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We investigate the controllability for a one-dimensional wave equation in domains withmoving boundary.Thismodel characterizes
small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less
than 1 − 1/√𝑒, by Hilbert uniqueness method, sidewise energy estimates method, and multiplier method, we get partial Dirichlet
boundary controllability. Moreover, we will give a sharper estimate on controllability time that only depends on the speed of the
moving endpoint.

1. Introduction and Main Results

This paper concerns a finite vibrating string described by a
wave equation. The left boundary endpoint of the string is
fixed, while the right boundary endpoint is moving. Given
that𝑇 > 0, write𝑄𝑘

𝑇
for the following noncylindrical domain:

{(𝑦, 𝑡) ∈ R
2
; 0 < 𝑦 < 𝛼𝑘 (𝑡) , ∀𝑡 ∈ (0, 𝑇)} , (1)

where

𝛼𝑘 (𝑡) = 1 + 𝑘𝑡, 0 < 𝑘 < 1. (2)

Consider the following wave equation in the noncylindri-
cal domain 𝑄

𝑘

𝑇
:

𝑢𝑡𝑡 − 𝑢𝑦𝑦 = 0 in 𝑄
𝑘

𝑇
,

𝑢 (0, 𝑡) = V (𝑡) , 𝑢 (𝛼𝑘 (𝑡) , 𝑡) = 0 on (0, 𝑇) ,

𝑢 (0) = 𝑢
0
, 𝑢𝑡 (0) = 𝑢

1 in (0, 1) ,

(3)

where V is the control variable and is put on fixed endpoint.
The constant 𝑘 is called to be the speed of the moving
endpoint. By [1], for 0 < 𝑘 < 1, any (𝑢

0
, 𝑢
1
) ∈ 𝐿

2
(0, 1) ×

𝐻
−1
(0, 1), and V ∈ 𝐿

2
(0, 𝑇), (3) admits a unique transposition

solution.

The exact controllability problem for (3) is formulated
as follows: given 𝑇 > 0 large enough. For each (𝑢

0
, 𝑢
1
) ∈

𝐿
2
(0, 1) × 𝐻

−1
(0, 1) and for each (𝑢

0

𝑑
, 𝑢
1

𝑑
) ∈ 𝐿

2
(0, 𝛼𝑘(𝑇)) ×

𝐻
−1
(0, 𝛼𝑘(𝑇)), is it possible to find a control V ∈ 𝐿

2
(0, 𝑇) such

that the corresponding solution of (3) satisfies

𝑢 (𝑇) = 𝑢
0

𝑑
, 𝑢𝑡 (𝑇) = 𝑢

1

𝑑
? (4)

The main purpose of this paper is to study the exact
controllability of (3). As we all know, there exist pieces of
literature on the controllability problems of wave equations
in a cylindrical domain. However, as far as we know, there
are only a few works on the exact controllability for wave
equations defined in noncylindrical domains. We refer to [1–
3] for some known results in this respect. In [1], the boundary
controllability problem for amultidimensionalwave equation
with constant coefficients in a noncylindrical domain was
discussed. However, in [1] in the one-dimensional case, the
following condition seems necessary:

∫

∞

0

󵄨󵄨󵄨󵄨󵄨
𝛼
󸀠

𝑘
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 < ∞. (5)

It is easy to check that this condition is not satisfied for the
moving boundary in (3). In [2], the exact controllability of
a multidimensional wave equation with constant coefficients
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in a noncylindrical domain was established, while a con-
trol entered the system through the whole noncylindrical
domain. In [3], the exact controllability of the following
system is studied:

𝑢𝑡𝑡 − 𝑢𝑦𝑦 = 0 in 𝑄
𝑘

𝑇
,

𝑢 (0, 𝑡) = 0, 𝑢 (𝛼𝑘 (𝑡) , 𝑡) = V (𝑡) on (0, 𝑇) ,

𝑢 (0) = 𝑢
0
, 𝑢𝑡 (0) = 𝑢

1 in (0, 1) .

(6)

But the control is put on moving endpoint. In order to over-
come these difficulties and drop the additional conditions
for the moving boundary, we use sidewise energy estimates
method to obtain observability inequality.

The main result of this paper is stated as follows.

