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We study the expansions of the first order Melnikov functions for general near-Hamiltonian systems near a compound loop with
a cusp and a nilpotent saddle. We also obtain formulas for the first coeflicients appearing in the expansions and then establish a
bifurcation theorem on the number of limit cycles. As an application example, we give a lower bound of the maximal number of

limit cycles for a polynomial system of Liénard type.

1. Introduction
Consider a planar system of the form

x=H,+ep(x,.0), y=-H.+eq(x.3.0), (1)
where € is a small parameter and H(x, y), p(x, y,6), and
g(x, y,8) are C* functions in (x, ) € R*and § € D ¢ R”
with D bounded. For € = 0, (1) becomes

X = Hy’ y= _Hx’ (2)
which is a Hamiltonian system. As we know, the system (1) is
said to be a near-Hamiltonian system. For (1), the main task is
to study the number of limit cycles which are bifurcated from
periodic orbits of the unperturbed system (2). On this aspect,
the first order Melnikov function of (1) plays an important
role. We can use the expansions of it near Hamiltonian values
corresponding to a center or an invariant loop to find its
zeros and hence the number of limit cycles. See a survey
article [1]. There have been many works on this topic. For the
study of general near-Hamiltonian systems, see [2-12]; and
especially for the system (2) with the elliptic case, one can see
[13-17] and references therein. In [2-4], the number of limit
cycles of the system (1) near a homoclinic loop with a cusp
of order one or two or a nilpotent saddle of order one (for
the definition of an order of a cusp or nilpotent saddle, see
[5]) was studied. In the heteroclinic case with two hyperbolic

saddles, a hyperbolic saddle and a cusp of order one, or two
cusps of order one or two, the number of limit cycles of the
system (1) was studied in [5, 8, 9], respectively. In this paper,
we suppose that the unperturbed system (2) has a compound
loop consisting of a cusp S; of order one, a nilpotent saddle
S, of order one, a homoclinic loop to S,, and two heteroclinic
orbits connecting S, and S,, as shown in Figure 1. We aim to
study the number of limit cycles of (1) near the loop for e #0
small.

2. Main Results with Proof

Now consider the C*™ systems (1) and (2). Suppose that (2)
has a compound loop denotedby L, =L, UL, UL, U{S,,S,}
and defined by equation H(x, y) = 0, where S;(xy, y;) is a
cusp and S,(x,, ¥,) is a nilpotent saddle both having order
one, L, L, are heteroclinic orbits satisfying w(L,) = «(L,) =
S, and w(L,) = a(L,) = S, and L; is a homoclinic loop to
S,. Then, the level curves of H(x, y) define two families of
periodic orbits L;,; and L, for h on one side of h = 0 and a
family of periodic orbits L;; for i on another side of h = 0.
For the definiteness, let both Lj,; and L, existfor 0 < —h <1
and L,; exist for 0 < h < 1. Thus, we have three Melnikov
functions

M,.(h,a)=4> qdx—pdy, i=1,23. (3

hi
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F1GURrE 1: Compound loop with a cusp and a nilpotent saddle.
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Let U; denote a closed set with diameter €, > 0 and with
center at S;, i = 1,2. See Figure 2(a). And further introduce

o) ;
L =L,nU;, j=12,

®) 0 M
3 1

Lyl =cL| L, -t} ), Ly =LnnU,

j=1

(2) _ 1) a _

Ly =L,-L), Lj=L,nU, (4)

2 3

Ly U, = L ULY)

3
@ _ ()
L' =ClL (Lh3 - ULh3> :

Jj=1

(as shown in Figure 2 (b)),

Here the Cl. denotes the closure of a set. Then by (3) and (4),
for ¢, sufficiently small we can write

M, (1,8) = I, (h,8) + I, (1,8) + I, (1, 0)

(5)
for0<-h<1,
M, (h,8) = I, (h,8) + I, (h,5) ©)
for0<-h«1,
M; (h,90) = I; (h,0) + I, (h,8) + L5 (h, 8) + L34 (h, ) -

for0<h« 1,

where

Iij (h,(s) = J’(j)qu_pdy, i€ {1)2)3}) ] € {1)2:3)4}
Lhi
(8)

By [5], there exist two transformations of the form
() =T +S, i=12, 9)

where T; is a 2 x 2 matrix satisfying det T; = 1 such that (1)
becomes

u=H,, +ep; u,v,0), v=-H,, +€q; (u,v,0), (10)

where

[

14

H, (u,v) = 5 + fzkjukvj,

k+j=3

H, (u, ¢, (1)) = hyu’ + O(u4) , hy<0,

Y
H,, (u, ¢, () =0, p1 u,v,0) = Z a;;u v,
i+720
91 (I/l, v, 8) = Z E,-juivj,
i+j=0
V2 — k i
H, (u,v) = >t kz hyu v/,
+j=3
H, (u,¢, (1)) = hu* +0O (us) , h,<0,
H,, (u, 9, (W) = 0, (12)
pr (W, v,6) = Z aijUiVj>
i+720

q, W, v,68) = Z Eijuivj,

i+j>0
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for (u, v) near (0,0). Note that gdx — pdy = q,du — p,dv for
(x, y) near S; and qdx — pdy = g,du — p,dv for (x, y) near
S,. Then we have

I (h,0) = sz qdu-pdv, i=13 1)
hi
L (h,8) = [, o= po, 19
h2
I, (h,6) = -0 qpdu — prdv,
h 15)
I (h,6) = Lw Godii— pydv, =23,
h3

= —(1) =
where L(hli) denote the image of L(hll.) under T, and L;Z), L;ﬂ),

and f;j; denote the image of L(hlz), L(hzl) , and L(h]_,), under T),
respectively. Then, by using [3, 4] we can obtain the following

two lemmas, respectively.

Lemma 1. Consider system (10) with i = 1 and suppose
(11), (13) hold. Then there are constants By, By, Byg, By,

satisfying

3 (" d 3
BOO:—J Y 224286 >0,
> Jo v(1-v?)

