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We consider a class of coupled systems with damping terms. By using multiplier method and the estimation techniques of the
energy, we show that even if the kernel function is nonincreasing and integrable without additional conditions, the energy of the

system decays also to zero in a good rate.

1. Introduction

This work is motivated by the recent researches on the Cauchy
problem for the coupled evolution equations with memory
(e.g., Alabau-Boussouira et al. [1], Cannarsa and Sforza [2],
Wan and Xiao [3], and Xiao and Liang [4]).

We study the following abstract Cauchy problem for
coupled systems with damping terms:

u (t) + Au(t) - Jt gy (t—s)Au(s)ds+bv(t) =0, (1)
0

t

V) + Av(t) - J Gy (t—s) Av(s)ds +bu(t) =0, (2)

0

u(©) =u,  u'(0)=u, (3)

v(0) = v, v (0) = v, (4)

where A is a positive self-adjoint linear operator in a Hilbert
space H; g,(t) and g,(t) are two nonnegative functions on
[0, +00) and denote the memory kernel, which will be speci-
fied later. The problem arises in the theory of viscoelasticity.
We are concerned with the delay behavior of the energy of
the systems. In the real world, for the viscoelastic material, the
kernel function is almost all nonincreasing and nonnegative.
Therefore, we are more interested in decay behavior when
the kernel is nonnegative and nonincreasing. In this case,

_L+OO g(s)ds is a strongly positive definite kernel (as in [2, 5]).
By using multiplier method and the estimation techniques

of the energy, we show that even if the kernel function is
nonincreasing and integrable without additional conditions,
the energy of the system decays also to zero in a good rate.

Let us recall the following assumptions which were used
in related literature:

(I;) A is a positive self-adjoint linear operator in H,
satisfying

a{Auw,u) > |ul®>, ueD(A), (5)

for a constant a > 0.

(I;) gi(t) : [0,00) — [0,00) is a nonincreasing and
integrable function such that

0<J g;(t)dt <1, 1—J g;(t)dt +ab®> >0, (6)
0 0

wherei =1,2.

A pair (u, v) of functions is called a (classical) solution of
(1)-(4) on [0,T), T > 0 if

u,v € C*([0,T); H)nC' ([0,T); [2 (VA)]) )
NC([0,T);[2(A)])

satistying (1)-(4) for t € [0, T).
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We define the energy of a solution (u, v) of (1)-(4) as

E(t)=E,,(t)

[Vauo]

t
[’ ®| + i YIOL g‘ (5)ds

B 1
)
1(* 2
+ 3 Jo g, (t—ys) "VAu (s) = VAu (t)“ ds

1 ) 1- It g, (s)ds 2 ®)
b of - REO )

t
+ % J g, (t—5s) " VAv(s) - VAv (t)“zds
0
1
+2b (v @) +u@OF - Ju®I - OI7).
About the information on VA, see Xiao and Liang’s mono-

graph [6].

Theorem 1. Let (I,)-(I,) hold. Then, for uy, v, € D(A) and
uy, v, € D(VA), 1)-(4) have a unique solution (u(t), v(t)) on
[0, 00) and

9p0=-Lg, 0 VA - Lg, 0 VAV 0
1, 2
e 3 | g =9 VAo - VAu o] as

1(* 2
+ 3 J g; (t-ys) ” VAv(s) - \/Zv(t)“ ds, t>0.
0
€)
Proof. The existence and uniqueness of solution can be
obtained by the standard operator theory. Here, we omit it.

Multiplying (1) by u'(t) and (2) by V() respectively, and
summing-up, we obtained the equality (21). O

Remark 2. From assumption (I,) and (21), we have

E'(t)<0, 0<E(t)<E(0), Vt=>0. (10)

For any h € L%OC(O, 00) and any ¢ € LiOC(O, 00; H), we
define

h*(p(t):Lth(t—s)(p(s)ds, t>0. (11)

Next, let us recall the concept of strongly positive definite
kernel. It can be found in [2, 5].

Definition 3. Set h(t) € L*(0,00); h(t) is called positive
definite kernel if, for any ¢(s) € L? (0, 003 H),

loc

r (h=@(s),@(s))ds>0, Vt>0. 12)
0
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Also, h(t) is said to be a strongly positive definite kernel if
there exists a constant 8 > 0 such that h(t) — Se”* is positive
definite, for any ¢(s) € L2 (0, 00; H).

loc

See more properties of the strongly positive definite
kernel in [2, 5].

2. Result and Proof

Theorem 4. Let (1,)-(I,) hold, and let u,, vy, u,, and v, be as
in Theorem 1. Then, the energy E(t) satisfies

E®)<Ct+17" vt=o0, (13)

where C > 0 is a positive constant and depends on the initial
data. Moreover,

tE(t) — 0, ast— +o00. (14)

To prove Theorem 4, we need the following lemmas.
From now on, we write

G (t) = LOO g: () ds. (15)

Then, G;(t) is a strongly positive definite kernel; see [2,
Theorem 2.1].

Lemma 5. Let (I})-(I,) hold, uy, vy, € D(A), and u,,v, €
D(VA). Then, for any t > 0,

Jt (G, * VAU (s), VAU (5)) ds
o (16)
+ J <G2 * VAV (s), VAY (s)> ds<C,,
0

where C, > 0 depends only on the initial data.

