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By presenting Riordan matrix as a triangle, the central coefficients are entries in the central column. Starting at the central column,
the 𝑟-shifted central coefficients are entries in column 𝑟 of the right part of the triangle.This paper aims to characterize the 𝑟-shifted
central coefficients of Riordan matrices. Here we will concentrate on four elements of the subgroups of the Riordan group, that is,
the Bell subgroup, the associated subgroup, the derivative subgroup, and the hitting time subgroup. Some examples are presented
to show how we deduce the generating functions for interesting sequences by using different means of calculating these 𝑟-shifted
central coefficients. Besides, we make some extensions in the Bell subgroup.

1. Introduction

Every infinite lower triangular array, in particular Riordan
array, can be presented as a triangle. For instance, the Pascal
triangle can be represented in the following form:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

⋅ ⋅ ⋅

(1)

However, its most usual representation is

(

(

(

(

(

(

(

1

1 1

1 2 1 ⋅ ⋅ ⋅

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

... d

)

)

)

)

)

)

)

. (2)

We will refer to the former representation as the ISO
(isosceles) triangle and to the latter as the REC (rectangular)

triangle. The central coefficients are given by the central
column of the ISO triangle, which play an important role in
combinatorics. Barry [1] makes use of the central coefficients
of Bell matrices to deduce the generating functions of inter-
esting sequences. A natural question to ask is, “What happens
when other columns of the ISO triangle are examined?” We
investigate this question for the right part of the Riordan
triangle. To consider this case we define the 𝑟-shifted central
coefficients and give their computing methods in four sub-
groups of the Riordan group in Section 2. With the 𝑟-shifted
central coefficients, we can deduce the generating functions
of more sequences. Also, some examples are presented to
show how we deduce the generating functions of interesting
sequences by using different means of calculating these 𝑟-
shifted central coefficients. Some sequences referred to by
their Annnnnn OEIS number can be found in On-Line
Encyclopedia of Integer Sequence (OEIS) [2].

Furthermore, we introduce the AER (aerated) triangle as
the ISO form with interposed zeros:

1

1 0 1

1 0 2 0 1

1 0 3 0 3 0 1

1 0 4 0 6 0 4 0 1

1 0 5 0 10 0 10 0 5 0 1

1 0 6 0 15 0 20 0 15 0 6 0 1

⋅ ⋅ ⋅

(3)
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Considering a Riordan array in its AER form, we prove that
the right part of the AER triangle is an aerated Riordan
array. That is to say, the 𝑟-shifted central coefficients with
interposed zeros can generate an aerated Riordan array and
the relation of this Riordan array with the initial one will
be shown in Section 3. Finally, we defined the (𝑚, 𝑟)-shifted
central coefficients for expanding our research subject.

Before defining the 𝑟-shifted central coefficients we recall
the Riordan group [3], sate the Fundamental Theorem of
Riordan arrays, and give four of the subgroups of the Riordan
group. Consider infinite matrices𝐷 = (𝑑

𝑛,𝑘
)
𝑛,𝑘≥0

with entries
in C, the complex numbers. Let 𝑆

𝑖
(𝑡) = ∑

∞

𝑛≥0
𝑑
𝑛,𝑖
𝑡
𝑛 be the

generating function of the 𝑖th column of 𝐷. We now make
the crucial special assumption that

𝑆
𝑖
(𝑡) = 𝑑 (𝑡) [ℎ (𝑡)]

𝑖

, (4)

where

𝑑 (𝑡) = 1 + 𝑑
1
𝑡 + 𝑑
2
𝑡
2

+ 𝑑
3
𝑡
3

+ ⋅ ⋅ ⋅ ,

ℎ (𝑡) = 𝑡 + ℎ
2
𝑡
2

+ ℎ
3
𝑡
3

+ ⋅ ⋅ ⋅ .

(5)

In this case, we write 𝐷 = (𝑑(𝑡), ℎ(𝑡)) and say that 𝐷 is a
Riordan array. That is to say, the pair (𝑑(𝑡), ℎ(𝑡)) defines the
𝐷 = (𝑑

𝑛,𝑘
)
𝑛,𝑘≥0

having

𝑑
𝑛,𝑘

= [𝑡
𝑛

] 𝑑 (𝑡) ℎ(𝑡)
𝑘

. (6)

Suppose we multiply 𝐷 = (𝑑(𝑡), ℎ(𝑡)) by a column vector
(𝑙
0
, 𝑙
1
, . . . )
𝑇 and the result is the column vector (𝑏

0
, 𝑏
1
, . . . )
𝑇.

If the generating function for the sequence (𝑙
0
, 𝑙
1
, . . . )
𝑇 is 𝐿(𝑡)

and similarly, (𝑏
0
, 𝑏
1
, . . . )
𝑇 has 𝐵(𝑡) as its generating function,

then we obtain

𝐵 (𝑡) = 𝑑 (𝑡) 𝐿 (ℎ (𝑡)) . (7)

This is called the Fundamental Theorem of Riordan arrays.
The typical column of 𝑀 = (𝑔(𝑡), 𝑓(𝑡)) is 𝑔(𝑡)[𝑓(𝑡)]

𝑖 and
using this as 𝐿(𝑡) quickly yields thematrixmultiplication rule
for the Riordan group which is

(𝑑 (𝑡) , ℎ (𝑡)) (𝑔 (𝑡) , 𝑓 (𝑡)) = (𝑑 (𝑡) 𝑔 (ℎ (𝑡)) , 𝑓 (ℎ (𝑡))) . (8)

This shows us that the identity 𝐼 = (1, 𝑡), the usual matrix
identity, and group inverse

(𝑑 (𝑡) , ℎ (𝑡))
−1

= (

1

𝑑 (ℎ (𝑡))

, ℎ (𝑡)) , (9)

where ℎ(𝑡) is the compositional inverse of ℎ(𝑡), such that
ℎ(ℎ(𝑡)) = ℎ(ℎ(𝑡)) = 𝑡. In addition, subgroups of the
Riordan group are important and have been considered in the
literature.

