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Consider dividend problems in the diffusion model with interest and exponentially distributed observation time where dividends
are paid according to a barrier strategy. Assume that dividends can only be paid with a certain probability at each point of time;
that is, on each observation, if the surplus exceeds the barrier level, the excess is paid as dividend. In this paper, integrodifferential
equations for the moment-generating function, the nth moment function, and the Laplace transform of ruin time are derived;
explicit expressions for the expected discounted dividends paid until ruin and the Laplace transform of ruin time are also obtained.

1. Introduction

The issue of maximization of the dividends paid until ruin
was first proposed by De Finetti [1]. Since then the riskmodel
in the presence of dividend payments has become amore and
more popular topic in risk theory. Two recent survey papers
are Avanzi [2] and Albrecher andThonhauser’s [3].

Under the dividend barrier strategy, any excess of the
surplus over a given positive barrier level is immediately paid
out as dividend to the shareholders of the company as long as
ruin has not yet occurred. This strategy has been extensively
studied by many scholars in different risk models, because
it turns out that the barrier strategy is optimal among all
strategies in certain situations.

The concept of randomized observation time was firstly
introduced byAlbrecher et al. [4, 5] in the classical compound
Poisson risk model for the fact that insurance companies
distributed dividends at discrete time points. This idea was
also considered in a Brownian risk model by Albrecher et al.
[6], where the waiting times between successive observation
are independent random variables with a common exponen-
tial distribution. In this paper, we suppose that the surplus
process of an insurance company is modelled by a Wiener
process with expected increment 𝜇 > 0 per unit time and
variance 𝜎2 per unit time and the surplus does earn interest
at a constant force 𝜌 > 0. Under the barrier dividend strategy,

we present some results on the expected discounted sum of
dividends paid until ruin and the Laplace transform of ruin
time.

This paper is organized as follows. In Section 2, the
model we discuss in this paper is introduced. In Section 3,
piecewise integrodifferential equations for the moment-
generating function, the 𝑛th moment function, and the
Laplace transform of ruin time are derived. In Section 4,
explicit expressions for the expected discounted dividends
paid until ruin and the Laplace transform of ruin time are
obtained.

2. The Model

Let (Ω,F, {Ft}, 𝑃) be a filtered probability space on which all
random processes and variables introduced in the following
are defined. In this paper, before a dividend strategy is
imposed, we assume that the surplus process of an insurance
company {𝑈(𝑡); 𝑡 ≥ 0} is described as

d𝑈 (𝑡) = (𝜇 + 𝜌𝑈 (𝑡)) d𝑡 + 𝜎 d𝑊(𝑡) , 𝑈 (0) = 𝑢, (1)

where 𝑢 ≥ 0 is the initial surplus, {𝑊(𝑡); 𝑡 ≥ 0} is a standard
Brownian motion which represents diffusion, 𝜎 > 0 is the
diffusion coefficient, and 𝜌 > 0 is the interest force.
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Let 𝐷(𝑡) denote the accumulated paid dividends up to
time 𝑡, which is an adapted càglàd (previsible, 𝐷(𝑡−) =

𝐷(𝑡)) and nondecreasing process. So the controlled process
is defined as

d𝑋(𝑡) = (𝜇 + 𝜌𝑋 (𝑡)) d𝑡 + 𝜎 d𝑊(𝑡) − d𝐷 (𝑡) , 𝑋 (0) = 𝑢.

(2)

We assume that dividends are paid to the shareholders
according to a barrier strategy with parameter 𝑏 > 0. If at
a potential dividend payment time the surplus is above 𝑏, the
excess is paid as a dividend.

Assume that the surplus process can only be observed
at random times {𝑇

𝑘
; 𝑘 = 1, 2, 3, . . .} and the waiting times

between successive observation {𝑆
𝑘

= 𝑇
𝑘
− 𝑇
𝑘−1

; 𝑘 =

1, 2, 3, . . .} (𝑇
0

= 0) form a sequence of independent
and identically distributed positive random variables with a
common density 𝑓

𝑇
(𝑡) = 𝛾𝑒

−𝛾𝑡
(𝑡 > 0). In other words,

the probability that a dividend can be paid within d𝑡 time
units is 𝛾 d𝑡 at any time. Under the barrier strategy 𝑏, the
dividend paid at observation time 𝑇

𝑘
is (𝑋(𝑇

𝑘
−) − 𝑏)

+
, where

(𝑋(𝑇
𝑘
−) − 𝑏)

+
= max{𝑋(𝑇

𝑘
−) − 𝑏, 0}.

