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This paper concerns the optimal reinforcement game problem between two opposing forces in military conflicts. With some
moderate assumptions, we employ Lanchester equation and differential game theory to develop a corresponding optimization
game model. After that, we establish the optimum condition for the differential game problem and give an algorithm to obtain
the optimal reinforcement strategies. Furthermore, we also discuss the convergence of the algorithm. Finally, a numerical example
illustrates the effectiveness of the presented optimal schemes. Our proposed results provide a theoretical guide for both making
warfare command decision and assessing military actions.

1. Introduction

The reinforcement problem in military conflicts is a complex
issue on military system science and engineering [1]. It plays
a key role in the decision-making tactical of the longtime
battles andmultiple battle field.This is verified in the analysis
of the capture of Iwo Jima [2]. Now, the design of the
reinforcement schemes has become a very interesting topic
since it is important for drawing up and evaluating warfare
plans and decision-making scheme of military actions.

In 1954, Engel firstly presented a generalized Lanchester
model with the reinforcement rates [3], which was efficiently
applied to analyze the battle of Iwo Jima. Since then, lots
of researchers focused on using Lanchester equation [4–11]
to solve this kind of inherent problem for determining the
optimal reinforcement schemes. Helmbold [12] discussed the
direct and inverse solutions of the Lanchester square law
equations with general reinforcement schedules. His works
provided reliable mathematic basis for the design of the opti-
mal reinforcement schemes of military actions. Sha and Zeng
[13] and Zeng and Sha [14] presented the basic frame and a
series of key technologies to solve the optimal reinforcement
problem in multiple battle field based on optimal control
theory and Lanchester equation; their work validates the
reasonability and adaptability of the optimal reinforcement

problem. Chen [15, 16] investigated the optimal control
problem for the Lanchester model with the reinforcement
by utilizing the iterative regularization method. Chen et al.
[17, 18] studied the optimal reinforcement problem for
winning in military conflicts based on Lanchetser equation
and nonlinear optimization technology; their work provides
the basis of solving the optimal reinforcement problem. It is
easy to note that Lanchester equation has become a powerful
quantitative analysis tool to cope with the reinforcement
problem.

However, most of work mainly discusses the optimal
reinforcement problem of the unilateral decision maker and
analyzes the influence of the reinforcement for the outcome
of the battle. Very little effort has been devoted to determine
the optimal reinforcement of two opposing sides in military
conflicts for such dynamic game problem [19, 20]. Since battle
process is a countermeasure process between two belligerent
parties, it is necessary to investigate the game problem of
warfare dynamic systems with reinforcement.

Li et al. [21, 22] carried out a study on the optimal
reinforcement of the two fighting parties. They presented
a support differential game optimization model and gave
the solution of this game problem. However, they mainly
discussed the case that the attrition coefficients are same.The
authors [23, 24] discussed the reinforcement game problem
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that the attrition coefficients are different. However, they did
not consider the influence of the reinforcement rates on both
sides, and the objective function they used was relatively
simple.

Motivated by the aforementioned discussions, the main
aim of this paper is to investigate the optimal reinforcement
problem by constructing a corresponding differential game
model based on Lanchester equation. We mainly focus on
analyzing the optimum conditions and designing a solving
algorithm. Meanwhile, the convergence analysis for the algo-
rithm is discussed.

The rest of this paper is organized as follows. In Section 2,
the differential game model in determining the optimal
reinforcement is presentedwith somemoderate assumptions.
In Section 3, the optimum conditions are established, and an
algorithm is developed to obtain the optimal reinforcement
strategies. Furthermore, the convergence of this method
is also discussed. In Section 4, an example is provided to
illustrate our theoretical results. Finally, Section 5 presents
some concluding remarks.

2. Description of the Game
Model with the Reinforcement

In this section, we consider the warfare dynamic system
model with the reinforcement rates that is described by

𝑥̇ (𝑡) = −𝛼𝑦 (𝑡) + 𝑢 (𝑡) ,

̇𝑦 (𝑡) = −𝛽𝑥 (𝑡) + V (𝑡) ,

𝑢 (𝑡

0
) = V (𝑡

0
) = 0; 𝑥 (0) = 𝑥

0
; 𝑦 (0) = 𝑦

0
,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) are the strengths of two opposing forces
surviving at time 𝑡 in conflict, 𝛼(> 0) and 𝛽(> 0) are the
constant attrition coefficients that reflect the effectiveness of
forces in the unit time, and 𝑢(𝑡)(> 0) and V(𝑡)(> 0) are the
reinforcement rates.