(i) The associated subgroup [4]: elements of this sub-
group are of the form (1, ℎ(𝑡)).

(ii) The Bell subgroup [4]: elements of this subgroup are
of the form (ℎ(𝑡)/𝑡, ℎ(𝑡)) or (𝑓(𝑡), 𝑡𝑓(𝑡)).

(iii) The derivative subgroup [5]: elements of this sub-
group are of the form (ℎ

󸀠

(𝑡), ℎ(𝑡)), where ℎ󸀠(𝑡) denotes
the first derivative of ℎ(𝑡).

(iv) The hitting time subgroup [6]: elements of this sub-
group are of the form (𝑡ℎ

󸀠

(𝑡)/ℎ(𝑡), ℎ(𝑡)), where ℎ
󸀠

(𝑡)

denotes the first derivative of ℎ(𝑡).

In order to compute the 𝑟-shifted central coefficients of
matrices in the previous defined subgroups, we need the
Lagrange Inversion Formula, whose proof can be found in
[7].

Lemma 1 (LIF). Let ℎ(𝑡) be a formal power series with ℎ(0) =

0 and ℎ
󸀠

(0) ̸= 0 and let ℎ(𝑡) be its compositional inverse; then
one has

[𝑡
𝑛

] ℎ(𝑡)
𝑘

=

𝑘

𝑛

[𝑡
𝑛−𝑘

] (

𝑡

ℎ (𝑡)

)

𝑛

. (10)

2. 𝑟-Shifted Central Coefficients

Definition 2. Let 𝐷 = (𝑑(𝑡), ℎ(𝑡)) = (𝑑
𝑖,𝑗
)
𝑖,𝑗≥0

be a Riordan
array, and 𝐷

2𝑛,𝑛
= {𝑑
0,0

, 𝑑
2,1

, 𝑑
4,2

, 𝑑
6,3

, . . .} denote the central
coefficients.Then the 𝑟-shifted central coefficients are defined
as the sequence𝐷

2𝑛+𝑟,𝑛+𝑟
, where 𝑛, 𝑟 ∈ N.

According to this definition, we find that the central coef-
ficients are equal to 0-shifted central coefficients. Sometimes,
we ignore the central coefficients; that is to say, the first
column considered is 1-shifted central coefficients.Therefore,
(𝑟 + 1)-shifted central coefficients should be given for 𝑟 ∈ N.

Example 3. The ISO representation of the Bell-type Riordan
array𝐷 = ((1 − √1 − 4𝑡)/2𝑡, (1 − √1 − 4𝑡)/2) is

1

1 1

2 2 1

5 5 3 1

14 14 9 4 1

42 42 28 14 5 1

132 132 90 48 20 6 1

⋅ ⋅ ⋅

(11)

Then its central coefficients begin 1, 2, 9, 48, . . . , 1-shifted
central coefficients begin 1, 3, 14, . . ., and 2-shifted central
coefficients begin 1, 4, 20, . . . .

If we consider lattice paths in the first quadrant, then the
𝑟-shifted central coefficients 𝐷

2𝑛+𝑟,𝑛+𝑟
of Riordan array 𝐷 =

((1 − √1 − 4𝑡)/2𝑡, (1 − √1 − 4𝑡)/2) are the number of paths
from (0, 0) to (2𝑛 + 𝑟, 𝑛 + 𝑟) that consist of steps (1, 1) and
steps (1, −𝑙), 𝑙 ≥ 0. Besides,𝐷

2𝑛+𝑟,𝑛+𝑟
also denotes the number

of paths from (0, 0) to (3𝑛 + 𝑟, 𝑛 + 𝑟) that consist of up steps
(1, 1) and down steps (1, −1). If we just allow east steps (1, 0)
and north steps (0, 1), then 𝐷

2𝑛+𝑟,𝑛+𝑟
is the number of paths

from (0, 0) to (2𝑛+𝑟, 𝑛), never going above themain diagonal
𝑦 = 𝑥.

In this section, we characterize the 𝑟-shifted central
coefficients of the matrices in four subgroups, of which
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the Bell subgroup is themost important. Also, some examples
are presented to show how we deduce the generating func-
tions of interesting sequences by using different methods to
calculate these 𝑟-shifted central coefficients.

2.1. The Bell Subgroup

Theorem 4. Let 𝐵 = (ℎ(𝑡)/𝑡, ℎ(𝑡)) be an element of the Bell
subgroup of the Riordan group. If 𝐵

2𝑛+𝑟,𝑛+𝑟
denote the 𝑟-shifted

central coefficients of 𝐵, then one has

𝐵
2𝑛+𝑟,𝑛+𝑟

=

𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

]

1

𝑡
𝑟+1

𝑔(𝑡)
𝑟+1

, (12)

𝐵
2𝑛+𝑟,𝑛+𝑟

= [𝑡
𝑛

]

1

𝑡
𝑟
𝑔
󸀠

(𝑡) 𝑔(𝑡)
𝑟

, (13)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡), 𝑛, 𝑟 ∈ N.