Let

𝜏
𝑢,𝑏

= inf {𝑡, 𝑋 (𝑡) = 0} (3)

be the ruin time and

𝑁 = sup {𝑘 ≥ 0, 𝑇
𝑘
≤ 𝜏
𝑢,𝑏
} (4)

be the number of observation times before ruin. Assuming
that dividends are discounted at a constant force of interest 𝛿
(𝛿 > 𝜌), the total discounted dividends paid until ruin can be
denoted as

𝐷
𝑢,𝑏

=

𝑁

∑

𝑘=1

exp (−𝛿𝑇
𝑘
) (𝑋 (𝑇

𝑘
−) − 𝑏)

+
, 𝑢 ≥ 0. (5)

The moment-generating function is defined by

𝑀(𝑢, 𝑦; 𝑏) = 𝐸 [exp (𝑦𝐷
𝑢,𝑏
)] (6)

for suitable values of 𝑦.
The 𝑛th moment function is defined by

𝑉
𝑛
(𝑢; 𝑏) = 𝐸 [𝐷

𝑛

𝑢,𝑏
] , 𝑛 ∈ 𝑁 (7)

with 𝑉
0
(𝑢; 𝑏) = 1.

The ruin probability is defined by

𝜓 (𝑢; 𝑏) = 𝑃 (𝜏
𝑢,𝑏

< ∞) . (8)

The Laplace transform of ruin time is defined by

𝐿 (𝑢; 𝑏) = 𝐸 [𝑒
−𝛿𝜏
𝑢,𝑏] . (9)

Throughout this paper we assume that 𝑀(𝑢, 𝑦; 𝑏),
𝑉
𝑛
(𝑢; 𝑏), and 𝐿(𝑢; 𝑏) are continuous over 𝑢 = 0, continuously

differentiable over 𝑢 = 𝑏, and twice continuously differen-
tiable in 𝑢 ∈ (0, 𝑏) ∪ (𝑏,∞). In addition, we assume that
𝑀(𝑢, 𝑦; 𝑏) is continuously differentiable in 𝑦.

3. Integrodifferential Equations for
𝑀(𝑢,𝑦;𝑏), 𝑉

𝑛
(𝑢;𝑏), and 𝐿(𝑢;𝑏)

In this section, a basic property of the expected discounted
dividend payments function is given, and piecewise integrod-
ifferential equations for themoment-generating function, the
𝑛thmoment function, and the Laplace transform of ruin time
are derived.

Clearly, 𝑀(𝑢, 𝑦; 𝑏), 𝑉
𝑛
(𝑢; 𝑏), and 𝐿(𝑢; 𝑏) behave differ-

ently, depending on whether their initial surplus 𝑢 is below
or above the barrier 𝑏. Hence, we define

𝑀(𝑢, 𝑦; 𝑏) = {
𝑀
1
(𝑢, 𝑦; 𝑏) , 𝑢 ≤ 𝑏,

𝑀
2
(𝑢, 𝑦; 𝑏) , 𝑢 > 𝑏,

𝑉
𝑛
(𝑢; 𝑏) = {

𝑉
𝑛1
(𝑢; 𝑏) , 𝑢 ≤ 𝑏,

𝑉
𝑛2
(𝑢; 𝑏) , 𝑢 > 𝑏,

𝐿 (𝑢; 𝑏) = {
𝐿
1
(𝑢; 𝑏) , 𝑢 ≤ 𝑏,

𝐿
2
(𝑢; 𝑏) , 𝑢 > 𝑏.

(10)

Proposition 1. For any 𝑢 > 0,

𝑉
1
(𝑢; 𝑏) ≤

𝜇 + 𝛿𝑢

𝛿 − 𝜌
. (11)

That is to say, 𝑉
1
(𝑢; 𝑏) is a linear bounded function.

Proof. Let 𝐷(𝑡) = 0 for 𝑡 ≥ 𝜏
𝑢,𝑏
. It is well known that the

solution of stochastic differential equation (1) is

𝑈 (𝑡) = −
𝜇

𝜌
+ 𝑒
𝜌𝑡
(𝑢 +

𝜇

𝜌
+ ∫

𝑡

0

𝜎𝑒
−𝜌𝑠d𝑊(𝑠)) . (12)

Because𝐷(𝑡) ≤ 𝑋(𝑡) ≤ 𝑈(𝑡), we have

𝑉
1
(𝑢; 𝑏) = 𝐸 [∫

∞

0

𝑒
−𝛿𝑡d𝐷 (𝑡)]

= 𝐸 [𝛿∫

∞

0

∫

∞

𝑡

𝑒
−𝛿𝑠d𝑠 d𝐷 (𝑡)]

= 𝐸 [𝛿∫

∞

0

𝑒
−𝛿𝑠
𝐷 (𝑠) d𝑠]

≤ 𝐸 [𝛿∫

∞

0

𝑒
−𝛿𝑠
𝑈 (𝑠) d𝑠]

= 𝛿∫

∞

0

𝑒
−𝛿𝑠
𝐸𝑈 (𝑠) d𝑠

=
𝜇 + 𝛿𝑢

𝛿 − 𝜌
.