We associate (1) with the following objective function:

𝐽 (𝑢, V) = 𝑥 (𝑇) − 𝑦 (𝑇) + ∫

𝑇

0

V (𝑡) − 𝑢 (𝑡) 𝑑𝑡, (2)

where 𝑥(𝑇) and 𝑦(𝑇) are the residual of strengths on both
sides in the terminal time 𝑇.

Now, we consider a military conflict between two oppos-
ing forces, and let 𝑋 be the attacking side, and let 𝑌 be the
defending side. In the game, 𝑋 selects the optimal strategy
𝑢

∗
(𝑡) tomaximize the objective function 𝐽(𝑢, V), and𝑌 selects

the optimal strategy V∗(𝑡) to minimize 𝐽(𝑢, V). That is, if there
exist 𝑢∗(𝑡) and V∗(𝑡) such that, for any 𝑢(𝑡) and V(𝑡), the values
of the objective function (2) satisfy

𝐽 (𝑢, V∗) ≤ 𝐽 (𝑢

∗
, V∗) ≤ 𝐽 (𝑢

∗
, V) , (3)

then 𝑢∗(𝑡) and V∗(𝑡) are the optimal strategies of differential
game.

Moreover, we present some assumptions which will be
used in this paper.

(A
1
) The reinforcement rates are 𝑢(𝑡) ∈ [𝑢

1
, 𝑢

2
] and V(𝑡) ∈

[V
1
, V
2
], where 𝑢

𝑖
(𝑖 = 1, 2) and V

𝑗
(𝑗 = 1, 2) are

constants.

(A
2
) Denote 𝑀

0
and 𝑁

0
to be the total amount of the

reinforcements of two opposing sides. And the rein-
forcement from the initial time to the terminal time
𝑇 satisfies

∫

𝑇

0

𝑢 (𝑡) 𝑑𝑡 ≤ 𝑀

0
, ∫

𝑇

0

V (𝑡) 𝑑𝑡 ≤ 𝑁

0
.

(4)

(A
3
) The reinforcement rates cannot keep the maximum
values 𝑢

2
and V
2
during the whole battle process; that

is, the following conditions are satisfied:

∫

𝑇

0

𝑢

2
𝑑𝑡 ≥ 𝑀

0
, ∫

𝑇

0

V
2
𝑑𝑡 ≥ 𝑁

0
.

(5)

Remark 1. The assumption (A
2
) implies that the total amount

of the two opposing sides cannot pass the𝑀
0
and𝑁

0
; that is,

∫

𝑇

0

𝑢

∗
𝑑𝑡 ≤ 𝑀

0
, ∫

𝑇

0

V∗𝑑𝑡 ≤ 𝑁

0
(6)

hold. The assumption (A
3
) represents the limit of the force

strengths complementary on both sides. If there is not the
condition (A

3
), the optimal strategies of game problem are 𝑢

2

and V
2
, and the game problem in this paper is insignificant.

After giving the above auxiliary statements, we are at the
point to investigate the condition for the existence of the
optimal reinforcement strategies and develop a procedure of
designing the optimal strategies for differential game.

3. Optimum Condition and the Solutions of
the Game Problem

Considering the existence of the integral inequalities (4) and
(5), we cannot use the classic solving theory of differential
game to solve the reinforcement game problem. Motivated
by [25, 26], a new solving theory and algorithm for this
reinforcement game problem should be investigated.

We present the solutions of warfare system (1) as follows:

𝑥 (𝑡) =

1

2

(𝑥

0
−

√𝛼𝛽

𝛽

𝑦

0
) 𝑒

√𝛼𝛽𝑡
+

1

2

(𝑥

0
+

√𝛼𝛽

𝛽

𝑦

0
) 𝑒

−√𝛼𝛽𝑡

+

1

2

∫

𝑡

0

((𝑢 −

√𝛼𝛽

𝛽

V) 𝑒

√𝛼𝛽(𝑡−𝜏)

+(𝑢 +

√𝛼𝛽

𝛽

V) 𝑒

−√𝛼𝛽(𝑡−𝜏)
)𝑑𝜏,
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𝑦 (𝑡) =

1

2

(𝑦

0
−

√𝛼𝛽

𝛼

𝑥

0
) 𝑒

√𝛼𝛽𝑡
+

1

2

(𝑦

0
+

√𝛼𝛽

𝛼

𝑥

0
) 𝑒

−√𝛼𝛽𝑡

+

1

2

∫

𝑡

0

((V −
√𝛼𝛽

𝛼

𝑢) 𝑒

√𝛼𝛽(𝑡−𝜏)

+(V +
√𝛼𝛽

𝛼

𝑢) 𝑒

−√𝛼𝛽(𝑡−𝜏)
)𝑑𝜏.

