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Let S be the familiar class of normalized univalent functions in the unit disk. Fekete and Szegö proved the well-known result
max𝑓∈S





𝑎3 − 𝜆𝑎

2
2




= 1 + 2𝑒

−2𝜆/(1−𝜆) for 𝜆 ∈ [0, 1]. We investigate the corresponding problem for the class of starlike mappings
defined on the unit ball in a complex Banach space or on the unit polydisk in C𝑛, which satisfies a certain condition.

1. Introduction

LetA be the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎𝑛𝑧
𝑛
, (1)

which are analytic in the open unit disk
U = {𝑧 ∈ C : |𝑧| < 1} . (2)

We denote byS the subclass of the normalized analytic func-
tion classA consisting of all functions which are also univa-
lent in U. Let S∗ denote the class of starlike functions in U.

It is well known that the Fekete and Szegö inequality is an
inequality for the coefficients of univalent analytic functions
found by Fekete and Szegö [1], related to the Bieberbach
conjecture. Finding similar estimates for other classes of
functions is called the Fekete and Szegö problem.

The Fekete and Szegö inequality states that if 𝑓(𝑧) = 𝑧 +

𝑎2𝑧
2
+ 𝑎3𝑧
3
+ ⋅ ⋅ ⋅ ∈ S, then

max
𝑓∈S







𝑎3 − 𝜆𝑎

2
2







= 1 + 2𝑒

−2𝜆/(1−𝜆)
(3)

for 𝜆 ∈ [0, 1]. After that, there were many papers to consider
the corresponding problems for various subclasses of the class
S, and many interesting results were obtained. We choose to
recall here the investigations by, for example, Kanas [2] (see
also [3–5]).

The coefficient estimate problem for the class S, known
as the Bieberbach conjecture [6], is settled by de Branges [7],
who proved that for a function 𝑓(𝑧) = 𝑧 + ∑

∞
𝑘=2 𝑎𝑘𝑧

𝑘 in the
class S, then |𝑎𝑘| ≤ 𝑘, for 𝑘 = 2, 3, . . ..

However, Cartan [8] stated that the Bieberbach conjec-
ture does not hold in several complex variables.Therefore, it is
necessary to require some additional properties of mappings
of a family in order to obtain some positive results, for
instance, the convexity and the starlikeness.

In [9], Gong has posed the following conjecture.

Conjecture A. If 𝑓 : 𝑈

𝑛
→ C𝑛 is a normalized biholomor-

phic starlike mapping, where𝑈𝑛 is the open unit polydisk inC𝑛,
then





𝐷

𝑚
𝑓 (0) (𝑧

𝑚
)






𝑚!

≤ 𝑚‖𝑧‖

𝑚
, 𝑧 ∈ 𝑈

𝑛
, 𝑚 = 2, 3, . . . . (4)

In contrast, although the coefficient problem for the
class S had been completely solved, only a few results are
known for the inequalities of homogeneous expansions for
subclasses of biholomorphic mappings in several complex
variables (see, for detail, [9]).

Recently, some best-possible results concerning the coef-
ficient estimates for subclasses of holomorphic mappings in
several variables were obtained in work of Graham et al. [10],
Graham et al. [11], Hamada et al. [12], Hamada and Honda
[13], Kohr [14], X. Liu and T. Liu [15], and Xu and Liu [16].
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In [17], Koepf obtained the following result for S∗.

Theorem A. Let 𝑓(𝑧) = 𝑧 + 𝑎2𝑧
2
+ 𝑎3𝑧
3
+ ⋅ ⋅ ⋅ ∈ S∗. Then







𝑎3 − 𝜆𝑎

2
2







≤ max {1, |3 − 4𝜆|} , 𝜆 ∈ C. (5)

The above estimation is sharp.

It is natural to ask whether we can extend Theorem A to
higher dimensions.