Proof. According to formula (6), we can calculate 𝐵
2𝑛+𝑟,𝑛+𝑟

directly,

𝐵
2𝑛+𝑟,𝑛+𝑟

= [𝑡
2𝑛+𝑟

]

ℎ (𝑡)

𝑡

ℎ(𝑡)
𝑛+𝑟

= [𝑡
𝑛

] (

ℎ (𝑡)

𝑡

)

𝑛+𝑟+1

. (14)

We now apply the LIF. This says that if we have

𝑔 (𝑤) =

𝑤

ℎ (𝑤) /𝑤

=

𝑤
2

ℎ (𝑤)

, ℎ (𝑤) ̸= 0, (15)

then

[𝑡
𝑛+𝑟+1

] 𝑔(𝑡)
𝑟+1

=

𝑟 + 1

𝑛 + 𝑟 + 1

[𝑤
𝑛

] (

ℎ (𝑤)

𝑤

)

𝑛+𝑟+1

. (16)

Thus we obtain that

𝐵
2𝑛+𝑟,𝑛+𝑟

=

𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛+𝑟+1

] 𝑔(𝑡)
𝑟+1

=

𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

]

1

𝑡
𝑟+1

𝑔(𝑡)
𝑟+1

,

(17)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡); then formula (12) is obtained.
From formula (12) and

(𝑛 + 𝑟 + 1) [𝑡
𝑛+𝑟+1

] 𝑔(𝑡)
𝑟+1

= [𝑡
𝑛+𝑟

]

𝑑

𝑑𝑡

𝑔(𝑡)
𝑟+1

= (𝑟 + 1) [𝑡
𝑛+𝑟

] 𝑔
󸀠

(𝑡) 𝑔(𝑡)
𝑟

,

(18)

formula (13) can be obtained immediately.

Example 5. Let us consider the Riordan array

𝐵 = (

ℎ (𝑡)

𝑡

, ℎ (𝑡)) = (

1 − 𝑡

1 − 2𝑡

,

𝑡 (1 − 𝑡)

1 − 2𝑡

)

=

(

(

(

(

(

(

(

1

1 1

2 2 1 ⋅ ⋅ ⋅

4 5 3 1

8 12 9 4 1

16 28 25 14 5 1

32 64 66 44 20 6 1

... d

)

)

)

)

)

)

)

.

(19)

We wish to show the following two formulas:

𝑟 + 1

𝑛 + 𝑟 + 1

𝑛+𝑟+1

∑

𝑘=0

2
𝑛−𝑘

(

𝑛 + 𝑟 + 1

𝑘
)(

𝑛 − 1

𝑛 − 𝑘
)

= [𝑡
𝑛

]

(1 + 𝑡 − 𝑞)
𝑟+1

(4𝑡)
𝑟+1

,

(20)

where 𝑞 = √1 − 6𝑡 + 𝑡
2, 𝑟 = 0, 1, 2, 3, . . .. Using this formula,

we can give some interesting sequence generating functions.
Here we just list the first two cases: in the case 𝑟 = 0, the
sequence we give is little Schröder numbers A001003, and in
the case 𝑟 = 1, the sequence we give begins 1, 3, 14, 70, 363, . . .

𝑛+𝑟+1

∑

𝑘=0

2
𝑛−𝑘

(

𝑛 + 𝑟 + 1

𝑘
)(

𝑛 − 1

𝑛 − 𝑘
)

= [𝑡
𝑛

]

(3 − 𝑡 + 𝑞) (1 + 𝑡 − 𝑞)
𝑟

4
𝑟+1

𝑞𝑡
𝑟

,

(21)

where 𝑞 = √1 − 6𝑡 + 𝑡
2, 𝑟 ∈ N. Here we show several

cases: 0-shifted central coefficients 𝐵
2𝑛,𝑛

begin 1, 2, 9, 44,

25, . . ., 1-shifted central coefficients 𝐵
2𝑛+1,𝑛+1

begin 1, 3, 14,

70, 363, . . ., 2-shifted central coefficients 𝐵
2𝑛+2,𝑛+2

are
A089382, and 3-shifted central coefficients 𝐵

2𝑛+3,𝑛+3
begin

1, 5, 27, 147, 806, . . ..
In order to do this, we need to calculate the 𝑟-shifted

central coefficients of this matrix in two ways. Then we have

𝐵
2𝑛+𝑟,𝑛+𝑟

= [𝑡
2𝑛+𝑟

]

1 − 𝑡

1 − 2𝑡

(

𝑡 (1 − 𝑡)

1 − 2𝑡

)

𝑛+𝑟

= [𝑡
𝑛

] (

1 − 𝑡

1 − 2𝑡

)

𝑛+𝑟+1

= [𝑡
𝑛

] (1 +

𝑡

1 − 2𝑡

)

𝑛+𝑟+1

= [𝑡
𝑛

]

𝑛+𝑟+1

∑

𝑘=0

(

𝑛 + 𝑟 + 1

𝑘
) 𝑡
𝑘

(1 − 2𝑡)
−𝑘

= [𝑡
𝑛

]

𝑛+𝑟+1

∑

𝑘=0

(

𝑛 + 𝑟 + 1

𝑘
) 𝑡
𝑘

𝑘

∑

𝑗=0

(

−𝑘

𝑗
) (−2)

𝑗

𝑡
𝑗

= [𝑡
𝑛

]

𝑛+𝑟+1

∑

𝑘=0

(

𝑛 + 𝑟 + 1

𝑘
) 𝑡
𝑘

𝑘

∑

𝑗=0

(

𝑘 + 𝑗 − 1

𝑗
) 2
𝑗

𝑡
𝑗

=

𝑛+𝑟+1

∑

𝑘=0

2
𝑛−𝑘

(

𝑛 + 𝑟 + 1

𝑘
)(

𝑛 − 1

𝑛 − 𝑘
) .