(7)

Then, the objective function 𝐽(𝑢, V) is

𝐽 (𝑢, V) = Δ

1
+ ∫

𝑇

0

((Δ

2
− 1) 𝑢 − (Δ

3
− 1) V) 𝑑𝑡, (8)

where

Δ

1
=

1

2

(𝑥

0
− 𝑦

0
+

√𝛼𝛽

𝛼

𝑥

0
−

√𝛼𝛽

𝛽

𝑦

0
) 𝑒

√𝛼𝛽𝑇

+

1

2

(𝑥

0
− 𝑦

0
−

√𝛼𝛽

𝛼

𝑥

0
+

√𝛼𝛽

𝛽

𝑦

0
) 𝑒

−√𝛼𝛽𝑇
,

Δ

2
=

1

2

((1 +

√𝛼𝛽

𝛼

) 𝑒

√𝛼𝛽(𝑇−𝑡)
+ (1 −

√𝛼𝛽

𝛼

) 𝑒

−√𝛼𝛽(𝑇−𝑡)
) ,

Δ

3
=

1

2

((1 +

√𝛼𝛽

𝛽

) 𝑒

√𝛼𝛽(𝑇−𝑡)
+ (1 −

√𝛼𝛽

𝛽

) 𝑒

−√𝛼𝛽(𝑇−𝑡)
) .

(9)

Denote

𝑓 (𝑢, V) = ∫

𝑇

0

((Δ

2
− 1) 𝑢 − (Δ

3
− 1) V) 𝑑𝑡, (10)

and thenwith (7) and the fact that𝑥
0
,𝑦
0
, and𝑇 are the known

constants, we declare that if there exist 𝑢∗(𝑡) and V∗(𝑡) such
that

𝑓 (𝑢, V∗) ≤ 𝑓 (𝑢

∗
, V∗) ≤ 𝑓 (𝑢

∗
, V) , (11)

then (3) is satisfied, and 𝑢

∗
(𝑡) and V∗(𝑡) are the optimal

strategies of differential game (1) and (2).
By constructing Lagrange function

𝐿 (𝑢, V, 𝜆, 𝜇, 𝑡) = (Δ

2
− 1) 𝑢 − (Δ

3
− 1) V − 𝜆𝑢 + 𝜇V, (12)

we obtain the following theorem about the optimum condi-
tion for the existence of the optimal reinforcement strategies
of differential game.

Theorem 2. If there exist constants 𝜆 > 0, 𝜇 > 0 and the
reinforcement rates 𝑢∗(𝑡) and V∗(𝑡), which satisfy

∫

𝑇

0

𝑢 𝑑𝑡 ≤ ∫

𝑇

0

𝑢

∗
𝑑𝑡 ≤ 𝑀

0
, ∫

𝑇

0

V 𝑑𝑡 ≤ ∫

𝑇

0

V∗𝑑𝑡 ≤ 𝑁

0
,

(13)

such that the inequality

𝐿 (𝑢, V∗, 𝜆, 𝜇, 𝑡) ≤ 𝐿 (𝑢

∗
, V∗, 𝜆, 𝜇, 𝑡) ≤ 𝐿 (𝑢

∗
, V, 𝜆, 𝜇, 𝑡) (14)

holds, then the inequalities (3) and (11) hold and 𝑢

∗
(𝑡) and

V∗(𝑡) are the optimal reinforcement strategies of differential
game (1) and (2).

Proof. We rewrite (12) as

𝐿 (𝑢, V, 𝜆, 𝜇, 𝑡) = (Δ

2
− 𝜆 − 1) 𝑢 − (Δ

3
− 𝜇 − 1) V. (15)

With (14) and (15), we have

𝐿 (𝑢

∗
, V∗, 𝜆, 𝜇, 𝑡) = max

𝑢
((Δ

2
− 𝜆 − 1) 𝑢 − (Δ

3
− 𝜇 − 1) V∗) .

(16)

Then, we conclude that the following results about the
optimal strategies 𝑢∗ hold.

(1) If Δ
2
> 𝜆 + 1, the optimal reinforcement rate 𝑢∗ is the

upper bound of 𝑢. Otherwise, we assume that 𝑢
𝑚
(𝑢
1
< 𝑢

𝑚
<

𝑢

2
) is another optimal strategy and get

max
𝑢

𝐿 (𝑢, V∗, 𝜆, 𝜇, 𝑡) = (Δ

2
− 𝜆 − 1) 𝑢

𝑚
− (Δ

3
− 𝜇 − 1) V∗.

