+D]1+d Zk|h11|—_ 256

i=1 i=1

3
— <0,
6

>

>

<0,
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FIGURE 7: Transient response of state variables u, (¢) of Example 2.
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FIGURE 8: Transient response of state variables u,(t) of Example 2.

. 3 3 33
-T, + D, Zgi |hy| + D,J, +dZZk,- |hy| = 381 < 0,
=1 =1
i 3 _ _n 99
-T; + D; Zgi |hy| + DsJ5 + dy Zki |hy| = ~25¢ < 0.
i=1 i=1

(92)

Then, the conditions of Theorem 4 hold. From Theorem 4,
system (86) has one 27-periodic solution, and all other solu-
tions of system (86) exponentially converge toitast — +00.

Evidently, this consequence is coincident with the results
of numerical simulation.

Remark 5. Examples 1 and 2 showed that system (86) has
one 27m-periodic solution, which is exponentially stable. In
Example 1, there is

a,-1-T, =-03<0. (93)

But this condition does not satisfy Theorem 4. While in
Example 2, there is

i=1 i=1

3 3
2-B5-T; +d3Z|h3,~|k,~+D3 <Z|h3i|§i+l3>
(94)

35.25
=—=>
128
This condition does not satisfy Theorem 3. It showed that
Theorems 3 and 4 have different applications.
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FIGURE 9: Transient response of state variables u;(¢) of Example 2.
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FIGURE 10: Transient response of state variables v, (t) of Example 2.

100 120 140 160 180 200
t

0 20 40 60 80

FIGURE 11: Transient response of state variables v, (¢) of Example 2.
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F1GURE 12: Transient response of state variables v, () of Example 2.
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In fact, the parameter «;, f8; in Theorem 3 must be
satisfied

2-T;<e; <2+T, 2-T; <B;<2+T;.  (95)
For Theorem 4, it is only required to satisty
o >1+T, Bi>1+T;. (96)

Therefore, Theorems 3 and 4 can solve different problems.

5. Conclusion

In this paper, we give three theorems to ensure the existence
and the exponential stability of the periodic solution for
inertial Cohen-Grossberg-type BAM neural networks. Novel
existence and stability conditions are stated with simple
algebraic forms and their verification and applications are
straightforward and convenient. Especially, we give different
conditions in Theorems 3 and 4 to ensure the exponential
stability of the periodic solution, which have different advan-
tages in different problems and applications. Finally two
examples illustrate the effectiveness in different conditions.
The method used in this paper can be employed to study
general neural network with time-varying delays.
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