In this paper, we will establish inequalities between the
second and third coefficients of homogeneous expansions for
starlike mappings defined on the unit ball in Banach complex
spaces and the unit polydisc inC𝑛, respectively, which are the
natural extension of Theorem A to higher dimensions.

Let 𝑋 be a complex Banach space with norm ‖ ⋅ ‖; let 𝑋∗
be the dual space of𝑋; let𝐵 be the unit ball in𝑋. Also, let 𝜕𝑈𝑛
denote the boundary of𝑈𝑛, and let 𝜕0𝑈

𝑛 be the distinguished
boundary of 𝑈𝑛.

For each 𝑥 ∈ 𝑋 \ {0}, we define

𝑇 (𝑥) = {𝑇𝑥 ∈ 𝑋

∗
:





𝑇𝑥





= 1, 𝑇𝑥 (𝑥) = ‖𝑥‖} . (6)

According to the Hahn-Banach theorem, 𝑇(𝑥) is nonempty.
Let 𝐻(𝐵) denote the set of all holomorphic mappings

from 𝐵 into𝑋. It is well known that if 𝑓 ∈ 𝐻(𝐵), then

𝑓 (𝑦) =

∞

∑

𝑛=0

1

𝑛!

𝐷

𝑛
𝑓 (𝑥) ((𝑦 − 𝑥)

𝑛
) , (7)

for all 𝑦 in some neighborhood of 𝑥 ∈ 𝐵, where𝐷𝑛𝑓(𝑥) is the
𝑛th-Fréchet derivative of 𝑓 at 𝑥, and, for 𝑛 ≥ 1,

𝐷

𝑛
𝑓 (𝑥) ((𝑦 − 𝑥)

𝑛
) = 𝐷

𝑛
𝑓 (𝑥)(𝑦 − 𝑥, . . . , 𝑦 − 𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

) . (8)

Furthermore,𝐷𝑛𝑓(𝑥) is a bounded symmetric 𝑛-linear map-
ping from∏

𝑛
𝑗=1𝑋 into𝑋.

A holomorphic mapping 𝑓 : 𝐵 → 𝑋 is said to be bihol-
omorphic if the inverse 𝑓−1 exists and is holomorphic on the
open set𝑓(𝐵). Amapping𝑓 ∈ 𝐻(𝐵) is said to be locally bihol-
omorphic if the Fréchet derivative 𝐷𝑓(𝑥) has a bounded
inverse for each 𝑥 ∈ 𝐵. If 𝑓 : 𝐵 → 𝑋 is a holomorphic
mapping, then 𝑓 is said to be normalized if 𝑓(0) = 0 and
𝐷𝑓(0) = 𝐼, where 𝐼 represents the identity operator from 𝑋

into 𝑋. Let S(𝐵) be the set of all normalized biholomorphic
mappings on 𝐵. We say that𝑓 is starlike if𝑓 is biholomorphic
on 𝐵 and 𝑓(𝐵) is starlike with respect to the origin. LetS∗(𝐵)
be the set of normalized starlike mappings on 𝐵.

Suppose that Ω ∈ C𝑛 is a bounded circular domain. The
first Fréchet derivative and the 𝑚(𝑚 ⩾ 2)-th Fréchet deriva-
tive of a mapping 𝑓 ∈ 𝐻(Ω) at point 𝑧 ∈ Ω are written by
𝐷𝑓(𝑧), 𝐷𝑚𝑓(𝑧)(𝑎𝑚−1, ⋅), respectively. The matrix representa-
tions are

𝐷𝑓 (𝑧) = (

𝜕𝑓𝑝(𝑧)

𝜕𝑧𝑘

)

1⩽𝑝,𝑘⩽𝑛

,

𝐷

𝑚
𝑓 (𝑧) (𝑎

𝑚−1
, ⋅)

= (

𝑛

∑

𝑙
1
,𝑙
2
,...,𝑙
𝑚−1
=1

𝜕

𝑚
𝑓𝑝 (𝑧)

𝜕𝑧𝑘𝜕𝑧𝑙
1

⋅ ⋅ ⋅ 𝜕𝑧𝑙
𝑚−1

𝑎𝑙
1

⋅ ⋅ ⋅ 𝑎𝑙
𝑚−1

)

1⩽𝑝,𝑘⩽𝑛

,

(9)

where 𝑓(𝑧) = (𝑓1(𝑧), 𝑓2(𝑧), . . . , 𝑓𝑛(𝑧))
, 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛)


∈

C𝑛.