(17)

So

(Δ

2
− 𝜆 − 1) 𝑢

𝑚
≥ (Δ

2
− 𝜆 − 1) 𝑢, 𝑢 ∈ [𝑢

1
, 𝑢

2
] . (18)

However, we know that

(Δ

2
− 𝜆 − 1) 𝑢

𝑚
≤ (Δ

2
− 𝜆 − 1) 𝑢

2
. (19)

It follows that

max
𝑢

𝐿 (𝑢, V∗, 𝜆, 𝜇, 𝑡) ≤ (Δ

2
− 𝜆 − 1) 𝑢

2
− (Δ

3
− 𝜇 − 1) V∗.

(20)

From (16) and (20), it is easy to verify that (17) does not hold.
That is, when Δ

2
> 𝜆 + 1, we get that 𝑢∗ = 𝑢

2
and

𝐿 (𝑢

∗
, V∗, 𝜆, 𝜇, 𝑡) ≥ 𝐿 (𝑢, V∗, 𝜆, 𝜇, 𝑡) . (21)

(2) Similarly, ifΔ
2
< 𝜆+1, the optimal reinforcement rate

𝑢

∗ is the lower bound of 𝑢; that is, 𝑢∗ = 𝑢

1
and (21) holds.

On the other hand, for any reinforcement strategy V, it
follows from (14) that

𝐿 (𝑢

∗
, V∗, 𝜆, 𝜇, 𝑡) = min

V
((Δ

2
− 𝜆 − 1) 𝑢

∗
− (Δ

3
− 𝜇 − 1) V) .

(22)

Similarly, we get the following results about the optimal
strategies V∗.

(3) If Δ
3
> 𝜇 + 1, the optimal reinforcement rate V∗ is the

upper bound of V. That is, V∗ = V
2
and

𝐿 (𝑢

∗
, V∗, 𝜆, 𝜇, 𝑡) ≤ 𝐿 (𝑢

∗
, V, 𝜆, 𝜇, 𝑡) . (23)

(4) If Δ
3
< 𝜇 + 1, the optimal reinforcement rate V∗ is the

lower bound of V. That is, V∗ = V
1
and (23) holds.

After preparing the above, we integrate both sides of (21)
and (23) from 0 to 𝑇 and get

∫

𝑇

0

𝐿 (𝑢, V∗, 𝜆, 𝜇, 𝑡) 𝑑𝑡 ≤ ∫

𝑇

0

𝐿 (𝑢

∗
, V∗, 𝜆, 𝜇, 𝑡) 𝑑𝑡

≤ ∫

𝑇

0

𝐿 (𝑢

∗
, V, 𝜆, 𝜇, 𝑡) 𝑑𝑡.

(24)
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From (13), we have

𝑓 (𝑢

∗
, V∗) − 𝑓 (𝑢, V∗) ≥ 𝜆∫

𝑇

0

𝑢

∗
𝑑𝑡 − 𝜆∫

𝑇

0

𝑢 𝑑𝑡 ≥ 0,

𝑓 (𝑢

∗
, V∗) − 𝑓 (𝑢∗, V) ≤ 𝜇∫

𝑇

0

V 𝑑𝑡 − 𝜇∫
𝑇

0

V∗𝑑𝑡 ≤ 0.

(25)

With the help of the above inequalities, we declare that the
inequalities (3) and (11) hold. That is, 𝑢∗(𝑡) and V∗(𝑡) are the
optimal reinforcement strategies of differential game (1) and
(2). This completes the proof.

For the fact that 𝐿(𝑢, V, 𝜆, 𝜇, 𝑡) is the separable function, it
is not difficult to note that we cannot use the partial derivative
technique to obtain the optimal strategies. According to
Theorem 2, the optimal strategies𝑢∗(𝑡) and V∗(𝑡) are obtained
as

𝑢

∗
(𝑡) = {

𝑢

2
, Δ

2
≥ 𝜆 + 1

𝑢

1
, Δ

2
< 𝜆 + 1,

V∗ (𝑡) = {

V
2
, Δ

3
≥ 𝜇 + 1

V
1
, Δ

3
< 𝜇 + 1.