(22)

On the other hand, by solving the inverse of 𝑔(𝑡), here
𝑔(𝑡) = 𝑡

2

/ℎ(𝑡) = 𝑡(1 − 2𝑡)/(1 − 𝑡), we have

𝑔 (𝑡) =

1 + 𝑡 − √1 − 6𝑡 + 𝑡
2

4

. (23)

Thus, from the previous theorem, the two formulas can be
obtained by comparing the two expressions for 𝐵

2𝑛+𝑟,𝑛+𝑟
.
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Rogers [8] states that for every proper Riordan matrix
𝐷 = (𝑑(𝑡), ℎ(𝑡)) there exists a sequence 𝐴 = (𝑎

𝑖
)
𝑖∈N such that

for every 𝑛, 𝑘 ∈ N we have

𝑑
𝑛+1,𝑘+1

= 𝑎
0
𝑑
𝑛,𝑘

+ 𝑎
1
𝑑
𝑛,𝑘+1

+ 𝑎
2
𝑑
𝑛,𝑘+2

+ ⋅ ⋅ ⋅ =

∞

∑

𝑛=0

𝑎
𝑖
𝑑
𝑛,𝑘+𝑖

,

(24)

where the sum is actually finite, because when 𝑘 > 𝑛, 𝑑
𝑛,𝑘

=

0. The sequence 𝐴 = (𝑎
𝑖
)
𝑖∈N is called the 𝐴-sequence of the

Riordan𝐷 = (𝑑(𝑡), ℎ(𝑡)). If 𝐴(𝑡) is the generating function of
the sequence 𝐴, we have [9]

ℎ (𝑡) = 𝑡𝐴 (ℎ (𝑡)) or 𝐴 (𝑡) =

𝑡

ℎ (𝑡)

, (25)

where ℎ(𝑡) is the compositional inverse of ℎ(𝑡).
Making use of 𝐴-sequence and Theorem 4, we obtain a

new characterization to the generating functions for central
coefficients of a Bell-type array. Now we show this result as a
corollary.

Corollary 6. Let (𝑑(𝑡), ℎ(𝑡)) be a proper Riordan array
with the A-sequence whose generating function is 𝐴(𝑡). If
𝐵
2𝑛,𝑛

denote the central coefficients of the Bell matrix 𝐵 =

(𝐴(𝑡), 𝑡𝐴(𝑡)) produced by 𝐴(𝑡), then one has

𝐵
2𝑛,𝑛

= [𝑡
𝑛

] ℎ
󸀠

(𝑡) . (26)

Proof. We can easily find that

𝐴 (𝑡) =

𝑡

ℎ (𝑡)

(27)

is equivalent to

ℎ (𝑡) = (

𝑡

𝐴 (𝑡)

). (28)

Then the result follows by usingTheorem 4.

Example 7. Consider the Riordan array 𝐷 = (1, ℎ(𝑡)) = (1,

(1 − 𝑡 − √1 − 2𝑡 − 3𝑡
2
)/2𝑡). From 𝐴(𝑡) = 𝑡/ℎ(𝑡), we have

𝐴 (𝑡) = 1 + 𝑡 + 𝑡
2

. (29)

Then the Bell matrix produced by 𝐴(𝑡) is 𝐵 = (1 + 𝑡 +

𝑡
2

, 𝑡(1 + 𝑡 + 𝑡
2

)), its central coefficients

𝐵
2𝑛,𝑛

= [𝑡
2𝑛

] (1 + 𝑡 + 𝑡
2

) 𝑡
𝑛

(1 + 𝑡 + 𝑡
2

)

𝑛

= [𝑡
𝑛

] (1 + 𝑡 (1 + 𝑡))
𝑛+1

= [𝑡
𝑛

]

𝑛+1

∑

𝑘=0

(

𝑛 + 1

𝑘
) 𝑡
𝑘

(1 + 𝑡)
𝑘

= [𝑡
𝑛

]

𝑛+1

∑

𝑘=0

(

𝑛 + 1

𝑘
) 𝑡
𝑘

𝑘

∑

𝑗=0

(

𝑘

𝑗
) 𝑡
𝑗

=

𝑛+1

∑

𝑘=0

(

𝑛 + 1

𝑘
)(

𝑘

𝑛 − 𝑘
) .

(30)

Since

ℎ
󸀠

(𝑡) =

1 − 𝑡 − √1 − 2𝑡 − 3𝑡
2

2𝑡
2√1 − 2𝑡 − 3𝑡

2

=

1

√1 − 2𝑡 − 3𝑡
2

⋅ 𝑀 (𝑡) ,

(31)

where 𝑀(𝑡) = (1 − 𝑡 − √1 − 2𝑡 − 3𝑡
2
)/2𝑡
2 is the generating

function for the Motzkin numbers, and Corollary 6, we have

𝑛+1

∑

𝑘=0

(

𝑛 + 1

𝑘
)(

𝑘

𝑛 − 𝑘
) = [𝑡

𝑛

]

1

√1 − 2𝑡 − 3𝑡
2

⋅ 𝑀 (𝑡) . (32)

2.2. The Associated Subgroup

Theorem 8. Let 𝑆 = (1, ℎ(𝑡)) be an element of the associated
subgroup of the Riordan group. If 𝑆

2𝑛+𝑟+1,𝑛+𝑟+1
denote the (𝑟 +

1)-shifted central coefficients of 𝑆, then one has

𝑆
2𝑛+𝑟+1,𝑛+𝑟+1

=

𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

]

1

𝑡
𝑟+1

𝑔(𝑡)
𝑟+1

, (33)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡), 𝑛, 𝑟 ∈ N.