2. Some Lemmas

In order to prove the desired results, we first give some lem-
mas.

Lemma 1 (see [18]). Let 𝑓 : 𝐵 → 𝑋 be a normalized locally
biholomorphic mapping. Then 𝑓 is a starlike mapping on 𝐵 if
and only if

Re (𝑇𝑥 (𝐷𝑓(𝑥)

−1
𝑓 (𝑥))) > 0, 𝑥 ∈ 𝐵 \ {0} , 𝑇𝑥 ∈ 𝑇 (𝑥) .

(10)

Lemma 2. Let 𝑓 : 𝑈

𝑛
→ C𝑛 be a normalized locally biholo-

morphic mapping. Then 𝑓 ∈ S∗(𝑈𝑛) if and only if

Re
𝑔𝑗 (𝑧)

𝑧𝑗

> 0, 𝑧 ∈ 𝑈

𝑛
\ {0} , (11)

where 𝑔(𝑧) = (𝑔1(𝑧), 𝑔2(𝑧), . . . , 𝑔𝑛(𝑧))

= (𝐷𝑓(𝑧))

−1
𝑓(𝑧) and

|𝑧𝑗| = ‖𝑧‖ = max1≤𝑘≤𝑛{|𝑧k|}.

Lemma 3 (see [19]). Let 𝑝(𝑧) = 1 + ∑

∞
𝑘=1 𝑏𝑘𝑧

𝑘
∈ A, and

Re𝑝(𝑧) > 0, 𝑧 ∈ 𝑈; then








𝑏2 −
1

2

𝑏

2
1









≤ 2 −

1

2





𝑏1





2
. (12)

Lemma 4. Suppose that 𝑓 ∈ S. Then 𝐹 defined by 𝐹(𝑥) =

(𝑓(𝑇𝑢(𝑥))/𝑇𝑢(𝑥))𝑥, where ‖𝑢‖ = 1, belongs to S∗(𝐵) if and
only if 𝑓 ∈ S∗.

Proof. Denote 𝑔(𝑥) = 𝑓(𝑇𝑢(𝑥))/𝑇𝑢(𝑥); since 𝐹(𝑥) = 𝑔(𝑥)𝑥,
we have

𝐷𝐹 (𝑥) 𝜂 = (𝐷𝑔 (𝑥) 𝜂) 𝑥 + 𝑔 (𝑥) 𝜂, 𝜂 ∈ 𝑋. (13)

Straightforward calculation yields

𝐷𝑔 (𝑥) 𝑥

𝑔 (𝑥)

=

𝑓


(𝑇𝑢 (𝑥)) 𝑇𝑢 (𝑥)

𝑓 (𝑇𝑢 (𝑥))
− 1. (14)

It is not difficult to check that

(𝐷𝐹 (𝑥))

−1
𝜂 =

1

𝑔 (𝑥)

[𝜂 −

(𝐷𝑔 (𝑥) 𝜂) 𝑥

𝑔 (𝑥) + 𝐷𝑔 (𝑥) 𝑥

] , 𝜂 ∈ 𝑋.