. 30 d 3
B(,O:——J Y 2% 42065--- <0,
5 )0 V1 -3 5

3( (! v2dy
By =-= J -21>0,
7 0\/1—v3(1+\/1—v3)
By,
_3 J_l vdy _Jl vy ) <o
7\ vVi-vd o \/1+v3(1+\/1+v3)
(16)
such that

Ly (1, 8) = Byocy (S1,8) [1I™® + Byocs (y,6) 1h|”'®

1
~ 77 Boots (S8) 11" + O (K*) + Ny (1, 6)
(17)

for0 < -h <« 1,
Iy (1,8) = Bjyc, (S1,0) W/° + Biycy (S, 8) /6

+ %Bgoq (S1,8) K/ + O (W) + N3y (1, )
(18)

3
for 0 < h < 1, where N;y(h,8) € C* at h = 0 with N;;(0,98) =
O(gy), i=1,3, and

6 (81,0) = 2V2 1,7 (G + By ) »
¢ (8,,0) = 221"
x [Fs (20 + B1))
1 - _ o -
# 5 (B = 2Ry = 3o, (@0 + )|
¢, (8,,6) = 9("1_1&01
= 201" [ (20085 = 2044, popas + 4445 1) G
+ (4%#3 - 10#1!";) N
+ 4#%#2&20 - P‘faso] >
(19)
where
_ e o iae
= h;/3’ Hy = §h32/3h4>
1-_ - -
us = ghs”" (3hahs ~ 1),
e = %zgw (2772 - 18isTi s + 5T )
_ _ 1 -
hy = hy, hy = _EhZI + hygs
Tls = %ur’gl - 7121;’31 + Tlsm
E6 = —2%%2;151 - EOJ‘; + Eglﬁzz
o 1y - - -
+2hyyhy by - §h§1 = hyyhyy + hep,
Foo = 2V2 (a0 + by, )
Xy = 2V2 [—ftlz (‘710 +501) + 20, +EH] ,
0
_ = - = = 3~ -
=2V2 (‘110 + b01) <3h03h21 —hy + Ehfz) = 2hy,08y
- EIZEII +3a5 + E21 - a117121 - 2E02E21] >
o3
= 22| (@0 + Bur ) (3PP + gl + 3Pl

- - 5en  ~
~ 15y — 23 = i
+ (3511 + 6502) E12E21 -2 (Elz + 521) Eu

— (@, + 2By, ) Piyy + 4dyg + by



+(3by + 6y Py
<3a20 + 3 b11>

&y = 2\/_[ Zay + 2bys — 2hg3

To — (2330 + By, ) i

3“30 + b21) 12]

~ Alosbun + (@0 + B) (5735 — 2F) |-
(20)

Lemma 2. Consider system (10) with i = 2 and suppose (12),
(15) hold. Then we have

I, (1,8) = ¢, (S,,8) In"* = ¢, (S,,8) hIn A
+¢, (S5, 8) |A* + ¢ (S,,8) [h)"* (21)
— 65 (8,,8) K’ In |k + O (h*) + Ny, (h, 0)

for0<-h<1,
1 . *
Iy (1,8) = 27 (5,0) W e (S, 8) h!

+%c: (Sp8) W' + 0 () + Nay (1,6),

. ) (22)
Iy (1,8) = 27 (5,0) Wy 56 (52,9) W
. %c; (S 8) "* + 0 () + Ny (h,6)
for 0 < h < 1, where N;j(h,d) € C” ath = 0 with N;;(0,6) =
O(eo)) (1: ]) € {(1: 2)) (3) 2)) (3) 3)}) and
P N A
a1 (8,,8) = = 2V2|Ay| || (@10 +b01)
1/2 - S
6 (8,,0) = ——|h ' 2a20+b11)+0(a10+bm),
— 212 3— — \ = |-11/4_
¢4 (8,,0) = |A2| [( hs - h4h6> |h4| oo
3 774 - |73/4_
+ Z|h4' hsa + 'h4| 0‘20] g
1
s (S,,0) = = | | [6d @,
+d,” (105d,d5d, — 30d,d,d,
~15d:d; + 5dyds — 70d; ) Ao,

+d;® (35d5 - 30d,d,d, + 5d3d,) @y,
—d,” (15d; - 5d,d ) &y

-6 7 — —5—
+5d,°dyaz — d "ty |
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¢ (S,,9)
1
= 3 —6d; d20c01 + 3d o
—d;" (504d,d3d; — 168d:d,d;
+42d°d,d, - 168d d>d,

+42d,d,ds —252d; — 6d\d,) Ty

+d; " (168d,d5d; - 126d,

~42dyd,d, - 21d;d; + 6d3ds) @y,

- dy” (42d,d,d, - 56d; — 6d3d,) @y

+d,* (6d,d, - 21d; ) &y
+6d, dydlyy — d "8, |,

C1* (8,,8) = =Dy (55, 9), Cs* (82,8) = =Dy, (55, 9),

C: (85,0) = D15 (S,,9),

(23)

where D, = ZIKOI/IXOI, D, = ZIZII/IKZI, ZO, ZO, Zl, and
Zz are constants, given by

A2 ro D 1236049785 > 0
°T3) View T ’
— 2 (Y d
30 Vv
2 3/2
_LZ ~ —0.8740191847 < 0,
6[I(3/4)]
- _ 2 j"o dv
os s VI+vE [+ VI
~ -0.3388852337 < 0,
_ 2 ! g
-2 1_J’ vedv
5 0\/1—v4(1+\/1—v4)

=~ 0.2396280470 > 0,

_ |E '1/4 1= -3/4—
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15/4 —3— —2-2
ds = 2048|h| (5127, — 19211,

—384h.hish, + 336, g - 77%‘;) ,

" 8192|h4' " (2048m,1, + 1344R; 5T,
~ 15361, 15h — 1536h,hh,
+ 1344k 1, - 1232h, 10k
+231%);
oo = 2\/5(510 +501),
&y = 2\/_[ 12 (alo + b01) T 2a, + b“]
oo = 2V2 (o + b ) (SPoshn ~ s + 1)

= 2hy,8y0 — hyybyy + 3650 + by,

_allhll - 2b02 21] >

=

@y =2V2 [(aw +bpy)
x (3@13@1 + 3hgshs, + 3h1y00
- 15E12E03z21 - gETZ - E32>
+ (3511 + 6EOZ)EIZE21 -2 (Elz + 621) Em
- (511 + 2502) 531 +4a,, + 531
+ (3 nt 6a20) EZI