Proof. First of all, we have

𝑆
2𝑛+𝑟+1,𝑛+𝑟+1

= [𝑡
2𝑛+𝑟+1

] ℎ(𝑡)
𝑛+𝑟+1

= [𝑡
𝑛

] (

ℎ (𝑡)

𝑡

)

𝑛+𝑟+1

. (34)

According to the Lagrange Inversion Formula, we have

[𝑡
𝑛+𝑟+1

] 𝑔(𝑡)
𝑟+1

=

𝑟 + 1

𝑛 + 𝑟 + 1

[𝑤
𝑛

] (

ℎ (𝑤)

𝑤

)

𝑛+𝑟+1

, (35)

since we set

𝑔 (𝑤) =

𝑤

ℎ (𝑤) /𝑤

=

𝑤
2

ℎ (𝑤)

, ℎ (0) ̸= 0. (36)

Therefore, we get

𝑆
2𝑛+𝑟+1,𝑛+𝑟+1

=

𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛+𝑟+1

] 𝑔(𝑡)
𝑟+1

=

𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

]

1

𝑡
𝑟+1

𝑔(𝑡)
𝑟+1

,

(37)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡).

Example 9. Let us consider the Riordan array

𝑆 = (1, ℎ (𝑡)) = (1,

𝑡
2

+ 𝑡

1 − 𝑡

)

=

(

(

(

(

(

(

(

1

0 1

0 2 1 ⋅ ⋅ ⋅

0 2 4 1

0 2 8 6 1

0 2 12 18 8 1

0 2 16 38 32 10 1

... d

)

)

)

)

)

)

)

.

(38)
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We wish to show that

𝑟 + 1

𝑛 + 𝑟 + 1

𝑛+𝑟+1

∑

𝑘=0

2
𝑘

(

𝑛 + 𝑟 + 1

𝑘
)(

𝑛 − 1

𝑛 − 𝑘
)

= [𝑡
𝑛

]

(1 − 𝑡 − 𝑞)
𝑟+1

(2𝑡)
𝑟+1

,

(39)

where 𝑞 = √1 − 6𝑡 + 𝑡
2, 𝑟 ∈ N. We can call this (𝑟 + 1)-fold

convolution of the large Schroeder numbers.
We list the first few cases: when 𝑟 = 0, the sequence is

large Schröder numbers A006318, when 𝑟 = 1, the sequence
is A006319, and when 𝑟 = 2, the sequence is A006320.

Firstly, we can calculate 𝑆
2𝑛+1,𝑛+1

directly, and then we
have

𝑆
2𝑛+𝑟+1,𝑛+𝑟+1

= [𝑡
2𝑛+𝑟+1

] (

𝑡
2

+ 𝑡

1 − 𝑡

)

𝑛+𝑟+1

= [𝑡
𝑛

] (1 +

2𝑡

1 − 𝑡

)

𝑛+𝑟+1

= [𝑡
𝑛

]

𝑛+𝑟+1

∑

𝑘=0

(

𝑛 + 𝑟 + 1

𝑘
) 2
𝑘

𝑡
𝑘

(1 − 𝑡)
−𝑘

= [𝑡
𝑛

]

𝑛+𝑟+1

∑

𝑘=0

(

𝑛 + 𝑟 + 1

𝑘
) 2
𝑘

𝑡
𝑘

𝑘

∑

𝑗=0

(

𝑘 + 𝑗 − 1

𝑗
) 𝑡
𝑗

=

𝑛+𝑟+1

∑

𝑘=0

2
𝑘

(

𝑛 + 𝑟 + 1

𝑘
)(

𝑛 − 1

𝑛 − 𝑘
) ,

(40)

as expected. Secondly, to carry out the reversion of 𝑔(𝑡), we
set 𝑔(𝑡) = 𝑢, where 𝑔(𝑡) = (𝑡 − 𝑡

2

)/(1 + 𝑡); then we obtain the
result (with 𝑢(0) = 0)

𝑢 =

1 − 𝑡 − √1 − 6𝑡 + 𝑡
2

2

. (41)

Lastly, fromTheorem 8, the result follows.

2.3. The Derivative Subgroup

Theorem 10. Let 𝐷 = (ℎ
󸀠

(𝑡), ℎ(𝑡)) be an element of the
derivative subgroup of the Riordan group. If 𝐷

2𝑛+𝑟,𝑛+𝑟
denote

the 𝑟-shifted central coefficients of𝐷, then one has

𝐷
2𝑛+𝑟,𝑛+𝑟

=

2𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

]

1

𝑡
𝑟+1

𝑔(𝑡)
𝑟+1

, (42)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡), 𝑛, 𝑟 ∈ N.