(26)

Let Δ
2
= 𝜆 + 1 and Δ

3
= 𝜇 + 1; it is easy to get

𝑡

𝜆
= 𝑇 − ln(

𝜆 + 1 +
√
(𝜆 + 1)

2
− (1 − 𝛽/𝛼)

(1 + √𝛼𝛽/𝛼)

)

× (
√
𝛼𝛽)

−1

,

𝑡

𝜇
= 𝑇 − ln(

𝜇 + 1 +

√

(𝜇 + 1)

2
− (1 − 𝛼/𝛽)

(1 + √𝛼𝛽/𝛽)

)

× (
√
𝛼𝛽)

−1

.

(27)

Rewrite (26) as the following form:

𝑢

∗
(𝑡) = {

𝑢

2
, 𝑡 ∈ [0, 𝑡

𝜆
]

𝑢

1
, 𝑡 ∈ (𝑡

𝜆
, 𝑇] ,

V∗ (𝑡) =
{

{

{

V
2
, 𝑡 ∈ [0, 𝑡

𝜇
]

V
1
, 𝑡 ∈ (𝑡

𝜇
, 𝑇] .

(28)

Remark 3. The tactical significance of (28) is that𝑋 employs
the maximum reinforcement rate to support the troop if
0 < 𝑡 < 𝑡

𝜆
. Otherwise, the minimum reinforcement

rate is employed. In addition, 𝑌 employs the maximum
reinforcement rate to support the troop if 0 < 𝑡 < 𝑡

𝜇
and

employs the minimum reinforcement rate V
1
if 𝑡
𝜇
< 𝑡 < 𝑇.

Since the parameters 𝜆 and 𝜇 are unknown, we note
that 𝑡
𝜆
and 𝑡
𝜇
cannot be directly calculated and the optimal

strategies 𝑢

∗
(𝑡) and V∗(𝑡) cannot be directly determined.

Then, an obvious optimization algorithm for determining the
optimal reinforcement strategies is presented as follows.

Step 1. Set 𝑘 = 0 and ̂

𝑘 = 0 and choose the initial values
𝜆

0
> 0 and 𝜇

0
> 0 such that

(𝜆

0
+ 1)

2
− (1 −

𝛽

𝛼

) ≥ 0, (𝜇

0
+ 1)

2
− (1 −

𝛼

𝛽

) ≥ 0.

(29)

Step 2. From (26) and (28), we get 𝑡
𝜆𝑘
, 𝑡
𝜇
𝑘̂

, 𝑢∗
𝜆𝑘
, V∗
𝜇
𝑘̂

, and

∫

𝑇

0

𝑢

∗

𝜆𝑘
𝑑𝑡 = 𝑢

2
𝑡

𝜆𝑘
+ 𝑢

1
(𝑇 − 𝑡

𝜆𝑘
) ,

∫

𝑇

0

V∗
𝜇
𝑘̂

𝑑𝑡 = V
2
𝑡

𝜇
𝑘̂

+ V
1
(𝑇 − 𝑡

𝜇
𝑘̂

) .

(30)

Step 3. Set the confidence intervals of 𝑡
𝜆
and 𝑡
𝜇
to be

󵄨

󵄨

󵄨

󵄨

𝑡

∗

𝜆
− 𝑡

𝜆

󵄨

󵄨

󵄨

󵄨

≤ 𝜖

1
,

󵄨

󵄨

󵄨

󵄨

󵄨

𝑡

∗

𝜇
− 𝑡

𝜇

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜖

2
. (31)

Thus, the calculation errors of the total of the reinforcements
satisfy

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑇

0

𝑢

∗
𝑑𝑡 −𝑀

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜛

1
,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑇

0

V∗𝑑𝑡 − 𝑁
0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜛

2
. (32)

If

𝑀

0
− 𝜛

1
≤ ∫

𝑇

0

𝑢

∗
𝑑𝑡 ≤ 𝑀

0
, 𝑁

0
− 𝜛

2
≤ ∫

𝑇

0

V∗𝑑𝑡 ≤ 𝑁

0

(33)

holds, then 𝑢

∗

𝜆𝑘
and V∗

𝜇
𝑘̂

are the optimal reinforcement
strategies; else go to Step 4.

Step 4. Adjust the new values 𝜆
𝑘+1

> 0 and 𝜇

𝑘̂+1
> 0, set

𝑘 = 𝑘+ 1 and ̂𝑘 = ̂

𝑘+ 1, then 𝜆
𝑘+1

= 𝜆

𝑘
+𝜂 and 𝜇

𝑘̂+1
= 𝜇

𝑘̂
+𝜂,

where 𝜂 (0 < 𝜂 < 1) is the step length, and go back to Step 2.