Theorem 1. Suppose that 0 < 𝑘 < 1 − 1/√𝑒. For any given
𝑇 > 𝑇

∗

𝑘
, (3) is exactly controllable at time 𝑇.

Remark 2. 𝑇
∗

𝑘
will be defined during the course of the proof.

Remark 3. It seems natural to expect that the exact control-
lability of (3) holds when 𝑘 ∈ (0, 1). However, we do not
succeed in extending the approach developed in Theorem 1
to this case.

In order to prove Theorem 1, we first transform (3) into
a wave equation with variable coefficients in a cylindrical
domain. For this aim, set

𝑥 =
𝑦

𝛼𝑘 (𝑡)
, 𝑤 (𝑥, 𝑡) = 𝑢 (𝑦, 𝑡) = 𝑢 (𝛼𝑘 (𝑡) 𝑥, 𝑡)

for (𝑦, 𝑡) ∈ 𝑄
𝑘

𝑇
.

(7)

Then, it is easy to check that (𝑥, 𝑡) varies in𝑄 := (0, 1)×(0, 𝑇).
Also, (3) is transformed into the following equivalent wave
equation in the cylindrical domain 𝑄:

𝑤𝑡𝑡 − [
𝛽𝑘 (𝑥, 𝑡)

𝛼𝑘 (𝑡)
𝑤𝑥]

𝑥

+
𝛾𝑘 (𝑥)

𝛼𝑘 (𝑡)
𝑤𝑡𝑥 = 0 in 𝑄,

𝑤 (0, 𝑡) = V (𝑡) , 𝑤 (1, 𝑡) = 0 on (0, 𝑇) ,

𝑤 (0) = 𝑤
0
, 𝑤𝑡 (0) = 𝑤

1 in (0, 1) ,

(8)

where

𝛽𝑘 (𝑥, 𝑡) =
1 − 𝑘
2
𝑥
2

𝛼𝑘 (𝑡)
, 𝛾𝑘 (𝑥) = −2𝑘𝑥,

𝑤
0
= 𝑢
0
, 𝑤

1
= 𝑢
1
+ 𝑘𝑥𝑢

0

𝑥
.

(9)

Equation (8) admits a unique solution in the sense of
transposition

𝑤 ∈ 𝐶 ([0, 𝑇] ; 𝐿
2
(0, 1)) ∩ 𝐶

1
([0, 𝑇] ;𝐻

−1
(0, 1)) (10)

(see [4]).
Therefore, the exact controllability of (3) (Theorem 1) is

reduced to the following controllability result for the wave
equation (8).

Theorem 4. Suppose that 0 < 𝑘 < 1 − 1/√𝑒. Let 𝑇 > 𝑇
∗

𝑘
.

Then, for any initial value (𝑤0, 𝑤1) ∈ 𝐿
2
(0, 1) × 𝐻

−1
(0, 1) and

target (𝑤0
𝑑
, 𝑤
1

𝑑
) ∈ 𝐿

2
(0, 1) × 𝐻

−1
(0, 1), there exists a control

V ∈ 𝐿
2
(0, 𝑇) such that the corresponding solution 𝑤 of (8) in

the sense of transposition satisfies

𝑤 (𝑇) = 𝑤
0

𝑑
, 𝑤𝑡 (𝑇) = 𝑤

1

𝑑
. (11)

In order to obtain Theorem 4, we will use Hilbert
uniqueness method. The main idea is to define a weighted
energy function for the followingwave equationwith variable
coefficients in cylindrical domains:

𝛼𝑘 (𝑡) 𝑧𝑡𝑡 − [𝛽𝑘 (𝑥, 𝑡) 𝑧𝑥]𝑥
+ 𝛾𝑘 (𝑥) 𝑧𝑡𝑥 = 0 in 𝑄,

𝑧 (0, 𝑡) = 0, 𝑧 (1, 𝑡) = 0 on (0, 𝑇) ,

𝑧 (0) = 𝑧
0
, 𝑧𝑡 (0) = 𝑧

1 in (0, 1) ,

(12)

where 𝑘 ∈ (0, 1), (𝑧0, 𝑧1) ∈ 𝐻
1

0
(0, 1) × 𝐿

2
(0, 1) is any given

initial value, and 𝛼𝑘, 𝛽𝑘, and 𝛾𝑘 are the functions given in (8).
Similar to Theorem 3.2 in [4], we have that (12) has a unique
weak solution

𝑧 ∈ 𝐶 ([0, 𝑇] ;𝐻
1

0
(0, 1)) ∩ 𝐶

1
([0, 𝑇] ; 𝐿

2
(0, 1)) . (13)

In the sequel, we denote by 𝐶 a positive constant depend-
ing only on 𝑇 and 𝑘, which may be different from one place
to another.