Proof. Calculating𝐷
2𝑛+𝑟,𝑛+𝑟

directly, we have

𝐷
2𝑛+𝑟,𝑛+𝑟

= [𝑡
2𝑛+𝑟

] ℎ
󸀠

(𝑡) (ℎ (𝑡))
𝑛+𝑟

. (43)

Since (𝑛 + 𝑟 + 1)ℎ
󸀠

(𝑡)ℎ(𝑡)
𝑛+𝑟

= (𝑑/𝑑𝑡)ℎ(𝑡)
𝑛+𝑟+1, we obtain

𝐷
2𝑛+𝑟,𝑛+𝑟

=

1

𝑛 + 𝑟 + 1

[𝑡
2𝑛+𝑟

]

𝑑

𝑑𝑡

ℎ(𝑡)
𝑛+𝑟+1

. (44)

As we know,

[𝑡
2𝑛+𝑟

]

𝑑

𝑑𝑡

ℎ(𝑡)
𝑛+𝑟+1

= (2𝑛 + 𝑟 + 1) [𝑡
2𝑛+𝑟+1

] ℎ(𝑡)
𝑛+𝑟+1

; (45)

then we have

𝐷
2𝑛+𝑟,𝑛+𝑟

=

2𝑛 + 𝑟 + 1

𝑛 + 𝑟 + 1

[𝑡
2𝑛+𝑟+1

] ℎ(𝑡)
𝑛+𝑟+1

=

2𝑛 + 𝑟 + 1

𝑛 + 𝑟 + 1

[𝑡
𝑛

] (

ℎ (𝑡)

𝑡

)

𝑛+𝑟+1

.

(46)

We now set

𝑔 (𝑤) =

𝑤

ℎ (𝑤) /𝑤

=

𝑤
2

ℎ (𝑤)

, ℎ (0) ̸= 0; (47)

then an application of the Lagrange Inversion Formula gives
us

[𝑡
𝑛+𝑟+1

] 𝑔(𝑡)
𝑟+1

=

𝑟 + 1

𝑛 + 𝑟 + 1

[𝑤
𝑛

] (

ℎ (𝑤)

𝑤

)

𝑛+𝑟+1

. (48)

Thus we obtain

𝐷
2𝑛+𝑟,𝑛+𝑟

=

2𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛+𝑟+1

] 𝑔(𝑡)
𝑟+1

=

2𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

]

1

𝑡
𝑟+1

𝑔(𝑡)
𝑟+1

,

(49)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡).

Example 11. Let us apply the previous theorem to the Riordan
array

𝐷 = (ℎ
󸀠

(𝑡) , ℎ (𝑡)) = (

1

(1 − 𝑡)
2
,

𝑡

1 − 𝑡

)

=

(

(

(

(

(

(

(

1

2 1

3 3 1 ⋅ ⋅ ⋅

4 6 4 1

5 10 10 5 1

6 15 20 15 6 1

7 21 35 35 21 7 1

... d

)

)

)

)

)

)

)

.

(50)

Actually, (1/(1−𝑡)2, 𝑡/(1−𝑡)) = (1/(1−𝑡), 𝑡)(1/(1−𝑡), 𝑡/(1−𝑡)).
Our purpose is to obtain that

𝑟 + 1

2𝑛 + 𝑟 + 1

(

2𝑛 + 𝑟 + 1

𝑛
) = [𝑡

𝑛

] 𝐶(𝑡)
𝑟+1

, (51)

which is equivalent to [10]

𝑟

2𝑛 + 𝑟

(

2𝑛 + 𝑟

𝑛
) = [𝑡

𝑛

] 𝐶(𝑡)
𝑟

, (52)

where 𝐶(𝑡) = (1 − √1 − 4𝑡)/2𝑡 is the generating function for
the Catalan numbers.
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Since 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡) = 𝑡
2

/(𝑡/(1 − 𝑡)) = 𝑡(1 − 𝑡), we have

𝑔 (𝑡) =

1 − √1 − 4𝑡

2

. (53)

By the previous theorem, we have

𝐷
2𝑛+𝑟,𝑛+𝑟

=

2𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

] (

1 − √1 − 4𝑡

2𝑡

)

𝑟+1

. (54)

We now calculate𝐷
2𝑛+𝑟,𝑛+𝑟

as follows:

𝐷
2𝑛+𝑟,𝑛+𝑟

= [𝑡
2𝑛+𝑟

]

1

(1 − 𝑡)
2

𝑡
𝑛+𝑟

(1 − 𝑡)
𝑛+𝑟

= [𝑡
𝑛

] (1 − 𝑡)
−𝑛−𝑟−2

= [𝑡
𝑛

] ∑

𝑘=0

(

−𝑛 − 𝑟 − 2

𝑘
) (−1)

𝑘

𝑡
𝑘

= [𝑡
𝑛

] ∑

𝑘=0

(

𝑛 + 𝑘 + 𝑟 + 1

𝑘
) 𝑡
𝑘

= (

2𝑛 + 𝑟 + 1

𝑛
) .

(55)

A comparison of both expressions for𝐷
2𝑛+𝑟,𝑛+𝑟

nowyields
the result.

2.4. The Hitting Time Subgroup

Theorem 12. Let 𝐻 = (𝑡ℎ
󸀠

(𝑡)/ℎ(𝑡), ℎ(𝑡)) be an element of the
hitting time subgroup of the Riordan group. If 𝐻

2𝑛+𝑟+1,𝑛+𝑟+1

denote the (𝑟+1)-shifted central coefficients of𝐻, then one has

𝐻
2𝑛+𝑟+1,𝑛+𝑟+1

=

2𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

]

1

𝑡
𝑟+1

𝑔(𝑡)
𝑟+1

, (56)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡), 𝑛, 𝑟 ∈ N.