(15)

Hence

(𝐷𝐹 (𝑥))

−1
𝐹 (𝑥) =

𝑓 (𝑇𝑢 (𝑥))

𝑓

(𝑇𝑢 (𝑥)) 𝑇𝑢 (𝑥)

𝑥. (16)
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By using (16), we deduce that

R𝑒 (𝑇𝑥 ((𝐷𝐹 (𝑥))

−1
𝐹 (𝑥))) = R𝑒 (

𝑓 (𝑇𝑢 (𝑥))

𝑓

(𝑇𝑢 (𝑥)) 𝑇𝑢 (𝑥)

‖𝑥‖)

> 0 ⇐⇒ R𝑒 (

𝜉𝑓


(𝜉)

𝑓

(𝜉)

) > 0.

(17)

Therefore, by Lemma 1, we obtain that 𝐹 ∈ S∗(𝐵) if and only
if 𝑓 ∈ S∗. This completes the proof of Lemma 4.

3. Main Results

In this section, we state and prove the main results of our
present investigation.

Theorem 1. Suppose 𝑓 ∈ S∗(𝐵) and

1

2

𝑇𝑥(𝐷

2
𝑓 (0)(𝑥,

𝐷

2
𝑓 (0) (𝑥

2
)

2!

)) ‖𝑥‖

= (

𝑇𝑥 (𝐷
2
𝑓 (0) (𝑥

2
))

2!

)

2

, 𝑥 ∈ 𝐵, 𝑇𝑥 ∈ 𝑇 (𝑥) .

(18)

Then













𝑇𝑥 (𝐷
3
𝑓 (0) (𝑥

3
))

3!‖𝑥‖

3
− 𝜆(

𝑇𝑥 (𝐷
2
𝑓 (0) (𝑥

2
))

2!‖𝑥‖

2
)

2












≤ max {1, |3 − 4𝜆|} , 𝑥 ∈ 𝐵, 𝜆 ∈ C.

(19)

The above estimate is sharp.

Proof. Fix 𝑥 ∈ 𝐵\ {0} and denote 𝑥0 = 𝑥/‖𝑥‖. Let 𝑝 : 𝑈 → C

be given by

𝑝 (𝜉) =

{
{

{
{

{

𝑇𝑥
0

(𝑔 (𝜉𝑥0))

𝜉

, 𝜉 ̸= 0,

1, 𝜉 = 0,

(20)

where 𝑔(𝑥) = (𝐷𝑓(𝑥))

−1
𝑓(𝑥). Then 𝑝 ∈ A, 𝑝(0) = 1, and

𝑝 (𝜉) = 1 +

𝑇𝑥
0

(𝐷

2
𝑔 (0) (𝑥

2
0))

2!

𝜉 + ⋅ ⋅ ⋅

+

𝑇𝑥
0

(𝐷

𝑚
𝑔 (0) (𝑥

𝑚
0 ))

𝑚!

𝜉

𝑚−1
+ ⋅ ⋅ ⋅ .

(21)

Since 𝑓 ∈ S∗(𝐵), from Lemma 1, we have

R𝑒 (𝑝 (𝜉)) > 0, 𝜉 ∈ 𝑈. (22)

In view of Lemma 3, we obtain that













𝑇𝑥
0

(𝐷

3
𝑔 (0) (𝑥

3
0))

3!

−

1

2

(

𝑇𝑥
0

(𝐷

2
𝑔 (0) (𝑥

2
0))

2!

)

2












≤ 2 −

1

2













𝑇𝑥
0

(𝐷

2
𝑔 (0) (𝑥

2
0))

2!













2

.

(23)

That is,













𝑇𝑥 (𝐷
3
𝑔 (0) (𝑥

3
)) ‖𝑥‖

3!

−

1

2

(

𝑇𝑥 (𝐷
2
𝑔 (0) (𝑥

2
))

2!

)

2












≤ 2‖𝑥‖

4
−

1

2













𝑇𝑥 (𝐷
2
𝑔 (0) (𝑥

2
))

2!













2

.

(24)

On the other hand, since 𝑔(𝑥) = (𝐷𝑓(𝑥))

−1
𝑓(𝑥), we have

𝑥 +

𝐷

2
𝑓 (0) (𝑥

2
)

2!