=2

(2‘120 + bu) hy, + (3‘120 + 5 b11> hy,
- (3530 + 521)512] >

%y = 2V2

m (510 + Em)

- <zh3 = 3hyyhy, + 150y, heshy, + by,

- 3E13Z21 - 3E03E31) (2520 + Eu)

+< W —h22>
( -
h

x (3d30 + by — @y hyy — 2bgghy, )

12 (46’40 + b31 26121;’21

= 2byyhy, + 24y, by hyy + 4bgyhyhy,

—aphs - 2b02£31) + "3] »

G = 2V2 [y (@0 + B ) + iy (20 + )

5-3 -
~ (2 = 3Piahoy + 15 Ty +

X (3530 + by, — Gy hyy — 2502E21)
+ <%f‘?2 + 3ho3hy, ~ ]7‘22>
X (4640 +byy — 24, hy,
- 2512E21 + Zanﬁlzﬁu
+4EOZE12E21 - 511E31 - 2502%31)

—hypn, + n4] ,

_ 2_ - T T
&y = 2V2 5“12 +2bg3 — 2hg3ay, — 4hosby,

+ (@0 + b ) (S — 2us) |
a, = 2v2 [(510 + 501) (10E04E12 - zz14

+10h43hy5 — 35E125§3)
+ @y, +2by,) (~2hys + 10k;,hy; )
—2hy, (@, + 3by3)
+ (2 +by,) (Shgy — 2oy )

[ _ 4 _
— 4h, (b12 + a21) + gazz + 2b13] ;

— 2 —

2 — 3 2 —
he = =2hy,hy) = hoshy, + hy by,

— 2 — — — _
h; = —4hyhy hyy + by = hs by — h

— =2 32 — — - =
+hyohyy + 4oy, = By hyy + by,

- - — — 3 — - 2 —
+ 2hyy by hay + 6hgshy by, — 3hoshy by

2 — — — - —
—4hy, hy hyy + 203k hy,,



3 —4 - =2

Es = Eso - z23E21 - z61E21 + E04h21 + hyhy,
—2 =2 —4 =2 —2 =2
- 2h12h31 - 8h12h21 - 2h22h21

92 4 - — - =2 12
- Eh03h21 = hyyhsy + hyhy — =

—3 — — -2 - — - =2 2
+8hy,hy 1 hyy — 4Ny, hy hyy + 12005k, by
- 32 - - - 3
= 24hoshy by, + 2hyyhs by + 603k by
— 2 — — — — 3 —
— 4hyyhy hsy + 2hy,hy by + 6hyyhy gy
- - - - 2
+ 2hy,hy hyy + 2hyyhy hsy — 3hoshy by,
R, S — 2 —
= 3hoshy hyy — 3hy3hy, by,
— — — _ — — ) —
— 8hyyhyhy by + 18hyyhgshy by,
S —2 _ 3 R
hy = hy, [hZI (45h03 - 8ho4> +6hy, (hzs - 8h03h22)
— — — — 2 -
+ 20y, (9yshyy — 2y + 61y, + ooy )
— ) - — _
+ 20y, (93l — 4hyy oy = 4hy sy )
— ) — —
—4hyhy, + hyy + 2hshsy + 2h21h61]

2 r— — — R —
+4h, [hn <3h21h32 — 6hy hy; — hs,

+ 6E31E22 - 18fl31]7103521) - E31E41:|

—3 — =3 - - — =2 -2
+ 4Ry, (20g3hy, + 2hyy By, = Shoghy, + 1)
— - — —4 — 2 — - —
+ gy (2gshyy — 167,05, — 4hyhay + 2h,
— — ) — — - —
+2h35hyy = 3hy3hay = hyy - 6h03h31h41)
2 —5 - — — —
+hy, (16h12 = 4hyhy, = 30y,
— 3hoshs; + hsy + 18%22%1%03)

- - — — 3 — — —3 —
+ 2hyyha by + 6h3yhy hos + 4hoshy by,

- - - - - 2 - -3
= hyyhsy — hy hgy + hyyhs) — hoshs,

— 4 — 2 -3 - —
= 9hg3hy i3 — 18hshyshy, + hyyhy,

— 3 — 3 —
= hy3hy, + 6hyyh, ks + hggs

—2 —4 — _
ny = (128, + 35hy, + 24hs 1,

1

8
2 — - - — 2 — —

— 60h,,h,, — 72h,hyshy, + 3240 ,hgshy,

2 2 — — — — —
+108Tig3 11y, — 725 5T, — T2y sl )
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1 = = T 60T
m="3 (_24h22h32 + 60,0, + 60hy b,

—3 — —5
— 140h,,h,, + 63h,,
-2 — — -3 — —
— 180H,,hy3hs; + 780, hgshy,
+ 72h22h03h31 - 5O4h12h22h03h21

-2 — — — 2 2
— 216hg, 11y, 115, + 9720, h 5,

+ 72hyshy by + 720,155y,

- 180%?2%3%21 - 216EO3E21E13>>

Ny = 585y + by — 2byhy; —ay hy

_ _ 2 _
+2ay,hyhy, — 3ay hyshy, +2a;, by,

_ — i - =2  _ =
+4ay,hyyhyy — 3a5,hy, + 3bgsh, +aph,),

ny = 4byhyyhy, + 4bgyhayhy, + 6a3, 015y

Y
+2ay,hyyhyy + 4byyhyyhyy — 4ayhyyhsy
- - — - 2 — 2=
+4bg,hyyhyy — 12bgshy by, — 4ay,hy by,
[ - )
+2ay,hyyhyy + 6bgshy by — 3a,1hyshy,

- — 2 —

+6dg + b5y — 6byyhg3hy, + 2a,,hyyhy,

+4bgyhyhyy + 4ay hyyhy, + 24,0, by,

- - — - -2 — — 3 —
+4byhyyhy, — 8byyhy,hy, + 16bgyhy by,

_ 2 o - =
= 6ayho3hy, +4a,,hyyhs, + 3b3hy,

+2ayhy, — 6a,1hy3hy hyy + 184, hoshy by,

- SEIIEIZEZZEZI - IZEOZEOBEZII/I_’)I + 36b02E03h21h12

- 165OZEIZEZZEZI - 2bZZEM - 511]’151 - 2b12ﬁ41

= 2ay,hy) - 2bgyhs) — 35, b3,
(24)
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For convenience, let