Proof. It follows from (1) that

sl O + SV [ (oo R A 9)

= %“u' (O)"2 + %" VAu (0)"2 - Lt <bv (s),u’ (s)> ds.
17)
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Moreover, taking the inner product of (2) with V() and
integrating over [0, ¢], we obtain

O VA O - [ (g s VAV©) VA 9) s

_ %HV’ O + %" VAV () - Lt (bu(s),v () ds.
(18)

Combining the above two equations and using integration by
parts, we get

sl O+ VA O [ (oo Rt 9)
w3l @f +SIVavel

- Jt <g2 * VAv(s), VAV (s)> ds
0

+bu(t),v(t)) < C (ugty, v vy).
(19)

Applying Lemma 3.4 and (3.13) in [2] to the two integral
terms on the left-hand side, we have

sl O + 25 VAo
+ J: <G1 « VAu' (s), VAU (s)> ds
o5l @+ =R Ao
+ J: <G2 * VAV (s), VAY (s)> ds
+ %b(nv(t) +u@®’ - lu O - v OI*) )
< SONZu ) - 6, (6) (VAU (0), VAU (t)
2
_ Jt g1 (s) <\/Ku 0), VAu (s)> ds
0

+ @" VAv (0)||2 -G, () <\/Zv 0), Ay (t)>

_ Jt g, (s) <\/Kv (0), VAvy (S)> ds
0

+C, (ug,up, vy vy) -

Noticing (I,) and Remark 2, we obtain (16). O

Lemma 6. Let (I,)-(I,) hold, uy, vy, € D(A), and u,,v, €
D(VA). Then, for any t > 0,

Jt <G1 « VAU (s), VAU (s)> ds
o (21)
+ J <G2 x VAV (s), VAV (s)> ds < C,,
0

where C, > 0 depends only on the initial data.

Proof. Differentiating the systems (1)-(2) with respect to t, we
get

u" (t) + A’ (t) - g, (t) Au(0)

- Jt g1 (t—s) Au' (s)ds +bv' () = 0,
0 (22)

n

V' (8) + AV (1) — g, (t) Av (0)

- Jt g, (t—5s) AV (s)ds + bu' ) =0.
0

Thus, similar to the proof of the Lemma 5 for the above (22),
we deduce (21). O

In view of Lemma 2.9 and (2.14) of [2], (16), and (21), we
have

[[IVaw @ffas<c,

, (23)
| [VaY @[ as <c,
0
where C; > 0 depends only on the initial data.
Moreover, in view of (23) and (I;), we have
£, )
[ I @ s <c., (24)
0
t , 2
[ v ©fas<c., (25)
0

where C, > 0 depends only on the initial data.

Lemma 7. Let (I})-(I,) hold, uy, vy, € D(A), and u,,v, €
D(VA). Then, for any t > 0,

Lt |VAu ()| ds < C, (26)
[ VAv@as<c., 27)

where C5 > 0 depends only on the initial data.



4
Proof. It follow from (1) and (2) that
[ (VAo + VA @I + 00960

+b (s (5), v (5)) ) ds
=~ (' O]~ (VOO
e[ (W OF [ o) as
. L (g * VAu(s), VAu(s)) ds
, Lt (g, * VAv(s), VA (5)) ds
<C+ Lt (g, * VAu(s), VAu(5)) ds )
N Jt (g, * VAv(s), VA (5)) ds

<cv SO |Vau [ as

2G (O)J- “gl \/—u(s)" ds

G2 (O)J- “\/_ (s)“ ds

2G2 o) J “gz \/—v(s)" ds.

Note that we have used (24)-(25) in the above calculation.
Hence, we have

L (VA @[ + [VAv ] +blvie) + uol”
“blu®)I” - bIvO)I* ) ds

<cv DO [ |Vauo|as

(29)
2G (O J "g1 * \/_u(s)" ds
- GO [ a9
26, (O)J lo. » VAvo[ as.
On the other hand, we see that
lg, * VAu )| <G, (©0) gy * [VAu ()|,
(30)

"gz * VAv (s)”2 <G,(0) g, * " \/Zv(s)"z.
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By Young’s inequality, we obtain

Jt lg: * Vau )|’ < G ) Jt |[VAu(s)[ds, @D

j lg *« Vaus)| < G2 j |Nau@)[ds. (32
Putting (31)-(32) into (29), we obtain

(VA + VA I + biveo + utor?
~bllu ()1 - bl ()1 ) ds

(33)

<C+G,(0) r |VAu ()| ds
0

+G,(0) Jot |Vav(s)| ds.

Noticing assumption (I,), we obtain the desired estimates
(26)-(27). O

Proof of Theorem 4. First, we estimate the two memory
energy terms.
By a direct calculation, we have

E (Lt =) [Vauto) - Vau ) ds )
SCF(I%<t—s><lwzu<f>n2+||vzu<s>uz>ds)dt
¢ (IVauof [ ov-sds)a
ref!([[ae-o VAo as)a
e[ (IVawol [~ a0 as) e
ce ([ a9 Aol ar)as
<[ Wawa
e[ (IVawof [ g wat)as

<crc| [Vaus|as
0 (34)

Hence, by (26), we obtain

J: (Lt g, t—5) H VAu(t) - \/Zu(s)||2ds> dt <C,.  (35)
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Similarly, we have
jt (Jt g, (t =) | VAv(t) - VA (s)”2ds> dt <Cq.  (36)
0 0
Thus, (24)-(27) and (35)-(36) yield

ro E(t)dt <C, (37)
0

for a positive constant C. As E'(s) <0, we have
d
5 (tE(t) <E(t), t=0. (38)

Accordingly, (37) means that
t
tE(t)sJ E(s)ds<C, t=0. (39)
0

Hence, the estimate (13) follows. Furthermore, since the
integral fowo E(t)dt is convergent, it follows that

t

tE (t) < ZJ E(s)ds — 0, ast— +00, (40)
t/2
via the Cauchy convergence principle. Then, the proof of
Theorem 4 is completed. O
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