Proof. Apparently,

𝐻
2𝑛+𝑟+1,𝑛+𝑟+1

= [𝑡
2𝑛+𝑟+1

]

𝑡ℎ
󸀠

(𝑡)

ℎ (𝑡)

ℎ(𝑡)
𝑛+𝑟+1

= [𝑡
2𝑛+𝑟

] ℎ
󸀠

(𝑡) ℎ(𝑡)
𝑛+𝑟

,

(57)

which can proceed along the same way as in the proof of
Theorem 10.

Example 13. Consider the Catalan triangle

𝐻 = (

𝑡ℎ
󸀠

(𝑡)

ℎ (𝑡)

, ℎ (𝑡)) = (

𝐵 (𝑡)

𝐶 (𝑡)

, 𝑡𝐶 (𝑡))

=

(

(

(

(

(

(

(

1

1 1

3 2 1 ⋅ ⋅ ⋅

10 6 3 1

35 20 10 4 1

126 70 35 15 5 1

462 252 126 56 21 6 1

... d

)

)

)

)

)

)

)

,

(58)

where𝐶(𝑡) is the generating function for theCatalan numbers
and 𝐵(𝑡) is the generating function for the central binomial
coefficients. We wish to get that

𝑟 + 1

2𝑛 + 𝑟 + 1

(

3𝑛 + 𝑟

𝑛
) = [𝑡

𝑛

] (

2𝑝

√3𝑡

)

𝑟+1

, (59)

where 𝑝 = sin(arcsin(√27𝑡/4)/3), 𝑟 ∈ N.
In the case 𝑟 = 0, the sequence we discuss is A001764, and

in the case 𝑟 = 1, the sequence we discuss is A006013.

To this end, we should make the 𝑔(𝑡) clear. Here

𝑔 (𝑡) =

2𝑡
2

1 − √1 − 4𝑡

=

𝑡 (1 + √1 − 4𝑡)

2

. (60)

Then the compositional inverse of 𝑔(𝑡) is [1]

2√𝑡

√3

sin(

arcsin (√27𝑡/4)

3

) . (61)

FromTheorem 12, we have

𝐻
2𝑛+𝑟+1,𝑛+𝑟+1

=

2𝑛 + 𝑟 + 1

𝑟 + 1

[𝑡
𝑛

] (

2𝑝

√3𝑡

)

𝑟+1

, (62)

where 𝑝 = sin(arcsin(√27𝑡/4)/3).
𝐻
2𝑛+1,𝑛+1

also can be presented as

𝐻
2𝑛+𝑟+1,𝑛+𝑟+1

= [𝑡
2𝑛+𝑟+1

]

𝐵 (𝑡)

𝐶 (𝑡)

𝑡
𝑛+𝑟+1

𝐶(𝑡)
𝑛+𝑟+1

= [𝑡
𝑛

] 𝐵 (𝑡) 𝐶(𝑡)
𝑛+𝑟

.

(63)

Then by Formula 𝐵(𝑡)𝐶(𝑡)
𝑎

= ∑
∞

𝑘=0
(
2𝑘+𝑎

𝑘
) 𝑡
𝑘 [11], used back-

wards, we obtain

𝐻
2𝑛+𝑟+1,𝑛+𝑟+1

= (

3𝑛 + 𝑟

𝑛
) . (64)

Comparison of the expressions for 𝐻
2𝑛+𝑟+1,𝑛+𝑟+1

now
gives the result.

3. Some Extensions

In the previous section, using the 𝑟-shifted central coeffi-
cients, we can give some interesting sequences generating
functions. In this section, we make some extensions.

(i) Generate the proper aerated Riordan array by the 𝑟-
shifted central coefficients with interposed zeros.

(ii) (𝑚, 𝑟)-shifted central coefficients are defined by
stretching the right part of the triangle𝑚 times.

Here we do these just in the Bell subgroup.
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3.1. 𝑟-Shifted Central Coefficients with Interposed Zeros. From
Theorem 4, we have obtained that the 𝑟-shifted central coeffi-
cients 𝐵

2𝑛+𝑟,𝑛+𝑟
of a Bell-type Riordan array 𝐵 = (ℎ(𝑡)/𝑡, ℎ(𝑡))

have g.f. given by

1

𝑡
𝑟
𝑔
󸀠

(𝑡) 𝑔(𝑡)
𝑟

, (65)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡), 𝑟 ∈ N. Therefore, an aerated Riordan
array can be generated by the 𝑟-shifted central coefficients
with interposed zeros, and it has the following form:

(𝐹 (𝑡
2

) ,

1

𝑡

𝐺 (𝑡
2

)) , (66)

where𝐹(𝑡) = 𝑔
󸀠

(𝑡),𝐺(𝑡) = 𝑔(𝑡).That is to say, the right part of
the AER triangle (starting at any column 𝑟 ≥ 0) is an aerated
Riordan array which is uniquely determined by the function
ℎ(𝑡). For instance, the Pascal triangle can generate the aerated
Riordan array (𝐵(𝑡2), 𝑡𝐶(𝑡

2

)), where𝐵(𝑡) = 1/√1 − 4𝑡, 𝐶(𝑡) =

(1 − √1 − 4𝑡)/2𝑡.

3.2. (𝑚,𝑟)-Shifted Central Coefficients. For expanding our
research subject in Bell subgroup, we now repeat the follow-
ing steps.

(i) Stretch the infinite lower triangular array so that it
becomes isosceles.

(ii) Consider the columns of the right part of the ISO
triangle.

(iii) Regard the right part of the ISO triangle as an infinite
lower triangular array.