L*=L,uL, L,=L"nU,
2
Ly=L"nU, L= c1.<L* -UL’;‘),
i=1
Ly =L}, (25)

LynU, = L%) u Lf) (as shown in Figure 2 (b)),

3 .
L =CL (LO - ULQ).

j=1

Theorem 3. Assume that system (1) has a compound loop L,
as stated before. Then, the functions M;(h,d) given in (3) at
h = 0 have the following expansions:

M, (h,8) = ¢, (&) + ¢, (8) [n*'* + Byyc, (8) ||/
— ¢, (8) hln |h| + ¢, (8) h + Byycs (8) |h|7®

+ ¢ (O) [ + ¢, () 1"

1
= 7B (©) 1" — ¢ (8) K In[h| + O (1),

(26)
M, (1,8) =Ty () + ¢; (8) [h”"* +¢; (8) hn |hl
+3(O) h+cg (O) W + ¢, (8) |h* (27)

+¢ (&) W In|h| + O (K*)
for0 < -h <« 1, and

M; (h,8) = G (8) — Dy, (8) B”* + Blyc, (8) h°/°

+& (8) h + Blyes ) W'° = Dy (8) B7*

+Dyc, G + l—llBgocg ©) h'V +0 (1)

(28)
for0 < h < 1, where
¢ (8) = ¢ (5,,9), 6 (8) = ¢ (8,,9),
6 (8) =6 (S,,9), ¢ (8) =6 (5,,9),
(29)

G (0)=¢ (Sz>5) >
G (8) = (S5, 9),

¢ (0) =¢ (Sz» 6) >
¢ (0) =¢ (51»6) >

2
§©) =M 0.8~ qdx-pdy=) [ qdx-pdy

i=1 JLi
%@=%mm=igM—mm

G (8) = M5 (0,0) = ¢ (9) +¢, (),
(30)

¢ (0) = JL* (px +q, —a) dt
+ L* [Px +49y, M~ (x -~ xz)] dt
" L* (b4, ) dt + 1,6, (8) + £56 (6) + £, 6,

¢ (0) = @L [Px T4y =t~ (x - xz)] dt
+ 1o (8) + 1,6 (6),

s (px +qy - Wo)dt

2
OULO

G (6) = JL* (px+qy—a)dt+JL

1

" L (pe +4,) dt + 5, (8) + 45, ),

(31)

where o = (P + )|, ) Mo = (Px+ @)l (xy 0> M = (Prxc +

qyx)|(x2,y2). In particular,

2

SO

i=1 v Li

(px + qy) dt, E3 (6) = éL (px + qy) dr,

5@ =Y | (pra,)a

i=1 i

(32)
if (8) = ¢(8) = ¢(8) = 0. Here, t;, i = 0,1,...,6, are
constants and By, By, By, By, are given in Lemma 1.
Proof. First, by (6), (10) with i = 2, (12), (14), (29), and
Theorem 2.2 in [4], we directly obtain (27) with ¢,(8), ¢5(6)
given by (30) and (31), respectively. Then we study the
expansions of M, and M.

By (5), (7), (29), and Lemmas 1 and 2, we have
M, (h,8) = ¢, (&) |h]*’* + Byyc, (8) |hI”'® = ¢, (8) hln |h|

+ Byocs (8) [1""® + ¢ (8) |0
+ O) 1M = = Bocy ) 1"

— @) In|h| +O(K*) + N (h,9)
(33)
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for0 < —h <« 1, and Then by Lemma 3.1.2 in [5], we have
M, (h,8) = -Dyc, (8) B*'* + Bjyc, (8) h*/® + Bycs (8) W' ¢, (6) = N, (0,6)
5/4 7/4
~ Dy (0) 17" + Dy () = lim H} (px+qy)dt+ §cl ©) [h ™
1 h—0" Ly 4
+ 1Bt OB+ O (K) + N* (1,0) 5
(34) + =Boos (O) 1% +¢,(8) (n |hl + 1)] ,
for 0 < h < 1, where 5 (8) =Nj, (0,9)

N (h,8) = Ny, (h,8) + N, (h,6) + 1,5 (h,0),
= lim+ [(j) (px + q},)dt
N* (h,8) = N31 (h,8)+N32 (h,6)+N33 (h)8)+134 (h>6) h—0 Lys

(35) 3 - 5 4 -
+D16 (0)h 14 _ <Bioe () 1/6] .
Let (38)
N (1,8) = ¢, (8) + ¢, ®) h+ O (K*),
1.0 =40 +40) ( ) (36)  ltiseasy to see that
N*(h,8) =5 ) +5 ) h+0(K). ,
It follows further that § L, <p x4y ) dt = ; L(hi (p x qy) dt

6 (8) = N1 (0,6) + Ny, (0,0) + 115 (0,6) J
L

lim [Ny (0,8) + Ny, (0,8) + 15 (0,8)]

limOI13 0,6) = 4} qdx — pdy Ly

1UL,

2
= dx - pdy = M,(0,9),
;JLiq x—pay 1(0,9) +j(3)(Px+qy)dt+GJ<1 dt
¥ L

& (8) = N3, (0,8) + N3, (0,8) + N33 (0,8) + I3, (0,8)

(39)
+ dt + J- X — x,)dt,
= lim [N;; (0,8) + N3, (0,08) o JL%’ E Ly (%)
+Ni; (0,8) + I, (0,8)] qu (p,+a,)dt
h3
= limI34(0,8):§ qdx —pdy 4
€ —0 L, = ;JLg; (Px+qy)dt= Jng (px+q};_U) dt

3
=ZJ qdx - pdy = M; (0,9),

— JL. + J
i=1 i 2),703)
LjsULis

¢ (8) + O (h) = N, (1,6) = My, (h, 5)

(Px“b"lo)dt’f J (px+qy) dt

@
Lh3

3 5 o JL(“ dt + 1o JL“)UL(3>
+ ZCI (®) |h|—1/4 + gBO()C’Z () |h|—1/6 s h3 9l
Noting h; < 0, h, < 0, by (19), (23), and (29), we have
+¢(0) (nlhl + 1)+ O (Ju'), 8 SR
& (8) +O(h) = N;; (h,8) ¢ (8) = lim “Lm (pe+q,-o0)dt
hl
3 ~1/4
= M;, (h,8) + =D,¢, (0) h
* 4 +JL(2) [Px+dy =110 =1 (x = x,)] dt

hl

- e O K+ O ().