The energy function of system (12) is defined as

𝐸 (𝑡) =
1

2
∫

1

0

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑧
󸀠
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+ 𝛽𝑘 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
] 𝑑𝑥

(𝑡 ≥ 0) .

(14)

In particular

𝐸0 = 𝐸 (0) =
1

2
∫

1

0

[
󵄨󵄨󵄨󵄨󵄨
𝑧
1󵄨󵄨󵄨󵄨󵄨

2

+ 𝛽𝑘 (𝑥, 0)
󵄨󵄨󵄨󵄨󵄨
𝑧
0

𝑥

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑥. (15)

Note that this weighted energy is different from the usual
one, but they are equivalent. We will obtain explicit energy
equality. Using this energy equality, we will first prove the
following observability result.

Theorem5. Let𝑇 > 𝑇
∗

𝑘
. For any (𝑧0, 𝑧1) ∈ 𝐻

1

0
(0, 1)×𝐿

2
(0, 1),

there exists a constant 𝐶 > 0 such that the corresponding
solution 𝑧 of (12) satisfies

𝐶(
󵄨󵄨󵄨󵄨󵄨
𝑧
0󵄨󵄨󵄨󵄨󵄨

2

𝐻1
0
(0,1)

+
󵄨󵄨󵄨󵄨󵄨
𝑧
1󵄨󵄨󵄨󵄨󵄨

2

𝐿2(0,1)
)

≤ ∫

𝑇

0

𝛽𝑘 (0, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (0, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡

≤ 𝐶(
󵄨󵄨󵄨󵄨󵄨
𝑧
0󵄨󵄨󵄨󵄨󵄨

2

𝐻1
0
(0,1)

+
󵄨󵄨󵄨󵄨󵄨
𝑧
1󵄨󵄨󵄨󵄨󵄨

2

𝐿2(0,1)
) .

(16)

Then, applying Hilbert uniqueness method, we will
deduce Theorem 4.

The rest of this paper is organized as follows. In Section 2,
we derive Theorem 5. Section 3 is devoted to a proof of
Theorem 4.
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2. Observability: Proof of Theorem 5

In this section, first we give the following two lemmas (see the
detailed proof in [3]).

Lemma 6. For any (𝑧
0
, 𝑧
1
) ∈ 𝐻

1

0
(0, 1) × 𝐿

2
(0, 1) and 𝑡 ∈

[0, 𝑇], any solution 𝑧 of (12) satisfies the following estimate:

𝐸 (𝑡) =
1

𝛼𝑘 (𝑡)
𝐸0. (17)

Lemma 7. Suppose that 𝑞 ∈ 𝐶
1
([0, 1]) is any given function.

Then any solution 𝑧 of (12) satisfies the following estimate:

[
1

2
∫

𝑇

0

𝛽𝑘(𝑥, 𝑡)𝑞(𝑥)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

0

=
1

2
∫

𝑇

0

∫

1

0

[𝑞𝑥 (𝑥) 𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2

+ (𝑞𝑥 (𝑥) 𝛽𝑘 (𝑥, 𝑡) − 𝛽𝑘,𝑥 (𝑥, 𝑡) 𝑞 (𝑥))

×
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
] 𝑑𝑥 𝑑𝑡

− ∫

𝑇

0

∫

1

0

𝛼𝑘,𝑡 (𝑡) 𝑞 (𝑥) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

1

0

[𝛼𝑘 (𝑡) 𝑞 (𝑥) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+
1

2
𝛾𝑘(𝑥)𝑞(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

0

.

(18)

Now, we give a proof of Theorem 5.