(13)

The proof is completed.
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Theorem 2. The function𝑀(𝑢, 𝑦; 𝑏) satisfies the integrodiffer-
ential equations

𝜎
2

2

𝜕
2
𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑢2
+ (𝜇 + 𝜌𝑢)

𝜕𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑢

− 𝛿𝑦
𝜕𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑦
= 0, 0 < 𝑢 < 𝑏,

(14)

𝜎
2

2

𝜕
2
𝑀
2
(𝑢, 𝑦; 𝑏)

𝜕𝑢2
+ (𝜇 + 𝜌𝑢)

𝜕𝑀
2
(𝑢, 𝑦; 𝑏)

𝜕𝑢

− 𝛿𝑦
𝜕𝑀
2
(𝑢, 𝑦; 𝑏)

𝜕𝑦
− 𝛾𝑀

2
(𝑢, 𝑦; 𝑏)

+ 𝛾 exp (𝑦 (𝑢 − 𝑏))𝑀
2
(𝑏, 𝑦; 𝑏) = 0, 𝑢 > 𝑏

(15)

with boundary conditions

𝑀
1
(0, 𝑦; 𝑏) = 1; (16)

lim
𝑏→∞

𝑀
1
(𝑢, 𝑦; 𝑏) = 1; (17)

𝑀
1
(𝑏−, 𝑦; 𝑏) = 𝑀

2
(𝑏+, 𝑦; 𝑏) ; (18)

𝜕𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏−

=
𝜕𝑀
2
(𝑢, 𝑦; 𝑏)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏+

; (19)

𝜕
2
𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑢2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏−

=
𝜕
2
𝑀
2
(𝑢, 𝑦; 𝑏)

𝜕𝑢2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏+

. (20)

Proof. When 0 ≤ 𝑢 < 𝑏, consider a small time interval (0, 𝑡],
where 𝑡 > 0 is sufficiently small so that the surplus process
will not reach 𝑏. In view of the strongMarkov property of the
surplus process {𝑋(𝑡); 𝑡 ≥ 0}, we have

𝑀
1
(𝑢, 𝑦; 𝑏) = 𝐸 [𝑀

1
(𝑋 (𝑡) , 𝑦𝑒

−𝛿𝑡
; 𝑏)] . (21)

By Ito formula, we get

𝐸 [𝑀
1
(𝑋 (𝑡) , 𝑦𝑒

−𝛿𝑡
; 𝑏)] = 𝑀

1
(𝑢, 𝑦; 𝑏)

− 𝛿𝑦
𝜕𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑦
𝑡

+ (𝜇 + 𝜌𝑢)
𝜕𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑢
𝑡

+
𝜎
2

2

𝜕
2
𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑢2
𝑡.

(22)

Plugging (22) into (21), dividing both sides of (21) by 𝑡, and
letting 𝑡 → 0, we get (14).

When 𝑢 > 𝑏, we separate the two possible cases as follows:

(1) no observation time occurs until 𝑡;

(2) an observation time occurs until 𝑡.

We have

𝑀
2
(𝑢, 𝑦; 𝑏) = (1 − 𝛾𝑡) 𝐸 [𝑀

2
(𝑋 (𝑡) , 𝑦𝑒

−𝛿𝑡
; 𝑏)]

+ 𝛾𝑡𝑀
2
(𝑏, 𝑦; 𝑏) 𝑒

𝑦(𝑢−𝑏)
.

(23)

Equation (15) can be easily obtained by a similar argument.
Notice that ruin occurs immediately and no dividend

is paid if 𝑢 = 0; hence (16) holds. If 𝑏 → ∞, there
is no dividend to be paid, so (17) holds. Conditions (18)
and (19) follow from the fact that 𝑀(𝑢, 𝑦; 𝑏) is continuously
differentiable. Letting 𝑢 → 𝑏− in (14) and 𝑢 → 𝑏+ in (15),
together (18) with (19), (20) holds.