+

𝐷

3
𝑓 (0) (𝑥

3
)

3!

+ ⋅ ⋅ ⋅

= (𝐼 + 𝐷

2
𝑓 (0) (𝑥, ⋅) +

𝐷

3
𝑓 (0) (𝑥

2
, ⋅)

2!

+ ⋅ ⋅ ⋅ )

× (𝐷𝑔 (0) +

𝐷

2
𝑔 (0) (𝑥

2
)

2!

+

𝐷

3
𝑔 (0) (𝑥

3
)

3!

+ ⋅ ⋅ ⋅ ) .

(25)

Comparing with the homogeneous expansion of two sides of
the above equality, we obtain

𝐷𝑔 (0) 𝑥 = 𝑥,

𝐷

2
𝑔 (0) (𝑥

2
)

2!

= −

𝐷

2
𝑓 (0) (𝑥

2
)

2!

,
(26)

𝐷

3
𝑓 (0) (𝑥

3
)

3!

=

𝐷

3
𝑔 (0) (𝑥

3
)

3!

+

𝐷

3
𝑓 (0) (𝑥

3
)

2!

− 𝐷

2
𝑓 (0)(𝑥,

𝐷

2
𝑓 (0) (𝑥

2
)

2!

) .

(27)

Equation (27) may be rewritten as follows:

− 2

𝐷

3
𝑓 (0) (𝑥

3
)

3!

=

𝐷

3
𝑔 (0) (𝑥

3
)

3!

− 𝐷

2
𝑓 (0)(𝑥,

𝐷

2
𝑓 (0) (𝑥

2
)

2!

) .

(28)

Thus, from (18) of Theorem 1, (24), (26), and (28), we deduce
that












𝑇𝑥 (𝐷
3
𝑓 (0) (𝑥

3
)) ‖𝑥‖

3!

− 𝜆(

𝑇𝑥(𝐷
2
𝑓(0)(𝑥

2
))

2!

)

2










=













−

1

2

𝑇𝑥 (𝐷
3
𝑔 (0) (𝑥

3
)) ‖𝑥‖

3!

+

1

2

𝑇𝑥(𝐷

2
𝑓 (0)(𝑥,

𝐷

2
𝑓 (0) (𝑥

2
)

2!

)) ‖𝑥‖

− 𝜆(

𝑇𝑥(𝐷
2
𝑓(0)(𝑥

2
))

2!

)

2
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=

1

2













−

𝑇𝑥 (𝐷
3
𝑔 (0) (𝑥

3
)) ‖𝑥‖

3!

+ (2 − 2𝜆) (

𝑇𝑥(𝐷
2
𝑓(0)(𝑥

2
))

2!

)

2










=

1

2














−

𝑇𝑥 (𝐷
3
𝑔 (0) (𝑥

3
)) ‖𝑥‖

3!

+

1

2

(

𝑇𝑥(𝐷
2
𝑓(0)(𝑥

2
))

2!

)

2

+(

3

2

− 2𝜆)(

𝑇𝑥 (𝐷
2
𝑓 (0) (𝑥

2
))

2!

)

2












≤

1

2

(2‖𝑥‖

4
−

1

2











𝑇𝑥(𝐷
2
𝑔(0)(𝑥

2
))

2!











2

+









3

2

− 2𝜆



















𝑇𝑥(𝐷
2
𝑔(0)(𝑥

2
))

2!











2

) .

(29)
If now |𝜆 − (3/4)| ≤ 1/4, then














𝑇𝑥 (𝐷
3
𝑓 (0) (𝑥

3
)) ‖𝑥‖

3!

− 𝜆(

𝑇𝑥 (𝐷
2
𝑓 (0) (𝑥

2
))

2!

)

2












=

1

2

(2‖𝑥‖

4
−

1

2













𝑇𝑥 (𝐷
2
𝑔 (0) (𝑥

2
))

2!