Proof. We first give the proof of the second inequality in (16).
Define

𝐺 (𝑥) =
1

2
∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2

+𝛽𝑘 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
] 𝑑𝑡.

(19)

Note that

𝐺 (0) =
1

2
∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝛽𝑘 (0, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (0, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡. (20)

The derivative of the functional of 𝐺 is
𝐺
󸀠
(𝑥)

= ∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑡,𝑥 (𝑥, 𝑡)

+ 𝛽𝑘 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡) 𝑧𝑥𝑥 (𝑥, 𝑡)

+
1

2
𝛽𝑘,𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] 𝑑𝑡

+ (−
1

2
𝐴
󸀠

1
(𝑥))

× ∑

𝑡=𝑇−𝐴
1
(𝑥),𝐴

1
(𝑥)

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
+ 𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] ,

(21)

where

∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝛼𝑘 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑡,𝑥 (𝑥, 𝑡) 𝑑𝑡

= [𝛼𝑘(𝑡)𝑧𝑡(𝑥, 𝑡)𝑧𝑥(𝑥, 𝑡)]
󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

− ∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘,𝑡 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+ 𝛼𝑘 (𝑡) 𝑧𝑡𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)] 𝑑𝑡.

(22)

By (12), it follows that

𝛼𝑘 (𝑡) 𝑧𝑡𝑡 (𝑥, 𝑡)

= [𝛽𝑘(𝑥, 𝑡)𝑧𝑥]𝑥
(𝑥, 𝑡) − 𝛾𝑘 (𝑥) 𝑧𝑡𝑥 (𝑥, 𝑡)

= 𝛽𝑘,𝑥 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡) + 𝛽𝑘 (𝑥, 𝑡) 𝑧𝑥𝑥 (𝑥, 𝑡)

− 𝛾𝑘 (𝑥) 𝑧𝑡𝑥 (𝑥, 𝑡) ,

(23)

from which and using integrating by parts, we have that

∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝛼𝑘 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑡,𝑥 (𝑥, 𝑡) 𝑑𝑡

= [𝛼𝑘(𝑡)𝑧𝑡(𝑥, 𝑡)𝑧𝑥(𝑥, 𝑡)]
󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

− ∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘,𝑡 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+ 𝛽𝑘,𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2

+ 𝛽𝑘 (𝑥, 𝑡) 𝑧𝑥𝑥 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

− 𝛾𝑘 (𝑥) 𝑧𝑡𝑥 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)] 𝑑𝑡

= [𝛼𝑘(𝑡)𝑧𝑡(𝑥, 𝑡)𝑧𝑥(𝑥, 𝑡)]
󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

− ∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘,𝑡 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+ 𝛽𝑘,𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2

+ 𝛽𝑘 (𝑥, 𝑡) 𝑧𝑥𝑥 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)] 𝑑𝑡

+ [
1

2
𝛾𝑘(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

= [𝛼𝑘 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+
1

2
𝛾𝑘(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

− ∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘,𝑡 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+ 𝛽𝑘,𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2

+ 𝛽𝑘 (𝑥, 𝑡) 𝑧𝑥𝑥 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)] 𝑑𝑡.

(24)
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We conclude, using (24), that

𝐺
󸀠
(𝑥)

= −∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘,𝑡 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+
1

2
𝛽𝑘,𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] 𝑑𝑡

+ [𝛼𝑘 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+
1

2
𝛾𝑘(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1(𝑥)

+ (−
1

2
𝐴
󸀠

1
(𝑥))

× ∑

𝑡=𝑇−𝐴
1
(𝑥),𝐴

1
(𝑥)

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
+ 𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] .

(25)

We will choose 𝐴1(𝑥) later which satisfies

[𝛼𝑘(𝑡)𝑧𝑡(𝑥, 𝑡)𝑧𝑥(𝑥, 𝑡) +
1

2
𝛾𝑘(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

+ (−
1

2
𝐴
󸀠

1
(𝑥))

× ∑

𝑡=𝑇−𝐴
1(𝑥),𝐴1(𝑥)

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
+ 𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

≤ 0.