(37) + JL(a) (px + q)’) dt]

hl
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. oVZ /3. _1/6
+hhj%a“w -2 Boo|h' Ih) ]
. 1/4 0 _1/4
+hli“3’7°“L< dt+—A0|h| Ih)
+O(1)(ln|h|+1)]
+ 11m m [J (x —x,)dt
O T
12
——|h| 1n|h|+1)],
G0 =1 dt
G (9) hin3+[JL(l (Px+qy )
J‘ 2) L(3) ’/IO)dt
Ju) peta, dt]
+ lim o [j —B 1/3h1/6]
h—0*

+ lim 7, dt - 3ﬁzo'ﬁ4|il/4h_l/4 .
LOUL®

h—0*
(40)
Then by the proof of (3.13) in [3], the following equations
hold:
. \/_ 1/3 . _1/6
m. “L;; dt = == Byo[hs| IR | = T,
lim J dt + 5\/5300 | e | =17,
h—ot | JL) 3
hh_)rré_ J‘L‘,ff (p +q, - o) dt = hh_)n(% L (px +q, - 0) dt

= L’I (px +q, - a) dt.
(41)

Here, T,y and T} are constants. By a similar argument used in
Theorems 2.2 and 2.4 in [4], one can obtain

|h|’1/4 +0(1) (In|h| + 1)]

lim “ (x—xz)dt—\/—§|ﬁ4| (ln|h|+1)] Ty,
I 4

lim “() dt - _A0|h ' 1/4h‘1/4] =T, i=23,
Ll

9
Jim. L(ﬁ [px+ay =10 —m (x—x,)] dt
= JL* [Px 49, — Mo~ (x - xz)] dt,
hh—{%* JL(;; (px + qy — 710) dt = L}_O (px + qy - 710) dt,
i=2,3.
(42)

HereT|,T;,i = 1,2, 3, are constants. Therefore, we can obtain
(31) and (32). Thus we have proved Theorem 3. O

In the following we use Theorem 3 to study the problem
of limit cycle bifurcation near L,,. For the sake of convenience,
we say that (1) has a distribution (4, j)+k of i+ j+k limit cycles
if there are i and j limit cycles near the inside of L* and L,
respectively, and k limit cycles near the outside of L. Then
we can prove the following theorem.

Theorem 4. Assume that system (1) has a compound loop
L, as stated before and (26)-(28) hold. Define ¢;(8) =
GOlyee0 60 = GOl 5O = GO +
c;(0), ¢, () = &;(0)l¢—o- Let there exist 8, € R™, such that
(C()> E()) C]) Cz: C;) C:aE;)(SO) = (0: 0) 0) 0: 0) 0) 0)

(M) Ifg(8y) #0, ¢;(8) =0, j=5,....1-1, and
0 (6> Co» €15 €20 €35 €15 C35 G55+ +5G1)

K
A 3(6,.0,,85,05 050,67, 85,0,

=1+2, (43)

then (1) can have 21 + 1 limit cycles near L, for some
(e, 0) near (0,6,), wherel = 6,7 or 9.

(2) If c5(84)cs(8,) < 0, and

0(c0»Co> €155 635645 C3)
3(0,,0,,05,05 .0,

rank =7, (44)

then (1) can have 11 limit cycles near L, for some (g, )
near (0, ;).

(3) I 65(B)cs(80) > 0, ¢;(8) =0, j =5,6,7, and

0 (60> €162 5,645 €3, 65,60 G7)
9(8,,6,,65,84,05,0866,,85,...,0,,)

rank =10, (45)

then (1) can have 18 limit cycles near L, for some (€, d)
near (0, 3,).

Proof. (1) Because of the similarity in the proof, we only
prove the conclusion for I = 9 and omit the rest. By our
assumptions, there exists §, € R™ such that ¢,(§,) =
(8 = ¢(6) = ¢(&) = 0, (&) = 0,j =
0,1,2,5,6,7,8, ¢(d,) #0,and

- * * —k
a(co>co’cl">z’ca’54’63’55’“->C8)

=11. 46
9 (8105050405, 0607052+, 0,) (46)

rank
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By the implicit function theorem, we can take ¢,, ¢;, ¢;,
[ ¢ j=01256,78as free parameters varying near
zero. Obviously, for these parameters varying near zero we
have |¢| > [(1/2)cy(8,)| > 0. In the following we proceed the
process by 9 steps.

Step 1. Fix (> Cg» €15 65 G5 564 €35 G556 &) = (0,0,0,0,0,0,0,
0,0,0) and vary ¢; near 0.

First, for ¢g = 0, we have by (26) ;M > 0for 0 < —h < 1.

Let 0 < || < 1. Then cgM; < 0 for 0 < —h <« 1if
CsC > 0. Thus, M, has a zero. Hence, for 0 < || <« 1,

(1) the condition ¢g¢y > 0 implies a distribution (1,0) + 0
of one limit cycle.

Step 2. Fix (G, Cps€1» 653564 5C3565.6) = (0,0,0,0,0,0,0,
0,0), cg¢ > 0 and vary ¢; near 0.

First, for ¢, = 0, we have by (26), (27), and (28) ¢gM; <
0, gcM, <0for0<-h < l,andgM; <0for0 < h <« 1.

Let 0 < |¢| <« |cgl. Then ¢gM; > 0, ¢gM, > 0for 0 <
-h < l,and ¢gM; > 0for 0 < h <« lifce > 0,66 > 0.
Thus, M,, M,, and M, each gets a zero and the zero of M,
got in Step 1 still exists. Hence, for 0 < |¢;| < || <« 1,

(2) the conditions ¢,¢; > 0, ¢gcy > 0 imply a distribution
(2,1) + 1 of 4 limit cycles.

Step 3. Fix (¢, €0, €156,6G56,63,65) = (0,0,0,0,0,0,0,0),
¢; # 0 and vary ¢, near 0.

First, for ¢, = 0, we have by (26), (27), and (28) ¢, M, >
0, M, >0for0<-h < l,andc;M; >0for0 < h <« 1.