Using the representation

𝑀
𝑖
(𝑢, 𝑦; 𝑏) = 1 +

∞

∑

𝑛=1

𝑦
𝑛

𝑛!
𝑉
𝑛𝑖
(𝑢; 𝑏) (𝑖 = 1, 2) (24)

and equating the coefficients of 𝑦𝑛 in (14), (15), and boundary
conditions (16)–(20), we have the following integrodifferen-
tial equations and boundary conditions for 𝑉

𝑛
(𝑢; 𝑏).

Theorem 3. The function𝑉
𝑛
(𝑢; 𝑏) satisfies the integrodifferen-

tial equations

𝜎
2

2
𝑉
󸀠󸀠

𝑛1
(𝑢; 𝑏) + (𝜇 + 𝜌𝑢)𝑉

󸀠

𝑛1
(𝑢; 𝑏) − 𝑛𝛿𝑉

𝑛1
(𝑢; 𝑏) = 0,

0 < 𝑢 < 𝑏,

(25)

𝜎
2

2
𝑉
󸀠󸀠

𝑛2
(𝑢; 𝑏) + (𝜇 + 𝜌𝑢)𝑉

󸀠

𝑛2
(𝑢; 𝑏) − (𝑛𝛿 + 𝛾)𝑉

𝑛2
(𝑢; 𝑏)

+ 𝛾

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑉
𝑘
(𝑏; 𝑏) (𝑢 − 𝑏)

𝑛−𝑘
, 𝑢 > 𝑏

(26)

with boundary conditions

𝑉
𝑛1
(0; 𝑏) = 0; (27)

lim
𝑏→∞

𝑉
𝑛1
(𝑢; 𝑏) = 0; (28)

𝑉
𝑛1
(𝑏−; 𝑏) = 𝑉

𝑛2
(𝑏+; 𝑏) ; (29)

𝑉
󸀠

𝑛1
(𝑏−; 𝑏) = 𝑉

󸀠

𝑛2
(𝑏+; 𝑏) ; (30)

𝑉
󸀠󸀠

𝑛1
(𝑏−; 𝑏) = 𝑉

󸀠󸀠

𝑛2
(𝑏+; 𝑏) . (31)

Theorem 4. The function 𝐿(𝑢; 𝑏) satisfies the integrodifferen-
tial equations

𝜎
2

2
𝐿
󸀠󸀠

1
(𝑢; 𝑏) + (𝜇 + 𝜌𝑢) 𝐿

󸀠

1
(𝑢; 𝑏) − 𝛿𝐿

1
(𝑢; 𝑏) = 0,

0 < 𝑢 < 𝑏,

𝜎
2

2
𝐿
󸀠󸀠

2
(𝑢; 𝑏) + (𝜇 + 𝜌𝑢) 𝐿

󸀠

2
(𝑢; 𝑏) − (𝛿 + 𝛾) 𝐿

2
(𝑢; 𝑏)

+ 𝛾𝐿 (𝑏; 𝑏) = 0, 𝑢 > 𝑏

(32)
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with boundary conditions

𝐿
1
(0; 𝑏) = 1; (33)

𝐿
1
(𝑏−; 𝑏) = 𝐿

2
(𝑏+; 𝑏) ; (34)

𝐿
󸀠

1
(𝑏−; 𝑏) = 𝐿

󸀠

2
(𝑏+; 𝑏) ; (35)

𝐿
󸀠󸀠

1
(𝑏−; 𝑏) = 𝐿

󸀠󸀠

2
(𝑏+; 𝑏) . (36)

Proof. The results are easily obtained by a similar argument
to Theorem 2.

Theorem 5. Consider 𝜓(𝑢; 𝑏) = 1 for any 𝑢 ∈ 𝑅.

Proof. For 𝑢 ≥ 𝑏, we denote 𝐻(𝑢) = 𝑃[inf
0≤𝑡≤𝑇

1

𝑋(𝑡) ≤ 0]; it
is easy to see that 𝐻(𝑢) > 0. By the strong Markov property
of the surplus process {𝑋(𝑡); 𝑡 ≥ 0}, we have

𝜓 (𝑢; 𝑏) = 𝐻 (𝑢) + (1 − 𝐻 (𝑢)) 𝐸 [𝜓 (𝑋 (𝑇
1
) ; 𝑏)] . (37)

Since 0 < 𝑋(𝑇
1
) ≤ 𝑏 ≤ 𝑢, we have 𝜓(𝑋(𝑇

1
); 𝑏) ≥ 𝜓(𝑢; 𝑏);

hence

1 ≥ 𝜓 (𝑢; 𝑏) ≥ 𝐻 (𝑢) + (1 − 𝐻 (𝑢)) 𝜓 (𝑢; 𝑏) . (38)

So we get 𝜓(𝑢; 𝑏) = 1.
For 𝑢 < 𝑏, 𝜓(𝑢; 𝑏) ≥ 𝜓(𝑏; 𝑏) = 1 and hence 𝜓(𝑢; 𝑏) = 1.