(26)

From (25) and (26), for 𝜀 > 0, it concludes that

𝐺
󸀠
(𝑥)

≤ −∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[𝛼𝑘,𝑡 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+
1

2
𝛽𝑘,𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] 𝑑𝑡

= ∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

[ − 𝑘𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

+
𝑘
2
𝑥

𝛼𝑘 (𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]𝑑𝑡

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

√𝛼𝑘 (𝑡)𝑧𝑡 (𝑥, 𝑡)
𝑘

√𝛼𝑘 (𝑡)

𝑧𝑥 (𝑥, 𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝑘
2
𝑥

1 − 𝑘
2
𝑥
2
𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2𝜀
∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡

+
𝜀

2
∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝑘
2

1 − 𝑘
2
𝑥
2
𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
𝑑𝑡

+ ∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝑘
2
𝑥

1 − 𝑘
2
𝑥
2
𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
𝑑𝑡

≤
1

2

1

𝜀
∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡

+
1

2

𝑘
2
(𝜀 + 2)

1 − 𝑘
2

∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝛽𝑘 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡.

(27)

Take 𝜀 = (1 − 𝑘)/𝑘; then it is easy to check that

1

𝜀
=

𝑘
2
(𝜀 + 2)

1 − 𝑘
2

. (28)

Hence

𝐺
󸀠
(𝑥) ≤

𝑘

1 − 𝑘
𝐺 (𝑥) 𝑥 ∈ (0, 1) . (29)

By Gronwall inequality, there exists 𝐶 > 0 such that

𝐺 (𝑥) ≤ 𝐶𝐺 (0) . (30)

Integrating (30) in [0, 1], we have

∫

1

0

𝐺 (𝑥) 𝑑𝑥 ≤ 𝐶𝐺 (0) . (31)

By (17), we deduce that

[𝑇 − 2𝐴1 (1)] 𝐸0

= ∫

𝑇−𝐴
1
(1)

𝐴
1
(1)

𝐸0𝑑𝑡

≤ (1 + 𝑘𝑇)∫

𝑇−𝐴
1
(1)

𝐴
1
(1)

𝐸 (𝑡) 𝑑𝑡

= (1 + 𝑘𝑇)
1

2
∫

𝑇−𝐴
1
(1)

𝐴
1(1)

∫

1

0

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡

+ 𝛽𝑘 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
] 𝑑𝑡 𝑑𝑥.

(32)

Now choose that 𝐴1(𝑥) also satisfies

𝐴
󸀠

1
(𝑥) > 0, 𝐴1 (1) ≥ 𝐴1 (𝑥) ≥ 𝐴1 (0) ≥ 0. (33)
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Then from (19), (31), and (32), it follows that

[𝑇 − 2𝐴1 (1)] 𝐸0

≤ (1 + 𝑘𝑇)
1

2
∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

∫

1

0

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡

+ 𝛽𝑘 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
] 𝑑𝑡 𝑑𝑥

≤ (1 + 𝑘𝑇)∫

1

0

𝐺 (𝑥) 𝑑𝑥

≤ 𝐶 (1 + 𝑘𝑇)𝐺 (0) ,

(34)

from which and from (20), we have that

𝐺 (0) =
1

2
∫

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

𝛽𝑘 (0, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (0, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡

≥
1

𝐶 (1 + 𝑘𝑇)
[𝑇 − 2𝐴1 (1)] 𝐸0.

(35)

Let

𝑇
∗

𝑘
≜ 2𝐴1 (1) . (36)

When 𝑇 > 𝑇
∗

𝑘
, by (35), (16) follows.

In the following, when 𝑇 > 𝑇
∗

𝑘
, we choose 𝐴1(𝑥) which

satisfies (33) and (26). In (26), for 0 < 𝜀 ≤ 1, we have that

󵄨󵄨󵄨󵄨𝛼𝑘 (𝑡) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

√𝛼𝑘 (𝑡)𝑧𝑡 (𝑥, 𝑡) √𝛼𝑘 (𝑡)𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

√𝛼𝑘 (𝑡)
√𝐴
󸀠

1
(𝑥)𝑧𝑡 (𝑥, 𝑡)

√𝛼𝑘 (𝑡)

√𝐴
󸀠

1
(𝑥)

𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜀

2
𝛼𝑘 (𝑡) 𝐴

󸀠

1
(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
+

1

2𝜀

𝛼𝑘 (𝑡)

𝐴
󸀠

1
(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2

=
𝐴
󸀠

1
(𝑥)

2
[𝜀𝛼𝑘 (𝑡)

󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

+
𝐴
󸀠

1
(𝑥)

2
[
1

𝜀

𝛼𝑘 (𝑡)

(𝐴
󸀠

1
(𝑥))
2

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝛾𝑘 (𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

2
𝐴
󸀠

1
(𝑥)

󵄨󵄨󵄨󵄨𝛾𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝐴
󸀠

1
(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
.