We can repeat this process infinite times, because the right
part of every triangle can be regarded as an infinite lower
triangular array. Considering a Bell-type array𝐷 as the initial
one, we now repeat this process 𝑚 = 1, 2, 3, . . . times for
the initial array; then we should consider the (𝑚, 𝑟)-shifted
central coefficients defined as the sequence 𝐷

(𝑚+1)𝑛+𝑟,𝑚𝑛+𝑟
,

where 𝑛, 𝑟 ∈ N,𝑚 = 1, 2, 3, . . ., just like the following cases.
When𝑚 = 1, we consider

󵄨
󵄨
󵄨
󵄨
𝑑
0,0

𝑑
1,0

𝑑
1,1

𝑑
2,0

󵄨
󵄨
󵄨
󵄨
𝑑
2,1

𝑑
2,2

𝑑
3,0

𝑑
3,1

𝑑
3,2

𝑑
3,3

𝑑
4,0

𝑑
4,1

󵄨
󵄨
󵄨
󵄨
𝑑
4,2

𝑑
4,3

𝑑
4,4

𝑑
5,0

𝑑
5,1

𝑑
5,2

𝑑
5,3

𝑑
5,4

𝑑
5,5

𝑑
6,0

𝑑
6,1

𝑑
6,2

󵄨
󵄨
󵄨
󵄨
𝑑
6,3

𝑑
6,4

𝑑
6,5

𝑑
6,6

⋅ ⋅ ⋅

󳨀→ (67)

That is to say, we should consider 𝑟-shifted central coefficients
𝐷
2𝑛+𝑟,𝑛+𝑟

.
When𝑚 = 2, we consider

󵄨
󵄨
󵄨
󵄨
𝑑
0,0

𝑑
2,1

𝑑
1,1

𝑑
4,2

󵄨
󵄨
󵄨
󵄨
𝑑
3,2

𝑑
2,2

𝑑
6,3

𝑑
5,3

𝑑
4,3

𝑑
3,3

𝑑
8,4

𝑑
7,4

󵄨
󵄨
󵄨
󵄨
𝑑
6,4

𝑑
5,4

𝑑
4,4

⋅ ⋅ ⋅

󳨀→ ⋅ ⋅ ⋅

(68)

That is to say, we should consider (2, 𝑟)-shifted central
coefficients𝐷

3𝑛+𝑟,2𝑛+𝑟
.

Then we have the following result.

Theorem 14. Let 𝐷
(𝑚+1)𝑛+𝑟,𝑚𝑛+𝑟

denote the (𝑚, 𝑟)-shifted cen-
tral coefficients of Bell-type Riordan matrix 𝐷 = (ℎ(𝑡)/𝑡, ℎ(𝑡));
then one has

𝐷
(𝑚+1)𝑛+𝑟,𝑚𝑛+𝑟

=

𝑚𝑛 + 𝑟 + 1

(𝑚 − 1) 𝑛 + 𝑟 + 1

[𝑡
𝑛

]

×

1

𝑡
(𝑚−1)𝑛+𝑟+1

𝑔(𝑡)
(𝑚−1)𝑛+𝑟+1

,

(69)

where 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡), 𝑛, 𝑟 ∈ N,𝑚 = 1, 2, 3, . . . .

Proof. Using LIF and proceeding along the sameway as in the
proof of Theorem 4, we can get the result easily.

Example 15. We consider the Pascal triangle 𝐷 = (ℎ(𝑡)/𝑡,

ℎ(𝑡)) = (1/(1 − 𝑡), 𝑡/(1 − 𝑡)). We wish to prove the following
result about the generating function for (((𝑚 − 1)𝑛 + 𝑟 +

1)/(𝑚𝑛 + 𝑟 + 1)) (
𝑚𝑛+𝑛+𝑟

𝑛
):

(𝑚 − 1) 𝑛 + 𝑟 + 1

𝑚𝑛 + 𝑟 + 1

(

𝑚𝑛 + 𝑛 + 𝑟

𝑛
) = [𝑡

𝑛

] 𝐶(𝑡)
(𝑚−1)𝑛+𝑟+1

, (70)

where 𝐶(𝑡) = (1 − √1 − 4𝑡)/2𝑡 is the generating function for
the Catalan number A000108, 𝑛, 𝑟 ∈ N,𝑚 = 1, 2, 3, . . . .

Since 𝑔(𝑡) = 𝑡
2

/ℎ(𝑡) = 𝑡(1 − 𝑡), we have

𝑔 (𝑡) =

1 − √1 − 4𝑡

2

= 𝑡𝐶 (𝑡) . (71)

ByTheorem 14, we obtain

𝐷
(𝑚+1)𝑛+𝑟,𝑚𝑛+𝑟

=

𝑚𝑛 + 𝑟 + 1

(𝑚 − 1) 𝑛 + 𝑟 + 1

[𝑡
𝑛

] 𝐶(𝑡)
(𝑚−1)𝑛+𝑟+1

. (72)

On the other hand, as we all known, the Pascal triangle
𝐷 = (𝑑

𝑖,𝑗
)
𝑖,𝑗≥0

= (
𝑖

𝑗
). Therefore, we have

𝐷
(𝑚+1)𝑛+𝑟,𝑚𝑛+𝑟

= (

𝑚𝑛 + 𝑛 + 𝑟

𝑛
) . (73)
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Then the result follows immediately by comparing the two
expressions for𝐷

(𝑚+1)𝑛+𝑟,𝑚𝑛+𝑟
.
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