The proof is completed.

4. Explicit Expressions for 𝑉
1
(𝑢;𝑏) and 𝐿(𝑢;𝑏)

4.1. Explicit Expression for 𝑉
1
(𝑢;𝑏). It is well known that the

solution of (25) when 𝑛 = 1 is of the form

𝑉
11
(𝑢; 𝑏) = 𝐶

1
𝑓
1
(𝑢) + 𝐶

2
𝑓
2
(𝑢) (39)

for some constants 𝐶
1
, 𝐶
2
, where

𝑓
1
(𝑢) =

𝜇 + 𝜌𝑢

√𝜌𝜎
𝑒
−(𝜇+𝜌𝑢)

2

/𝜌𝜎
2

𝑀(1 +
𝛿

2𝜌
,
3

2
;
(𝜇 + 𝜌𝑢)

2

𝜌𝜎2
) ,

𝑓
2
(𝑢) = 𝑒

−(𝜇+𝜌𝑢)
2

/𝜌𝜎
2

𝑈(
1

2
+

𝛿

2𝜌
,
1

2
,
(𝜇 + 𝜌𝑢)

2

𝜌𝜎2
) .

(40)

Similarly, the solution of (26) when 𝑛 = 1 is of the form

𝑉
12
(𝑢; 𝑏) = 𝐶

3
𝑓
3
(𝑢) + 𝐶

4
𝑓
4
(𝑢) + 𝐴𝑢 + 𝐵 (41)

for some constants 𝐶
3
, 𝐶
4
, 𝐴, and 𝐵, where

𝑓
3
(𝑢) =

𝜇 + 𝜌𝑢

√𝜌𝜎
𝑒
−(𝜇+𝜌𝑢)

2

/𝜌𝜎
2

𝑀(1 +
𝛿 + 𝛾

2𝜌
,
3

2
;
(𝜇 + 𝜌𝑢)

2

𝜌𝜎2
) ,

𝑓
4
(𝑢) = 𝑒

−(𝜇+𝜌𝑢)
2

/𝜌𝜎
2

𝑈(
1

2
+
𝛿 + 𝛾

2𝜌
,
1

2
,
(𝜇 + 𝜌𝑢)

2

𝜌𝜎2
) .

(42)

The functions 𝑀(𝑎, 𝑐; 𝑥) and 𝑈(𝑎, 𝑐; 𝑥) are called the
confluent hypergeometric functions of the first and second

kinds, respectively. We have the following properties of the
two functions that

𝑑

𝑑𝑥
𝑀 (𝑎, 𝑐; 𝑥) =

𝑎

𝑐
𝑀 (𝑎 + 1, 𝑐 + 1; 𝑥) ;

𝑑

𝑑𝑥
𝑈 (𝑎, 𝑐; 𝑥) = −𝑎𝑈 (𝑎 + 1, 𝑐 + 1; 𝑥) ;

𝑀 (𝑎, 𝑐; 0) = 1;

lim
𝑥→∞

𝑀(𝑎, 𝑐; 𝑥) = ∞;

lim
𝑥→∞

𝑈 (𝑎, 𝑐; 𝑥) = 0.

(43)

Since 𝑉
1
(𝑢; 𝑏) is a linear bounded function, it immediately

follows that 𝐶
3
= 0.

To determine the remaining constants, we plug (41) into
(26) and get

𝐴 =
𝛾

𝛾 + 𝛿 − 𝜌
,

𝐵 =
𝛾 (𝑉
1
(𝑏; 𝑏) − 𝑏)

𝛿 + 𝛾
+

𝛾𝜇

(𝛿 + 𝛾) (𝛿 + 𝛾 − 𝜌)
.