Let 0 < || < l¢|. Then M, < 0, ¢;M, < 0 for 0 <
-h < 1l,and ¢;cM; > 0for 0 < h < 1if ¢, < 0. Thus, M,
and M, each gets a new zero and the zeros got in above steps
still exist. Hence, for 0 < |¢| < |¢;| < |6l < 1,

(3) the conditions ¢,c;, < 0, ¢, > 0, g6 > 0 imply a
distribution (3,2) + 1 of 6 limit cycles.

Step 4. Fix (cy,Co> €1, 65563564 ,C5) = (0,0,0,0,0,0,0), ¢s#0
and vary ¢; near 0.

First, for ¢; = 0, we have by (26) and (28) ¢,M; > 0 for
0<-h<l,and¢M; <0for0<h < 1.

Let 0 < |65] < |l Then ¢gM; < 0 for 0 < —h < 1, and
cgM; > 0for0 < h < 1ifcses < 0. Thus, M, and M; each has
a new zero and the zeros got in above steps still exist. Hence,
for 0 < || < gl < o] < gl < 1,

(4) the conditions ¢;¢; < 0, ¢5¢; < 0, ¢65 > 0, g6 > 0
imply a distribution (4, 2) + 2 of 8 limit cycles.

Step 5. Fix (¢y,Co» €1, 6,65 ) = (0,0,0,0,0), cs¢ < 0 and vary
(¢3,¢;) near (0,0) with & (= C; +¢;) #0.

First, for (c3,¢;) = (0,0), we have by (26), (27), and (28)
M, > 0,¢gM, > 0for 0 < —-h <« 1, and ¢;M; < 0 for
0<h« 1l

Let 0 < [c3,¢,| < |cs|. Then

M, <0, M, <0 for0<-h<«1l,
(47)

M;>0 forO<h<1
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ifcyc; >0, 3¢5 >0, &¢s > 0,and
&M, <0, M, <0 for0<-h<l1,
(48)
M; <0 forO<h<1

if¢cs >0, 3¢5 > 0, G5 < 0. Thus, M;, M,, and M; each
has one more zero in the first case and M; and M, each has a
new zero in the second case. And the zeros got in above steps
still exist. Hence, for 0 < [c3,¢/| < gl < gl < o <«
legl < 1,

(5i) the conditions ¢;¢; < 0, 636 < 0, ¢;¢; > 0, 565 <
0, ¢¢; < 0, ;65 > 0, goy > 0 imply a distribution
(5,3) + 3 of 11 limit cycles, and

(5ii) the conditions c;¢; < 0, €36 > 0, ¢/¢c5 > 0, 566 <
0, ¢¢c; < 0, ;65 > 0, goy > 0 imply a distribution
(5,3) + 2 of 10 limit cycles.

Step 6. Fix (¢, ¢p» €15 6) = (0,0,0,0), ¢, ¢; < 0with & #0 and
vary ¢; near 0.

First, for ¢c; = 0, we have by (26) and (27) ¢, M, < 0 and
c;M, <0for0<-h<1.

Let 0 < |¢;| < |¢;,¢; . Then ¢; M, > 0 and ¢; M, > 0 for
0<-h < 1,if¢f¢; <0, ¢;¢; > 0.Thus, M, and M, each gets
a new zero and the zeros got in above steps still exist. Hence,
for0 < || < Ie), 6| < los| < gl < oyl < Il < 1,

(61) the conditions ¢;¢; < 0, ¢3¢, <0, ¢;6 <0, ¢/c5 >
0, ¢565 < 0, g6, < 0, ;65 > 0, g > 0 imply a
distribution (6,4) + 3 of 13 limit cycles,

(6ii) the conditions c;¢; < 0, ¢3¢, <0, 636 >0, ¢ ¢ >
0, 6565 < 0, g6, < 0, ;65 > 0, cgcg > 0 imply a
distribution (6, 4) + 2 of 12 limit cycles.

Step 7. Fix (¢, ¢p> ¢;) = (0,0,0), ¢; G, #0 and vary ¢, near 0.
First, for ¢, = 0, we have by (26) and (28) ¢; M, < 0 for
0<-h<landgM;>0for0<h< 1.
Let 0 < |o| < l¢5| < |, ¢; . Then

oM, >0 for0<-h<1,

(49)
5M;<0 forO<h<1
ife,e5 >0, §¢, >0,and
oM, >0 for0<-h<l,
(50)

5M;>0 forO<h<1

if ¢ > 0, G, < 0. Thus, M; and M; each gets one more
zero in the first case and only M, has a new zero in the second
case. And the zeros got in above steps still exist. Hence, for
0<lol <l < e, 65l < el < el < Mol < gl < 1,
(7i) the conditions ¢,¢c; > 0, ¢;¢; <0, T3¢ <0, 636 >
0, ¢;cs >0, 656 < 0, 6, < 0, 665 > 0, g6 > 0
imply a distribution (7, 4) + 3 of 14 limit cycles,
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(7ii) the conditions c,c; > 0, ¢;¢; <0, G3¢; <0, 636 <
0, ¢,cs >0, 656 < 0, 6, < 0, 665 > 0, gy > 0
imply a distribution (7, 4) + 3 of 14 limit cycles.

Step 8. Fix (¢, ¢y) = (0,0), c,¢c; > 0 and vary ¢; near 0.

First, for ¢, = 0, we have by (26), (27), and (28) c,M; >
0,c; M, >0for0 < -h < 1l,and M5 < 0for0 < h < 1.

Let 0 < |g| < |g|. Then ¢, M; < 0, ¢; M, < 0for 0 <
-h < l,and ;M; > O0for 0 < h « 1lif¢e < 0. Thus,
M,, M,, and M, each gets a new zero and the zeros got in
above steps still exist. Hence, for 0 < |¢| < o] < |cf] «
ey, o5l < sl < el < ol < gl < 1,

(8) the conditions ¢, < 0, ¢,¢5 > 0, ¢j¢; <0, C;¢p <
0, ;& > 0 (orcy6 < 0), ¢ies > 0, 66 < 0, 66 <
0, 665 > 0, g6 > 0 imply a distribution (8, 5) + 4 of 17 limit
cycles.

Step 9. Fix ¢; # 0 and vary (¢, ¢,) near (0, 0).