2

+

1

2













𝑇𝑥 (𝐷
2
𝑔 (0) (𝑥

2
))

2!













2

) ≤ ‖𝑥‖

4
.

(30)
On the other hand, if |𝜆 − (3/4)| ≥ 1/4, then we use
|𝑇𝑥(𝐷

2
𝑔(0)(𝑥

2
))/2!| ≤ 2‖𝑥‖

2 and get













𝑇𝑥 (𝐷
3
𝑓 (0) (𝑥

3
)) ‖𝑥‖

3!

− 𝜆(

𝑇𝑥 (𝐷
2
𝑓 (0) (𝑥

2
))

2!

)

2












= ‖𝑥‖

4
+

1

2

(









3

2

− 2𝜆









−

1

2

)













𝑇𝑥 (𝐷
2
𝑔 (0) (𝑥

2
))

2!













2

≤ ‖𝑥‖

4
+ (|3 − 4𝜆| − 1) ‖𝑥‖

4

= |3 − 4𝜆| ‖𝑥‖

4
.

(31)
The following example shows that the estimation of Theo-
rem 1 is sharp.

Example. If |𝜆 − (3/4)| ≥ 1/4, we consider the following
example:

𝑓 (𝑥) =

𝑥

(1 − 𝑇𝑢 (𝑥))
2
, 𝑥 ∈ 𝐵, ‖𝑢‖ = 1. (32)

By Lemma 4, we obtain that 𝑓 ∈ S∗(𝐵).

It is not difficult to check that the mapping 𝑓(𝑥) satisfies
the condition of Theorem 1. Setting 𝑥 = 𝑟𝑢 (0 < 𝑟 < 1) in
(32), we obtain that













𝑇𝑥 (𝐷
3
𝑓 (0) (𝑥

3
))

3!‖𝑥‖

3
− 𝜆(

𝑇𝑥 (𝐷
2
𝑓 (0) (𝑥

2
))

2!‖𝑥‖

2
)

2












= |3 − 4𝜆| .

(33)

If |𝜆 − (3/4)| ≤ 1/4, we consider the following example:

𝑓 (𝑥) =

𝑥

1 − (𝑇𝑢 (𝑥))
2
, 𝑥 ∈ 𝐵, ‖𝑢‖ = 1. (34)

In view of Lemma 4, we deduce that 𝑓 ∈ S∗(𝐵).
It is not difficult to verify that the mapping 𝑓(𝑥) satisfies

the condition of Theorem 1. Taking 𝑥 = 𝑟𝑢 (0 < 𝑟 < 1) in
(34), we have














𝑇𝑥 (𝐷
3
𝑓 (0) (𝑥

3
))

3!‖𝑥‖

3
− 𝜆(

𝑇𝑥 (𝐷
2
𝑓 (0) (𝑥

2
))

2!‖𝑥‖

2
)

2












= 1.

(35)

This completes the proof of Theorem 1.

Remark 2. When 𝑋 = C, 𝐵 = 𝑈, Theorem 1 is equivalent to
Theorem A.

Theorem 3. Suppose 𝑓 ∈ S∗(𝑈𝑛) and

1

2

𝐷

2
𝑓𝑘 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)

𝑧𝑘

‖𝑧‖

= (

𝐷

2
𝑓𝑘 (0) (𝑧

2
0)

2!

)

2

,

𝑧 ∈ 𝑈

𝑛
,

(36)

for 𝑧 ∈ 𝑈

𝑛
\ {0}, where 𝑘 = 1, 2, . . . , 𝑛, 𝑧0 = 𝑧/‖𝑧‖. Then













𝐷

3
𝑓 (0) (𝑧

3
)

3!

− 𝜆

1

2

𝐷

2
𝑓 (0)(𝑧,

𝐷

2
𝑓 (0) (𝑧

2
)

2!

)













≤ ‖𝑧‖

3max {1, |3 − 4𝜆|} , 𝑧 ∈ 𝑈

𝑛
, 𝜆 ∈ C.