(44)

Plugging (44) into (41) and letting 𝑢 → 𝑏+, we get

𝑉
1
(𝑏; 𝑏) =

𝛿 + 𝛾

𝛿
𝐶
4
𝑓
4
(𝑏) +

𝛾 (𝜇 + 𝜌𝑏)

𝛿 (𝛿 + 𝛾 − 𝜌)
. (45)

Condition (27) implies that

𝐶
1
𝑓
1
(0) + 𝐶

2
𝑓
2
(0) = 0; (46)

hence 𝐶
2
= −(𝑓

1
(0)/𝑓
2
(0))𝐶
1
. Denoting 𝑓(𝑢) = 𝑓

1
(𝑢) −

(𝑓
1
(0)/𝑓
2
(0))𝑓
2
(𝑢), we have

𝑉
11
(𝑢; 𝑏) = 𝐶

1
𝑓 (𝑢) . (47)

Conditions (29) and (30) give

𝐶
1
𝑓 (𝑏) =

𝛿 + 𝛾

𝛿
𝐶
4
𝑓
4
(𝑏) +

𝛾 (𝜇 + 𝜌𝑏)

𝛿 (𝛿 + 𝛾 − 𝜌)
, (48)

𝐶
1
𝑓
󸀠
(𝑏) = 𝐶

4
𝑓
󸀠

4
(𝑏) +

𝛾

𝛿 + 𝛾 − 𝜌
. (49)

Therefore, we now have a system of the two linear equations
(48) and (49) for the two remaining constants 𝐶

1
, 𝐶
4
. A

simple calculation gives

𝐶
1
=

𝛾

𝛿 + 𝛾 − 𝜌

(𝛿 + 𝛾) 𝑓
4
(𝑏) − (𝜇 + 𝜌𝑏) 𝑓

󸀠

4
(𝑏)

(𝛿 + 𝛾) 𝑓
4
(𝑏) 𝑓󸀠 (𝑏) − 𝛿𝑓

󸀠

4
(𝑏) 𝑓 (𝑏)

=
𝛾

𝛿 + 𝛾 − 𝜌

𝑓
󸀠󸀠

4
(𝑏)

𝑓󸀠󸀠
4
(𝑏) 𝑓󸀠 (𝑏) − 𝑓

󸀠

4
(𝑏) 𝑓󸀠󸀠 (𝑏)

,

(50)

𝐶
4
=

𝛾

𝛿 + 𝛾 − 𝜌

𝛿𝑓 (𝑏) − (𝜇 + 𝜌𝑏) 𝑓
󸀠
(𝑏)

(𝛿 + 𝛾) 𝑓
4
(𝑏) 𝑓󸀠 (𝑏) − 𝛿𝑓

󸀠

4
(𝑏) 𝑓 (𝑏)

=
𝛾

𝛿 + 𝛾 − 𝜌

𝑓
󸀠󸀠
(𝑏)

𝑓󸀠󸀠
4
(𝑏) 𝑓󸀠 (𝑏) − 𝑓

󸀠

4
(𝑏) 𝑓󸀠󸀠 (𝑏)

.

(51)
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Plugging (44), (50), and (51) into (41) and (47), we obtain
the explicit expression for 𝑉

1
(𝑢; 𝑏) that

𝑉
11
(𝑢; 𝑏) =

𝛾

𝛿 + 𝛾 − 𝜌

𝑓
󸀠󸀠

4
(𝑏)

𝑓󸀠󸀠
4
(𝑏) 𝑓󸀠 (𝑏) − 𝑓

󸀠

4
(𝑏) 𝑓󸀠󸀠 (𝑏)

𝑓 (𝑢) ,

(52)

𝑉
12
(𝑢; 𝑏)

=
𝛾

𝛿 + 𝛾 − 𝜌

𝑓
󸀠󸀠
(𝑏)

𝑓󸀠󸀠
4
(𝑏) 𝑓󸀠 (𝑏) − 𝑓

󸀠

4
(𝑏) 𝑓󸀠󸀠 (𝑏)

𝑓
4
(𝑢) + 𝐴𝑢 + 𝐵.

(53)

The optimal dividend barrier 𝑏∗ is defined as the value
of 𝑏 which maximizes 𝑉

11
(𝑢; 𝑏) in (52). In the following, we

discuss the issue of the optimal dividend barrier. Since in (52)
only the coefficient of 𝑓(𝑢) depends on the barrier level 𝑏, we
can identify the optimal barrier 𝑏∗ whichmaximizes𝑉

11
(𝑢; 𝑏)

for a given initial capital 𝑢 by maximizing 𝐶
1
with respect to

𝑏. From now on, we regard 𝐶
1
and 𝐶

4
as the functions of 𝑏,

and rewrite 𝐶
1
and 𝐶

4
as 𝐶
1
(𝑏) and 𝐶

4
(𝑏), respectively.