First, for (¢, ¢,) = (0,0), we have by (26), (27), and (28)
aM; > 0,¢M, > 0,for 0 < -h <« 1, and ¢ M; < 0 for
0O<h« 1l

Let 0 < |y, ¢ol < l¢;|. Then

oM, <0, M, <0, for0<-h<«l,
(51)
qM; <0 forO0<h<1
ifgye <0, ¢y <0,
oM, <0, M, >0, for0<-h<l,
(52)
agM;>0 forO<h<1
ifgye; <0, ¢ye; > 0and (¢ + ¢o)e; > 0, and
aM, >0, M, <0, for0<-h<l,
(53)

agM;>0 forO<h<1

if g > 0, ¢o¢; < 0 and (¢ + ¢y)¢; > 0. Thus, we have
correspondingly (a) M, and M, each has a new zero, (b) M,
and M, each has a new zero, or (¢) M, and M; each has a new
zero. And the zeros got in above steps still exist.

Hence, for 0 < ¢, ¢ol < | < lg| < ley| < I}, ¢35 <
les| < el < el < gl < 1,

(91) the conditions ¢,cy > 0, ¢ < 0, ¢, < 0, ¢ >
0, ;o < 0,¢¢ < 0,66 > 0 (orey <
0), ¢;c5 >0, 56 <0, 6, <0, g > 0, cgeg > 0
imply a distribution (9, 6) + 4 of 19 limit cycles,

(9ii) the conditions ¢,¢, < 0, ¢ < 0, (¢ + Go)e >
0, 6, < 0, 65 > 0, ;¢ <0, G3¢4 <0, 636 >
0 (or ;6 <0), ¢;cs >0, 56 <0, 56 <0, cr65 >
0, ¢y > 0 imply a distribution (9, 5) + 5 of 19 limit
cycles,

(9iii) the conditions ¢,¢, < 0, ¢ > 0, (¢ + o) >
0, cc, < 0, 6 > 0, ¢y <0, 63¢, <0, 656 >
0 (or ;6 <0), ¢;cs >0, 56 <0, 56 <0, cr5>
0, ¢g¢ > 0 imply a distribution (8, 6) + 5 of 19 limit
cycles.

Thus we get the conclusion for [ = 9.

1

(2) By our assumptions in case (2) and the implicit
function theorem we can take ¢, Cp, ¢, & ¢, ¢, C3 as
free parameters varying near zero. Obviously, for these
parameters varying near zero we have ¢;¢; < 0. By a similar
argument in the above proof, we can prove that for 0 <
lco» Col < oyl < ol < eS| < Iey, 51 < 1,

(i) the conditions ¢yc, > 0, ¢¢; < 0, ¢6 < 0, 65 >
0, 5o < 0,C¢f < 0,66 > 0 (orc,6 <
0), ¢, ¢s > 0 imply a distribution (5,4) + 2 of 11 limit
cycles,

(ii) the conditions ¢yc;, < 0, ¢ < 0, (¢ + ¢ >
0, 6, <0, 65 >0, ;¢ <0, 63¢, <0, 636 >
0 (orc;G, < 0), ¢;cs > 0 imply a distribution
(5,3) + 3 of 11 limit cycles,

(iii) the conditions ¢c, < 0, ¢ > 0, (¢ + o) >
0, 66 <0, 663 >0, ;¢ <0, Cy¢f <0, €36 >
0 (orc;6 < 0), ¢;e; > 0 imply a distribution
(4,4) + 3 of 11 limit cycles.

(3) By our assumptions in case (3) and the
implicit function theorem we can take ¢, ¢y ¢,
G G5 ¢G> C3, G55 G, and ¢, as free parameters varying
near zero. Obviously, for these parameters varying near zero
we have ¢gcy > 0. By a similar argument used in proving case
(1), we can prove that for 0 < |¢, ¢l < || < o] < || <
ey, 5] < sl < el < eyl < 1,

(i) the conditions ¢yc, > 0, ¢¢; < 0, ¢6 < 0, 665 >

0, ;o < 0,Gc < 0,66 > 0 (orcyg <
0), ¢;c5 > 0, ¢5¢5 < 0, 56, < 0, ;¢ > 0 imply a
distribution (8, 6) + 4 of 18 limit cycles,

(ii) the conditions ¢yc, < 0, ¢ < 0, (¢ + ¢ >
0, 6, <0, 65 >0, ;¢ <0, 63¢, <0, G35 >
0 (or ;6 <0), ¢;cs >0, 56 <0, 6 <0, cr5 >
0 imply a distribution (8, 5) + 5 of 18 limit cycles,

(iii) the conditions ¢c, < 0, ¢ > 0, (¢ + o) >
0, 66, <0, 663 >0, ;¢ <0, Ci¢f <0, €36 >
0 (or ;& <0), ¢;cs >0, 56 <0, 56 <0, cr65 >
0 imply a distribution (7, 6) + 5 of 18 limit cycles.

This completes the proof. O

3. An Application

Consider a Liénard system of the form

X=y, )./:—(x+1)2_x3(x2_}1x—%)—ef(x,é)y,

(54)

f(x,8)=Yax, 8= (apay...
j=0

System (54) |, is Hamiltonian with

H(xy)= 37+ gler ' o). (50
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We have the following theorem. c, () = -a (_ + _> —a <_ + _> -a, (_ + _>
0 ‘\16 " 15/ "'\32 15 32 105

) ( 5 16 )
3 al—+-——
256 105 256 315

7 128
Proof. 1t is easy to verify that the unperturbed system has a 512 315> (53 * 3465)
compound loop L, = L, UL, U L; U {S,,S,} with a cusp

Theorem 5. Let C(n) denote the maximal number of limit (
S:(=1,0) of order one and a nilpotent saddle S, (0, 0) of order —a, < 21” 128 ) ag (21_7T + ﬁ)

cycles of the system (54) for € small and all 8. Then we have
C(11) 2 18,C(n) 22n—-5 (n=8,9,10,12).

Q

one, L, L, are heteroclinic orbits satisfying w(L;) = a(L,) = 2048 3465 2048 9009
S,andw(L,) = a(L;) = S, and L, is a homoclinicloop to S,. 33m 256 337 1024
Inside L = L, + L, (L5, resp.), there is a center C, ((1/8)(1 — %\ 3096 9009> - ( )

—_— + —_—
4096 45045
V/33),0) (C,((1/8)(1 + V/33),0), resp.).