(37)

The above estimate is sharp.

Proof. For any 𝑧 ∈ 𝑈

𝑛
\ {0}, denote 𝑧0 = 𝑧/‖𝑧‖. Let 𝑞𝑗 : 𝑈 →

C be given by

𝑞𝑗 (𝜉) =

{
{

{
{

{

𝑔𝑗 (𝜉𝑧0) ‖𝑧‖

𝜉𝑧𝑗

, 𝜉 ̸= 0,

1, 𝜉 = 0,

(38)

where 𝑔(𝑧) = (𝐷𝑓(𝑧))

−1
𝑓(𝑧) and 𝑗 satisfies |𝑧𝑗| = ‖𝑧‖ =

max1≤𝑘≤𝑛{|𝑧𝑘|}. Then 𝑞𝑗 ∈ A, 𝑞𝑗(0) = 1, and

𝑞𝑗 (𝜉) = 1 +

𝐷

2
𝑔𝑗 (0) (𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

𝜉

+

𝐷

3
𝑔𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

𝜉

2
+ ⋅ ⋅ ⋅ .

(39)
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Since 𝑓 ∈ S∗(𝑈𝑛), from Lemma 2, we deduce that
R𝑒(𝑞𝑗(𝜉)) > 0, 𝜉 ∈ 𝑈. Therefore, according to Lemma 3, we
have













𝐷

3
𝑔𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

−

1

2

(

𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2











≤ 2 −

1

2












𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗












2

.

(40)

Hence, in view of (26), (28), and (32) ofTheorem 3, we obtain
that













𝐷

3
𝑓𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)

‖𝑧‖

𝑧𝑗













=













𝐷

3
𝑓𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

− 𝜆(

𝐷

2
𝑓𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2











=













−

1

2

𝐷

3
𝑔𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

+

1

2

𝐷

2
𝑓𝑗 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)

×

‖𝑧‖

𝑧𝑗

− 𝜆(

𝐷

2
𝑓𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2











=













−

1

2

𝐷

3
𝑔𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

+ (1 − 𝜆)(

𝐷

2
𝑓𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2











=

1

2













−

𝐷

3
𝑔𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

+ (2 − 2𝜆)(

𝐷

2
𝑓𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2











=

1

2













−

𝐷

3
𝑔𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

+ (2 − 2𝜆)(

𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2











=

1

2













−

𝐷

3
𝑔𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

+

1

2

(

𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2

+(

3

2

− 2𝜆)(

𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗

)

2











≤

1

2

(2 −

1

2












𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗












2

+









3

2

− 2𝜆




















𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗












2

) .

(41)

If now |𝜆 − (3/4)| ≤ 1/4, then












𝐷

3
𝑓𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)

‖𝑧‖

𝑧𝑗













≤

1

2

(2 −

1

2












𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗












2

+

1

2












𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗












2

)

= 1.

(42)

On the other hand, if |𝜆 − (3/4)| ≥ 1/4, then we use
|𝐷

2
𝑔𝑗(0)(𝑧

2
0)‖𝑧‖/2!𝑧𝑗| ≤ 2 and get













𝐷

3
𝑓𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)

‖𝑧‖

𝑧𝑗













≤ 1 +

1

2

(









3

2

− 2𝜆









−

1

2

)












𝐷

2
𝑔𝑗(0)(𝑧

2
0) ‖𝑧‖

2!𝑧𝑗












2

= 1 + |3 − 4𝜆| − 1 = |3 − 4𝜆| .

(43)

Then, by using (42) and (43), we have












𝐷

3
𝑓𝑗 (0) (𝑧

3
0) ‖𝑧‖

3!𝑧𝑗

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)

‖𝑧‖

𝑧𝑗













≤ max {1, |3 − 4𝜆|} .

(44)

If 𝑧0 ∈ 𝜕0𝐷
𝑛, then we have













𝐷

3
𝑓𝑗 (0) (𝑧

3
0)

3!