Remark 4. Using the above algorithm, we obtain a feasible
solution of the reinforcement problem. From the fact that the
calculation cost depends largely on the initial values set, we
know that if we select initial values 𝜆

0
, 𝜇
0
, 𝜖
1
, 𝜖
2
, 𝜛
1
, and

𝜛

2
properly, the calculation cost can be decreased and more

accurate solution can be obtained.
In the rest of this section, we analyze the convergence of

the above algorithm. According to (A
2
), (31), and (32), we

know that the desired optimal reinforcement rates 𝑢∗ and V∗

satisfy

∫

𝑇

0

𝑢

∗
𝑑𝑡 = 𝑀

0
, ∫

𝑇

0

V∗𝑑𝑡 = 𝑁

0
.

(34)

So, the desired values 𝑡∗
𝜆
and 𝑡∗
𝜇
are

𝑡

∗

𝜆
=

𝑀

0
− 𝑢

1
𝑇

𝑢

2
− 𝑢

1

, 𝑡

∗

𝜇
=

𝑁

0
− V
1
𝑇

V
2
− V
1

. (35)

Meanwhile, the sequence of functions {∫

𝑇

0
𝑢

𝜆𝑘
𝑑𝑡}

𝑘
and

{∫

𝑇

0
V
𝜇
𝑘̂

𝑑𝑡}

𝑘̂
is obtained based on the above 𝑘 steps compu-

tation process.
Next, we prove that {∫𝑇

0
𝑢

𝜆𝑘
𝑑𝑡}

𝑘
and {∫𝑇

0
V
𝜇
𝑘̂

𝑑𝑡}

𝑘̂
converge

to the desired values𝑀
0
and𝑁

0
in finite steps, respectively.
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Theorem 5. Choose an initial value 𝜆
0

> 0 and the step
length 𝜂 (0 < 𝜂 < 1); the sequence of function {∫

𝑇

0
𝑢

𝜆𝑘
𝑑𝑡}

𝑘

is convergent to the limit value𝑀
0
after finite steps.

Proof. It is easy to get

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑇

0

𝑢

𝜆𝑘
𝑑𝑡 −𝑀

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

2
𝑡

𝜆𝑘
+ 𝑢

1
(𝑇 − 𝑡

𝜆𝑘
) −𝑀

0

󵄨

󵄨

󵄨

󵄨

󵄨

=

𝑢

2
− 𝑢

1

√𝛼𝛽

×

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

2
𝑇 −𝑀

0

𝑢

2
− 𝑢

1

− ln(
𝜆

𝑘
+ 1 +

√

(𝜆

𝑘
+ 1)

2
− (1 − 𝛽/𝛼)

(1 + √𝛼𝛽/𝛼)

)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

.

(36)

Setting 𝜆
𝑘
= 𝜆

0
+ 𝑘𝜂, we rewrite (36) as

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑇

0

𝑢

𝜆𝑘
𝑑𝑡 −𝑀

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

=

𝑢

2
− 𝑢

1

√𝛼𝛽

×

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

2
𝑇 −𝑀

0

𝑢

2
− 𝑢

1

− ln(
𝜆

0
+ 𝑘𝜂 + 1 +

√

(𝜆

0
+ 𝑘𝜂 + 1)

2
− (1 − 𝛽/𝛼)

(1 + √𝛼𝛽/𝛼)

)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

.

(37)

For all 𝜀 > 0 and the step times 𝑘 (𝑘 ∈ 𝑍

∗
) satisfies

𝐶

2
𝑒

2𝐷
− 2 (𝜆

0
+ 1)𝐶𝑒

𝐷
+ (1 − 𝛽/𝛼)

2𝜂𝐶𝑒

𝐷

< 𝑘 <

𝐶

2
𝑒

2𝐸
− 2 (𝜆

0
+ 1)𝐶𝑒

𝐸
+ (1 − 𝛽/𝛼)

2𝜂𝐶𝑒

𝐸
,

(38)

we have

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑇

0

𝑢

𝜆𝑘
𝑑𝑡 −𝑀

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

< 𝜀, (39)

where 𝐶 = 1 + √𝛼𝛽/𝛼, 𝐷 = √𝛼𝛽(𝑢

2
𝑇 − 𝑀

0
− 𝜀)/(𝑢

2
− 𝑢

1
),

and 𝐸 = √𝛼𝛽(𝑢

2
𝑇 − 𝑀

0
+ 𝜀)/(𝑢

2
− 𝑢

1
). That is, {∫𝑇

0
𝑢

𝜆𝑘
𝑑𝑡}

𝑘

converges to the limit value𝑀
0
after 𝑘 steps.
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Figure 1: Time behavior for state variables 𝑥(𝑡) and 𝑦(𝑡) with the
optimal strategies 𝑢∗, V∗.