Proposition 6. If (𝛿+𝛾−𝜌)𝑓󸀠󸀠(0)𝑓󸀠
4
(0) > (𝛿−𝜌)𝑓

󸀠
(0)𝑓
󸀠󸀠

4
(0),

(1) there exist some 𝑏∗ > 0 at where 𝐶
1
(𝑏) attains its

maximum and 𝐶󸀠
1
(𝑏
∗
) = 0;

(2) 𝑉󸀠
1
(𝑏
∗
; 𝑏
∗
) = 1;

(3) (𝜕𝑉
12
(𝑢; 𝑏)/𝑏)|

𝑏=𝑏
∗ = 0.

Proof. (1) From (50), we have

𝐶
󸀠

1
(𝑏) = −

(𝛿 + 𝛾 − 𝜌)𝐶
2

1
(𝑏) 𝑓
󸀠

4
(𝑏)

𝛾(𝑓󸀠󸀠
4
(𝑏))
2

× [𝑓
󸀠󸀠
(𝑏) 𝑓
󸀠󸀠󸀠

4
(𝑏) − 𝑓

󸀠󸀠󸀠
(𝑏) 𝑓
󸀠󸀠

4
(𝑏)] .

(54)

Because

𝜎
2

2
𝑓
󸀠󸀠

4
(𝑏) = (𝛿 + 𝛾) 𝑓

4
(𝑏) − (𝜇 + 𝜌𝑏) 𝑓

󸀠

4
(𝑏) ,

𝜎
2

2
𝑓
󸀠󸀠
(𝑏) = 𝛿𝑓 (𝑏) − (𝜇 + 𝜌𝑏) 𝑓

󸀠
(𝑏) ,

(55)

we have

𝜎
2

2
𝑓
󸀠󸀠󸀠

4
(𝑏) = (𝛿 + 𝛾 − 𝜌) 𝑓

󸀠

4
(𝑏) − (𝜇 + 𝜌𝑏) 𝑓

󸀠󸀠

4
(𝑏) ,

𝜎
2

2
𝑓
󸀠󸀠󸀠
(𝑏) = (𝛿 − 𝜌) 𝑓

󸀠
(𝑏) − (𝜇 + 𝜌𝑏) 𝑓

󸀠󸀠
(𝑏) .

(56)

Plugging (56) into (54) yields

𝐶
󸀠

1
(𝑏) = −

2 (𝛿 + 𝛾 − 𝜌)𝐶
2

1
(𝑏) 𝑓
󸀠

4
(𝑏)

𝛾𝜎2(𝑓󸀠󸀠
4
(𝑏))
2

× [(𝛿 + 𝛾 − 𝜌) 𝑓
󸀠󸀠
(𝑏) 𝑓
󸀠

4
(𝑏) − (𝛿 − 𝜌) 𝑓

󸀠
(𝑏) 𝑓
󸀠󸀠

4
(𝑏)] .

(57)

𝑓
󸀠

4
(𝑏) < 0 and (𝛿+𝛾−𝜌)𝑓󸀠󸀠(0)𝑓󸀠

4
(0) > (𝛿−𝜌)𝑓

󸀠
(0)𝑓
󸀠󸀠

4
(0) imply

𝐶
󸀠

1
(0) > 0 and condition (28) implies lim

𝑏→∞
𝐶
1
(𝑏) = 0. So

there exist some 𝑏∗ > 0 at where 𝐶
1
(𝑏) attains its maximum

and 𝐶󸀠
1
(𝑏
∗
) = 0.

(2) Since 𝐶󸀠
1
(𝑏
∗
) = 0, we have (𝛿 + 𝛾 − 𝜌)𝑓󸀠󸀠(𝑏∗)𝑓󸀠

4
(𝑏
∗
) −

(𝛿 − 𝜌)𝑓
󸀠
(𝑏
∗
)𝑓
󸀠󸀠

4
(𝑏
∗
) = 0; hence

𝑉
󸀠

1
(𝑏
∗
; 𝑏
∗
) = 𝐶
1
(𝑏
∗
) 𝑓
󸀠
(𝑏
∗
)

=
𝛾

𝛿 + 𝛾 − 𝜌

𝑓
󸀠󸀠

4
(𝑏
∗
) 𝑓
󸀠
(𝑏
∗
)

𝑓󸀠󸀠
4
(𝑏∗) 𝑓󸀠 (𝑏∗) − 𝑓

󸀠

4
(𝑏∗) 𝑓󸀠󸀠 (𝑏∗)

= 1.