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)













≤ max {1, |3 − 4𝜆|} , 𝑗 = 1, 2, . . . , 𝑛.

(45)

Also since

𝐷

3
𝑓𝑗 (0) (𝑧

3
)

3!

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧,

𝐷

2
𝑓 (0) (𝑧

2
)

2!

) ,

(𝑗 = 1, 2, . . . , 𝑛)

(46)

is a holomorphic function on 𝑈

𝑛, in view of the maximum
modulus theorem of holomorphic function on the unit poly-
disc, we obtain













𝐷

3
𝑓𝑗 (0) (𝑧

3
0)

3!

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧0,

𝐷

2
𝑓 (0) (𝑧

2
0)

2!

)













≤ max {1, |3 − 4𝜆|} , 𝑧0 ∈ 𝜕𝑈

𝑛
, 𝑗 = 1, 2, . . . , 𝑛.

(47)

That is,












𝐷

3
𝑓𝑗 (0) (𝑧

3
)

3!

− 𝜆

1

2

𝐷

2
𝑓𝑗 (0) (𝑧,

𝐷

2
𝑓 (0) (𝑧

2
)

2!

)













≤ ‖𝑧‖

3max {1, |3 − 4𝜆|} , 𝑧 ∈ 𝑈

𝑛
, 𝑗 = 1, 2, . . . , 𝑛.

(48)
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Hence












𝐷

3
𝑓 (0) (𝑧

3
)

3!

− 𝜆

1

2

𝐷

2
𝑓 (0)(𝑧,

𝐷

2
𝑓 (0) (𝑧

2
)

2!

)













≤ ‖𝑧‖

3max {1, |3 − 4𝜆|} , 𝑧 ∈ 𝑈

𝑛
.

(49)

Finally, in order to see that the estimation ofTheorem 3 is
sharp, it suffices to consider the following mappings.

If |𝜆 − (3/4)| ≥ 1/4, we consider the following example:

𝑓 (𝑧) = (

𝑧1

(1 − 𝑧1)
2
,

𝑧2

(1 − 𝑧2)
2
, . . . ,

𝑧𝑛

(1 − 𝑧𝑛)
2
)



, 𝑧 ∈ 𝑈

𝑛
.

(50)

If |𝜆 − (3/4)| ≤ 1/4, we consider the following example:

𝑓 (𝑧) = (

𝑧1

1 − 𝑧
2
1

,

𝑧2

1 − 𝑧
2
2

, . . . ,

𝑧𝑛

1 − 𝑧
2
𝑛

)



, 𝑧 ∈ 𝑈

𝑛
. (51)

In view of Problem 6.2.5 of [19], we deduce that themappings
𝑓(𝑧), defined in (50) and (51), are in the class S∗(𝑈𝑛).

It is not difficult to verify that the mappings 𝑓(𝑧) defined
in (50) and (51) satisfy the condition of Theorem 3. Taking
𝑧 = (𝑟, 0, . . . , 0)

 (0 < 𝑟 < 1) in (50) and (51), respectively, we
deduce that the equality in (37) holds true.This completes the
proof of Theorem 3.

Remark 4. When 𝑛 = 1, Theorem 3 reduces to Theorem A.
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Applied Mathematics and Computation, vol. 218, no. 17, pp.
8453–8461, 2012.

[3] A. Pfluger, “The Fekete-Szegö inequality for complex parame-
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functions,” Proceedings of the American Mathematical Society,
vol. 101, no. 1, pp. 89–95, 1987.

[18] T. J. Suffridge, “Starlike and convex maps in Banach spaces,”
Pacific Journal of Mathematics, vol. 46, pp. 575–589, 1973.

[19] I. Graham and G. Kohr, Geometric Function Theory in One and
Higher Dimensions, Monographs and Textbooks in Pure and
Applied Mathematics, Marcel Dekker, Inc., New York, 2003.