(37)

Assume that

[𝛼𝑘(𝑡)𝑧𝑡(𝑥, 𝑡)𝑧𝑥(𝑥, 𝑡) +
1

2
𝛾𝑘(𝑥)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇−𝐴
1
(𝑥)

𝐴
1
(𝑥)

+ (−
1

2
𝐴
󸀠

1
(𝑥))

× ∑

𝑡=𝑇−𝐴
1
(𝑥),𝐴

1
(𝑥)

[𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
+ 𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
]

≤
1

2
𝐴
󸀠

1
(𝑥)

× ∑

𝑡=𝑇−𝐴
1
(𝑥),𝐴

1
(𝑥)

{(𝜀 − 1) 𝛼𝑘 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2

+[
1

𝜀

𝛼𝑘 (𝑡)

(𝐴
󸀠

1
(𝑥))
2
+

󵄨󵄨󵄨󵄨𝛾𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝐴
󸀠

1
(𝑥)

− 𝛽𝑘 (𝑥, 𝑡)]

×
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
} ≤ 0.

(38)

We must take 0 < 𝜀 ≤ 1 and 𝐴1(𝑥) satisfies

1

𝜀

𝛼𝑘 (𝑡)

(𝐴
󸀠

1
(𝑥))
2
+

󵄨󵄨󵄨󵄨𝛾𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝐴
󸀠

1
(𝑥)

− 𝛽𝑘 (𝑥, 𝑡) ≤ 0. (39)

From (39), we derive

1

𝜀(𝐴
󸀠

1
(𝑥))
2
+

2𝑘𝑥

𝐴
󸀠

1
(𝑥) 𝛼𝑘 (𝑡)

+
𝑘
2
𝑥
2

𝛼
2

𝑘
(𝑡)

≤
1

𝛼
2

𝑘
(𝑡)

. (40)

Let 𝜀 = 1. Then it follows that

[
1

𝐴
󸀠

1
(𝑥)

+
𝑘𝑥

𝛼𝑘(𝑡)
]

2

≤
1

𝛼
2

𝑘
(𝑡)

; (41)

that is,
1

𝐴
󸀠

1
(𝑥)

+
𝑥

𝛼𝑘 (𝑡)
≤

1

𝛼𝑘 (𝑡)
. (42)

By (42), we deduce that 𝑇 > 𝑇
∗

𝑘
,

𝐴
󸀠

1
(𝑥) ≥

𝛼𝑘 (𝑡)

1 − 𝑘𝑥
≥

1 + 𝑘𝑇
∗

𝑘

1 − 𝑘𝑥
. (43)

Integrating into (0, 𝑥), we have

𝐴1 (𝑥) ≥
1 + 𝑘𝑇

∗

𝑘

𝑘
[− ln (1 − 𝑘𝑥)] . (44)

Hence, we choose

𝐴1 (𝑥) =
1 + 𝑘𝑇

∗

𝑘

𝑘
[− ln (1 − 𝑘𝑥)] , (45)

which satisfies (33) and (26). It follows that

𝐴1 (1) =
1 + 𝑘𝑇

∗

𝑘

𝑘
[− ln (1 − 𝑘)] . (46)
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From the definition of 𝑇∗
𝑘
(see (36)) and (46), we deduce that

𝑘 ∈ (0, 1 − 1/√𝑒),

𝑇
∗

𝑘
=

−2 ln (1 − 𝑘)

𝑘 [1 + 2 ln (1 − 𝑘)]
= 2𝐴1 (1) . (47)

In the following, we give the proof of the second inequal-
ity in (16).