Remark 6. We note that the step number 𝑘 in Theorem 5 is
not given explicitly, and it should be selected as follows:

𝑘 =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

⌊

𝐶

2
𝑒

2𝐸
− 2 (𝜆

0
+ 1)𝐶𝑒

𝐸
+ (1 − 𝛽/𝛼)

2𝜂𝐶𝑒

𝐸
⌋ + 1,

𝑆 = 0

⌊

𝐶

2
𝑒

2𝐸
− 2 (𝜆

0
+ 1)𝐶𝑒

𝐸
+ (1 − 𝛽/𝛼)

2𝜂𝐶𝑒

𝐸
⌋ ,

otherwise,

(40)

where

𝑆 = ⌊

𝐶

2
𝑒

2𝐸
− 2 (𝜆

0
+ 1)𝐶𝑒

𝐸
+ (1 − 𝛽/𝛼)

2𝜂𝐶𝑒

𝐸

−

𝐶

2
𝑒

2𝐷
− 2 (𝜆

0
+ 1)𝐶𝑒

𝐷
+ (1 − 𝛽/𝛼)

2𝜂𝐶𝑒

𝐷
⌋ .

(41)

Theorem 7. Choose an initial value 𝜇
0
and the step length

𝜃 (0 < 𝜃 < 1); the sequence of function {∫𝑇
0
V
𝜇
𝑘̂

𝑑𝑡}

𝑘̂
converges

to the limit value𝑁
0
after finite steps.

Proof. Since the proof is similar toTheorem 5, we omit it.

Remark 8. In Theorem 7, ̂𝑘 is selected as

̂

𝑘 =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

⌊

𝐹

2
𝑒

2𝐻
− 2 (𝜇

0
+ 1) 𝐹𝑒

𝐻
+ (1 − 𝛼/𝛽)

2𝜃𝐹𝑒

𝐸
⌋ + 1,

𝑆

󸀠
= 0

⌊

𝐹

2
𝑒

2𝐻
− 2 (𝜇

0
+ 1) 𝐹𝑒

𝐻
+ (1 − 𝛼/𝛽)

2𝜃𝐹𝑒

𝐸
⌋ ,

other case,

(42)
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Figure 2: Changes of 𝐽(𝑢, V) with the different reinforcement rate 𝑢
for𝑋.
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Figure 3: Changes of 𝐽(𝑢, V) with the different reinforcement rate V
for 𝑌.

where

𝐹 = 1 +
√
𝛼𝛽, 𝐺 =

√𝛼𝛽 (V
2
𝑇 − 𝑁

0
− 𝜀)

V
2
− V
1

,

𝐻 =

√𝛼𝛽 (V
2
𝑇 − 𝑁

0
+ 𝜀)

V
2
− V
1

,

𝑆

󸀠
= ⌊

𝐹

2
𝑒

2𝐻
− 2 (𝜇

0
+ 1) 𝐹𝑒

𝐻
+ (1 − 𝛼/𝛽)

2𝜃𝐹𝑒

𝐸

−

𝐹

2
𝑒

2𝐺
− 2 (𝜇

0
+ 1) 𝐹𝑒

𝐺
+ (1 − 𝛼/𝛽)

2𝜃𝐶𝑒

𝐺
⌋ .

(43)

4. Numerical Example

Since Lanchester equation is a powerful tool for analyzing
real wars quantitatively and determining tactics in combat
simulations, it produces reasonably good predictions. We
confirm that our presented game model based on Lanchester
equation is very useful to copy with some specific practical
military problems when the corresponding parameter values
in military conflicts are obtained.

Thus, in this section, we present a numerical example to
illustrate the effectiveness of our theoretical results.The initial
force strengths and the total reinforcements are

𝑥

0
= 1000, 𝑦

0
= 1000, 𝛼 = 0.4,

𝛽 = 0.9, 𝑀

0
= 100, 𝑁

0
= 100,

(44)

Table 1:The feasible solutions of the game problemwhen setting the
different values of 𝑇,𝑀

0
and𝑁

0
with 𝛼 = 0.4, 𝛽 = 0.9.

𝑇 𝑡

𝜆
𝑡

𝜇
∫

𝑇

0
𝑢

∗
𝑑𝑡 ∫

𝑇

0
V∗𝑑𝑡 𝑀

0
𝑁

0

3 0.9842 1.9790 99.6059 99.5802 100 100
4 3.1714 3.4923 179.2849 149.8457 180 150
5 2.9976 2.4986 199.9394 149.9723 200 150
10 5.9857 7.4986 399.6282 349.9723 400 350

Table 2: The feasible solutions of the game problem when setting
the different values of 𝛼 and 𝛽 change with 𝑇 = 3,𝑀

0
= 𝑁

0
= 100.