Because of the similarity in the proof, here we only prove <ﬁ %) . (59)
the case for n = 11 and omit the rest of the proof. 65536 45045
Let n = 11. By Theorem 3, we obtain
Note that S, is a nilpotent saddle of order one and h, = —1/8.
By (23), we have
11
_ _ N g _
@O =M, 0.0) == o) ydx 2 G (0) = (5,,0) = 2|, ap
57
G 6 )= 6(5,0)=a+0, (a).
E(&)zM(O,S)z—SB (6,0) ydx = -Y a1, _
’ ? S0y ]Z(, 6 (8) = ¢, (,,8) = 2/ |&,| (-21ay + 12, - 8ay),
¢ () = ¢ (Sa 6)
where 'A. |
2
- 21/470 (%a — 310a, + 180a, — 80a, + 32a4>,
Ii’:# xjydx:ZJ xjydx @(6)266(82,6)
L -1
333 207
=J0 xj+2(x+1) mdx, ].20’1’.“’11’ =Tao—Ta1+29a2—15a3+6a4—2a5.
-1 (58) (60)
. . .
L= 451, x'ydx =2 L x'ydx Making the transformation x = u — 1, y = v, system (54)
’ becomes
1
- Jj+2 V1 — 42 -
= 2" (x+1) VI - x%dx, =0,1,...,1L
Jo ( ) J u="v, i/:—uz(u—l)3<u2—§u+ )—ef(u&)v
(61)
Therefore,
Then we have
T2 T 2 T 8 v 1, g 7 6 5 4 3
d) = (———)— (———)— <———> HWw,v)=—+-(u —6u +14u —16u” +9%u —2u’),
@O ="mg 1) "9\ 1) %5 10 9= +5( )

~ 1
(S22 oL,

256 105 256 315 4
a(———) (ﬁ_ﬁ) _ _11 j_H ;
s\512 315 512 3465 Fd) =Y au-1Y =3 (-1a,
( 20 128 ) ( 20 256 > = =
~ %7\ 2048 ~ 3465 2048 9009 + i( 1)UV jau+ i(—l)(j_z)(?z.a-uz
3w 256 337 1024 = s a
“9<M_%> (M_M> ; .
(o om) 3G+ 3 o
65536 45045 = =
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11 ' 11 ‘
+ Z(—l)(ﬁs)cj?ajus + Z(—l)(J’G)C?ajz,t6
=5 =6
11 ' 11 ‘
+ Z(—l)(1_7)C§aju7 + Z(—l)(]_s)C?aju8
=7 =8

11
(j-9) 9 9 10 1
+Z(—1)] Ciau +(ay — ay)u +apu .

=9
(62)
By (19), we have
el '
6 (©®) =6 (8,0) =2""°Y (-1)a;,
=0
s '
(8 =6 (8,8) =2 | Y (1Y (j-3)a; - 3ay |,
=1
¢ (8) = ¢ (S, 6) (63)
= pl3/6 (——13316% +272a, - ?az + 232(13
16 4
- 28a, + ?115 + gaﬁ - gas
16 224
—?ag + 28&10 - TCIll) .
Note that
6 8) = (8,0)=2" 'ZO' A
11 _
6 (8) = ¢ (8,,8) =2"°Y (-1)/a,, (64)
=0

i (0) = (S,,0) =a, + O, (ay).

We have ¢,(8) = (8) = 3(8) = Oifand only if gy = a; =0,
and a;; = Y2, (~1)'a;. It implies further that

G =¢ (po+a)dt=-¢ fixo)d

B SICL PR (G PR
Ly -1y

(65)

0
1
-1 x2(x+1) V1 - x?
0 10
X (Zaix' + Z(—l)'apc“)dx
i=2 i=2

10 0
= —4Zai J f; (x)dx,
i=2 -1

13
where
e X2 [1 + (—l)ix(“_i)] (66)
- (x) = i=2,3,...,10.
(x+1)V1—x2
Similarly,

G©= (pra)d=- fxod

3

iﬁﬁmzﬁffm&m

- 67
Ly )Y 0 Y (67)
10 1
= —4Zai J fi (x)dx.
i= 70
Therefore,
315 93 187 93
c4(8):—4a2< ﬂ+—>+4a3< 7r+_>
256 35 256 35
187 58 1237 58
—4a4( +—)+4a5<—+—>
256 35 256 35
1237 104 757 104
g (2 10 (100
256 105 256 105
( 75m 16 > < 357 16 )
—dag| — + — | +4ag| — + —
256 35 256 35
35w
a0 (3¢ )
315 93 187 93 (68)
£y (0) = —dan (250~ 2) sy (227 2)
256 35 256 35
1871 58 1237 58
(Y g (12
256 35 256 35
1237 104 757 104
(108 (T 100
256 105 256 105
( 75m 16) 357 16
—dag| — - — +4a9(———>
256 35 256 35
351
~tau (325 )
Let ) = aOlcec0ti® = &O)co

& (8) = &(d)l,, (5)0- Furthermore, one sees that equations
Q(®) = %®) = 6(d) = 66) = <O = ¢ &) = &(©)
¢5(8) = ¢(8) = ¢;(8) = 0 have the solutiona, = g, = a, =
0,a; = (13/74)ay — (1/2)a;,a, = (65/148)ay — (5/4)a;, a5
—(16/37)aq, ag = (7/4)a, — (255/148)ay, ag = (96/37)ay, a,
—-(53/37)ayg,a,, = —(32/37)ay, which gives ¢(5)
(55/37)2°"ay, c(8) = (32/37)a,. And further, ¢;(8)cy(8) >
0 if ay # 0. Thus, fix a, # 0 and take §, = (0,0,0,(13/74)a, —
(1/2)ar, (65/148)a, -  (5/4)a,—(16/37)ay, (7/4)a;  —
(255/148)ay, a,, (96/37)ag, g, —(53/37)ag, —(32/37)a).
Then we have

- % % —%
a(CO’CO’Cl’OZ’C3’C4’C3’CS’C6’C7) 10

rank =
o (“0» ay> y, as, Ay, As, Ag, A7, dg, Ay, Ay ‘111)

(69)
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Hence by Theorem 4(3), we know that there are 18 limit cycles
near L for some § near d,. This ends the proof. O
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