(58)

(3) Because 𝐶
󸀠

4
(𝑏
∗
) = (−2(𝛿 + 𝛾 − 𝜌)𝐶

2

4
(𝑏
∗
)𝑓
󸀠
(𝑏
∗
)/

𝛾𝜎
2
(𝑓
󸀠󸀠
(𝑏
∗
))
2

)[(𝛿 + 𝛾 − 𝜌)𝑓
󸀠󸀠
(𝑏
∗
)𝑓
󸀠

4
(𝑏
∗
) − (𝛿 −

𝜌)𝑓
󸀠
(𝑏
∗
)𝑓
󸀠󸀠

4
(𝑏
∗
)] = 0, we have

𝜕𝑉
12
(𝑢; 𝑏)

𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑏=𝑏∗

= 𝐶
󸀠

4
(𝑏
∗
) 𝑓
4
(𝑢)

+
𝛾

𝛿 + 𝛾
[𝐶
󸀠

1
(𝑏
∗
) 𝑓 (𝑏
∗
) + 𝐶
1
(𝑏
∗
) 𝑓
󸀠
(𝑏
∗
) − 1] = 0.

(59)

4.2. Explicit Expression for 𝐿(𝑢;𝑏). By a similar argument to
Section 4.1, the solutions of (32) can be expressed as

𝐿
1
(𝑢; 𝑏) = 𝐷

1
𝑓
1
(𝑢) + 𝐷

2
𝑓
2
(𝑢) , (60)

𝐿
2
(𝑢; 𝑏) = 𝐷𝑓

4
(𝑢) +

𝛾

𝛿 + 𝛾
𝐿 (𝑏; 𝑏) (61)

for some constants𝐷
1
, 𝐷
2
, and𝐷. Letting 𝑢 → 𝑏 in (61), the

continuity of 𝐿(𝑢; 𝑏) over 𝑢 = 𝑏 implies that

𝐿 (𝑏; 𝑏) =
𝛿 + 𝛾

𝛿
𝐷𝑓
4
(𝑏) . (62)

From conditions (33)–(35), we get

𝐷
1
𝑓
1
(0) + 𝐷

2
𝑓
2
(0) = 1,

𝐷
1
𝑓
1
(𝑏) + 𝐷

2
𝑓
2
(𝑏) =

𝛿 + 𝛾

𝛿
𝐷𝑓
4
(𝑏) ,

𝐷
1
𝑓
󸀠

1
(𝑏) + 𝐷

2
𝑓
󸀠

2
(𝑏) = 𝐷𝑓

󸀠

4
(𝑏) .

(63)
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After some elementary algebra, we obtain

𝐷 =
𝛿 [𝑓
1
(𝑏) 𝑓
󸀠

2
(𝑏) − 𝑓

󸀠

1
(𝑏) 𝑓
2
(𝑏)]

[(𝛿 + 𝛾) 𝑓
4
(𝑏) 𝑓
󸀠

2
(𝑏) − 𝛿𝑓

󸀠

4
(𝑏) 𝑓
2
(𝑏)] 𝑓
1
(0) + [𝛿𝑓

1
(𝑏) 𝑓
󸀠

4
(𝑏) − (𝛿 + 𝛾) 𝑓

󸀠

1
(𝑏) 𝑓
4
(𝑏)] 𝑓
2
(0)

,

𝐷
1
=

(𝛿 + 𝛾) 𝑓
4
(𝑏) 𝑓
󸀠

2
(𝑏) − 𝛿𝑓

󸀠

4
(𝑏) 𝑓
2
(𝑏)

[(𝛿 + 𝛾) 𝑓
4
(𝑏) 𝑓
󸀠

2
(𝑏) − 𝛿𝑓

󸀠

4
(𝑏) 𝑓
2
(𝑏)] 𝑓
1
(0) + [𝛿𝑓

1
(𝑏) 𝑓
󸀠

4
(𝑏) − (𝛿 + 𝛾) 𝑓

󸀠

1
(𝑏) 𝑓
4
(𝑏)] 𝑓
2
(0)

,

𝐷
2
=

𝛿𝑓
1
(𝑏) 𝑓
󸀠

4
(𝑏) − (𝛿 + 𝛾) 𝑓

󸀠

1
(𝑏) 𝑓
4
(𝑏)

[(𝛿 + 𝛾) 𝑓
4
(𝑏) 𝑓
󸀠

2
(𝑏) − 𝛿𝑓

󸀠

4
(𝑏) 𝑓
2
(𝑏)] 𝑓
1
(0) + [𝛿𝑓

1
(𝑏) 𝑓
󸀠

4
(𝑏) − (𝛿 + 𝛾) 𝑓

󸀠

1
(𝑏) 𝑓
4
(𝑏)] 𝑓
2
(0)

.

(64)

Plugging (64) into (60)–(62), we derive the explicit expres-
sion for 𝐿(𝑢; 𝑏).
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