𝛼 𝛽 𝑡

𝜆
𝑡

𝜇
∫

𝑇

0
𝑢

∗
𝑑𝑡 ∫

𝑇

0
V∗𝑑𝑡

0.5 0.85 0.9793 1.9779 99.4821 99.5589
0.6 0.9 0.9915 1.9940 99.7883 99.8803
0.8 0.9 0.9912 1.9771 99.7801 99.5413
0.55 0.75 0.9775 1.9839 99.4384 99.6778
0.35 0.75 0.9841 1.9583 99.6019 99.1657

and the battle terminal time is 𝑇 = 3. From (A
1
), we chose

that 𝑢
1
= 25, 𝑢

2
= 50, V

1
= 20, and V

2
= 40. In the proposed

solving algorithm, we set the initial values 𝜆
0
= 0 and 𝜇

0
= 0

and the step length 𝜂 = 0.01. Let the confidence intervals of
𝑡

𝜆
, 𝑡
𝜇
and the calculation errors of the total reinforcements

satisfy

󵄨

󵄨

󵄨

󵄨

𝑡

∗

𝜆
− 𝑡

𝜆

󵄨

󵄨

󵄨

󵄨

≤ 0.1,

󵄨

󵄨

󵄨

󵄨

󵄨

𝑡

∗

𝜇
− 𝑡

𝜇

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 0.1,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑇

0

𝑢

∗
𝑑𝑡 −𝑀

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 0.9,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑇

0

V∗𝑑𝑡 − 𝑁
0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 0.9.

(45)

Solving the differential game problem by MATLAB Toolbox
yields the feasible solutions as 𝜆 = 3.1150, 𝜇 = 0.6280,
𝑡

𝜆
= 0.9842, and 𝑡

𝜇
= 1.9790. From (28), we get the optimal

reinforcement rates 𝑢∗ and V∗ as

𝑢

∗
(𝑡) = {

𝑢

2
, 𝑡 ∈ [0, 0.9842]

𝑢

1
, 𝑡 ∈ (0.9842, 𝑇] ,

V∗ (𝑡) = {

V
2
, 𝑡 ∈ [0, 1.9790]

V
1
, 𝑡 ∈ (1.9790, 𝑇] .

(46)

The total reinforcement on both sides is

∫

𝑇

0

𝑢

∗
𝑑𝑡 = 99.6059, ∫

𝑇

0

V∗𝑑𝑡 = 99.5802.
(47)

Furthermore, we get the optimal object function value 𝐽 =

483.46.
Figure 1 shows the time behavior for state variables of

warfare dynamic system with the optimal strategies 𝑢∗ and
V∗. We note that the state values 𝑥(𝑡) and 𝑦(𝑡) changed at
𝑡 = 0.9842 and 𝑡 = 1.9790. Figures 2 and 3 show the
changes of 𝐽(𝑢, V)with the different 𝑢 and V. It is clear that (3)
holds, which implies that (46) is the optimal reinforcement
strategies of the game problem in this example.
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We also analyze the feasible solutions 𝑡
𝜆
, 𝑡
𝜇
, ∫𝑇
0
𝑢

∗
𝑑𝑡,

and ∫𝑇
0
V∗𝑑𝑡 by choosing the different parameters 𝑇,𝑀

0
,𝑁
0
,

𝛼, and 𝛽. Table 1 gives the feasible solutions of the game
problem when setting the different values of 𝑇, 𝑀

0
, and 𝑁

0

and keeping 𝛼 = 0.4 and 𝛽 = 0.9 fixed. Table 2 demonstrates
the computation results when 𝛼 and 𝛽 change with, 𝑇 = 3,
𝑀

0
= 𝑁

0
= 100. It can be determined from Tables 1 and 2

that when (45) is satisfied, the solving algorithm proposed in
this paper is practicable and valid.

5. Conclusions

This paper discusses a differential game problem of warfare
dynamic system with the reinforcement. An optimization
game model is established based on Lanchester equation
and differential game theory. Then the optimum condition
and the solving method about the game problem are given.
Simulation results illustrate the effectiveness of proposed
optimal strategies. This is of great significance in analyz-
ing quantitatively military actions. Moreover, employing
advanced control techniques [24, 27] to investigate warfare
command game problem is our future research directions.
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