We choose 𝑞(𝑥) = 𝑥 − 1 for 𝑥 ∈ [0, 1] in (18). Noting that
𝛼
󸀠

𝑘
(𝑡) = 𝑘, 𝛽𝑘,𝑥(𝑥, 𝑡) = −2𝑘

2
𝑥/(1 + 𝑘𝑡), and 𝛾𝑘(𝑥) = −2𝑘𝑥, it

follows that

1

2
∫

𝑇

0

𝛽𝑘 (0, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (0, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡

= ∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡

− ∫

𝑇

0

∫

1

0

𝑘 (𝑥 − 1) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫

1

0

𝑘
2
𝑥 (𝑥 − 1)

1 + 𝑘𝑡

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

+ ∫

1

0

[𝛼𝑘 (𝑡) (𝑥 − 1) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

− 𝑘𝑥(𝑥 − 1)|𝑧𝑥(𝑥, 𝑡)|
2
] 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨

𝑇

0
.

(48)

Next, we estimate every term in the right side of (48).
Notice that 1 ≤ 𝛼𝑘(𝑡) ≤ 1 + 𝑘𝑇 and 0 < (1 − 𝑘

2
)/(1 + 𝑘𝑇) ≤

𝛽𝑘(𝑥, 𝑡) ≤ 1 for any (𝑥, 𝑡) ∈ 𝑄. By (17), we have

∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡 − ∫

𝑇

0

∫

1

0

𝑘 (𝑥 − 1) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫

1

0

𝑘
2
𝑥 (𝑥 − 1)

1 + 𝑘𝑡

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

≤ ∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡 + 𝐶∫

𝑇

0

∫

1

0

[
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
] 𝑑𝑥 𝑑𝑡

≤ ∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡

+ 𝐶∫

𝑇

0

∫

1

0

[𝛼𝑡 (𝑡)
󵄨󵄨󵄨󵄨𝑧𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
+ 𝛽𝑘 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

2
] 𝑑𝑥 𝑑𝑡

≤ 𝐶∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡 ≤ 𝐶𝐸0.

(49)

On the other hand, for each 𝑡 ∈ [0, 𝑇], it holds that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝛼𝑘 (𝑡) (𝑥 − 1) 𝑧𝑡 (𝑥, 𝑡) 𝑧𝑥 (𝑥, 𝑡)

− 𝑘𝑥 (𝑥 − 1)
󵄨󵄨󵄨󵄨𝑧𝑥 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

2
] 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡 ≤ 𝐶𝐸0.

(50)

Therefore, by (48)–(50), we have

1

2
∫

𝑇

0

𝛽𝑘 (0, 𝑡)
󵄨󵄨󵄨󵄨𝑧𝑥 (0, 𝑡)

󵄨󵄨󵄨󵄨

2
𝑑𝑡 ≤ 𝐶𝐸0

≤ 𝐶(
󵄨󵄨󵄨󵄨󵄨
𝑧
0󵄨󵄨󵄨󵄨󵄨

2

𝐻1
0
(0,1)

+
󵄨󵄨󵄨󵄨󵄨
𝑧
1󵄨󵄨󵄨󵄨󵄨

2

𝐿2(0,1)
) .

(51)

Remark 8. Theorem 5 implies that, for any (𝑧0, 𝑧1) ∈

𝐻
1

0
(0, 1) × 𝐿

2
(0, 1), the corresponding solution 𝑧 of (12)

satisfies 𝑧𝑥(0, ⋅) ∈ 𝐿
2
(0, 𝑇).

3. Controllability: Proof of Theorem 4

In this section, we prove the exact controllability for the wave
equation (8) in the cylindrical domain 𝑄 (Theorem 4) by
Hilbert uniquenessmethod.Themain idea is to seek a control
in the form V = 𝑧𝑥(0, 𝑡), where 𝑧 is the solution of (12) for
some suitable initial data. The other proof is similar to the
proof of Theorem 2.1 in [3].

Remark 9. It is easy to check that

𝑇
∗

0
≜ lim
𝑘→0

𝑇
∗

𝑘
= lim
𝑘→0

−2 ln (1 − 𝑘)

𝑘 [1 + 2 ln (1 − 𝑘)]
= 2. (52)

It is well known that the wave equation (3) in the cylindrical
domain is null controllable at any time 𝑇 > 𝑇

∗

0
. However, we

do not know whether the controllability time 𝑇∗
𝑘
is sharp.
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